
HAL Id: inria-00456954
https://hal.inria.fr/inria-00456954

Submitted on 16 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Metamodel For Security Policies Mutation
Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry

To cite this version:
Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry. A Generic Metamodel For Security Policies Muta-
tion. SecTest 08: 1st International ICST workshop on Security Testing, April 9, Lillehammer, Norway,
RSM - Dépt. Réseaux, Sécurité et Multimédia (Institut TELECOM ; TELECOM Bretagne), IRISA
- Institut de Recherche en Informatique et Systèmes aléatoires (INRIA), SINTEF - The Foundation
for Scientific and Industrial Research (SINTEF), 2008, Lillehammer, Norway. 8 p. �inria-00456954�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50110168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00456954
https://hal.archives-ouvertes.fr

A Generic Metamodel For Security Policies Mutation

Tejeddine Mouelhi
IT-Telecom Bretagne

35576 Cesson Sévigné Cedex, France
tejeddine.mouelhi@telecom-bretagne.eu

Franck Fleurey
SINTEF

P.O. Box 124 Blindern
N-0314 Oslo, Norway

franck.fleurey@sintef.no

Benoit Baudry
IRISA- 35042 Rennes

Cedex, France
bbaudry@irisa.fr

Abstract. We present a new approach for mutation
analysis of Security Policies test cases. We propose a
metamodel that provides a generic representation of
security policies access control models and define a set
of mutation operators at this generic level. We use
Kermeta to build the metamodel and implement the
mutation operators. We also illustrate our approach
with two successful instantiation of this metamodel: we
defined policies with RBAC and OrBAC and mutated
these policies.

1 Introduction

Access control policies are a among the most
important security mechanisms necessary to increase
the confidence in a system. Verifying that the
implementation does not contain flaws or security
breaches is thus a critical task. Testing security policies
is a possible approach to fulfill this objective that
requires generating efficient test cases. One strategy to
evaluate the efficiency of these test cases is to perform
mutation analysis [1] which has proved its
effectiveness in many fields in the past.

The main idea behind mutation analysis is that a
good set of test cases should be able to detect common
faults that can occur in a program. When validating the
efficiency of a set of test cases for a particular system
under test, the analysis consists in injecting errors in
the program to create mutant versions. All the test
cases are then executed again each mutant and a
mutation score is computed as the rate of mutants that
are detected by one test case at least. An important
assumption for this analysis is that the errors that are
injected are relevant of most types of faults can occur.
The different faults are modeled as mutation operators
and systematically injected in the whole program when
performing the experiment.

In recent works, mutation analysis has been applied
to security policies testing [2, 3]. The main idea is to
inject flaws into the security policy to get a set of
mutant policies. Then, the efficiency of the security
tests is evaluated by the rate of mutants that can reveal

the injected flaws by distinguishing between the initial
policy and mutant.

In this paper, we propose a generic metamodel for
security policies formalisms. It captures the necessary
concepts to express various rule-based security policy
formalisms (e.g. R-BAC [4], MAC [5, 6] DAC [7]
OrBAC [8]). This metamodel thus allows a modeler to
design a new formalism and to model policies
according to this formalism. Based on this generic
definition of a security policy formalism, we express
mutation operators that can apply to all rule-based
formalisms. This generic definition of mutation
operators will allow us to study mutation analysis for
various security policy formalisms without
implementing the same mutation operators as many
times as there formalisms.

To validate this approach, we have implemented the
generic security metamodel and the mutation operators
within the Kermeta environment. We have then
successfully instantiated the metamodel to define the
OrBAC and RBAC security formalisms and to model a
security policy for a library system using these two
formalisms. We have also been able to automatically
mutate both policies and produce a set of faulty
policies. It is interesting to notice that the same
mutation operator, depending on the formalism
(RBAC, OrBAC etc.), produces very different mutants
in terms of the simulated flaws.

The rest of the paper is organized as follows. In the
next section, the existing approaches applying mutation
testing to security policies are presented with a focus
on the mutation operators. Section 3 presents the
background and the generic metamodel. In Section 4,
we show some examples highlighting how the
mutation operators were implemented.

2 Background

In this section, we first discuss the previous
approaches that applied mutation analysis for security
policies. Then, we introduce metamodelling and the
Kermeta tool used to build our generic metamodel.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

2.1 Mutation for security policies

Two different works have applied mutation analysis
to security policies. We start by presenting the work of
Xie et al. [2] who applied mutation to XACML. Then
we summarize our previous work [3, 9] where we
applied mutation analysis to OrBAC policies.

a Mutation applied to XACML
Xie et al. [2] applied mutation to XACML testing.

XACML is an Oasis standard XML syntax for defining
security policies. A framework is available that
facilitates PDP (policy decision point) implementation.
One of the difficulties of XACML is its complexity.
They used mutation to evaluate different structural
coverage criteria for XMACML policies tests
generation and selection which they proposed in a
previous work.

 They proposed several mutation operators. The
majority of these operators is platform dependant and
is related to the way XACML expresses policies and
rules. Here are some examples of operators:

RTT: Policy Set Target True: Removes the
target tag. The rule will be applied to all
requests.
CPC: Changes the combining algorithms
(these algorithms allow to decide what
rules/policies are applied).
CRE: Changes the rule type (Deny
becomes Allow and Allow becomes Deny).

These operators are efficient for revealing test cases
weaknesses. In fact, a subset of operators (like RTT)
emulates all possible syntactic faults w.r.t XACML
syntax. In addition, other operators (CPC and CRE for
example) emulate semantic faults.

The CRE which replaces permissions with
prohibitions can be reused as a generic operator for
security policies that have rule status (deny or accept).

In our approach, we tried to find out the operators
that can be reused and included in the metamodel for
security mutation operators. The CRE operator is one
of these operators.

b Mutation applied to OrBAC
In a previous work [3, 9], we applied mutation

analysis in order to qualify test cases for OrBAC
(Organization Based Access Control) models.

An OrBAC security rule can be a permission,
prohibition or obligation. A rule has 5 parameters
(called entities): an organization, a role, an activity, a
view and a context. To increase modularity for the
definition of security rules, OrBAC enables the
definition of hierarchies for entities. In that case, rules
defined on high level entities are inherited by the sub-
entities. An advantage of OrBAC is that is has a tool

called MotOrBAC [10] that allows to define,
administer policies and check conflicts.

We proposed a set of mutation operators that are
adapted to OrBAC. Here are some examples:

PPR: replaces permission with prohibition.
CRD: replaces a rule context with a
different one.
APD: replaces a rule activity with one of
its descendants.
ANR: adds a new rule.

As highlighted in the previous section, some
operators are related to the OrBAC model. For
example APD and CRD cannot be applied to RBAC
policies. Nevertheless, we can reuse some of the
proposed operators and make them generic. For
example, The ANR operator is an excellent candidate.

2.2 Metamodelling and Kermeta

This section summarizes the intents of
metamodelling and how the Kermeta environment fits
in this modelling activity.

a Metamodelling
Metamodelling [12, 13] consists in building a

metamodel that defines a modeling language for a
particular domain. The metamodel defines the concepts
and relationships that describe the domain. A
metamodel is a model itself that is expressed with a
modeling language called the meta-metamodel. In the
MDA context, the OMG has defined the MOF meta-
metamodel [14] to define the basic structure of the
metamodel. The OCL [15] can also be used to add
constraints about the static semantics of the
metamodel. These constraints define structural well-
formedness rules that must be satisfied by any model
that instantiates the metamodel. However, MOF and
OCL are not designed for specifying the dynamic
semantics of the language.

Concerning the dynamic semantics description of a
metamodel, there is no standard language today. The
Kermeta environment has been designed towards this
purpose: it is an extension of MOF that allows defining
operations in metamodels which instances are
executable. Thus, using this metamodelling
environment, it is possible to define metamodels which
completely define a language for a particular domain.
We have used this approach for implementing a
requirement modeling language (presented in Section
4).

b Kermeta
Kermeta [11] is an open source metamodelling

environment developed by the Triskell team at IRISA
that is fully integrated with Eclipse. It has been
designed as an extension to the meta-data language

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

EMOF [14] with an action language that allows
specifying semantics and behavior of metamodels. The
action language is imperative and object-oriented and
is used to provide an implementation of operations
defined in metamodels. A more detailed description of
the language is presented in [16].

The Kermeta action language has been specially
designed to process models. It includes both OO
features and model specific features. Convenient
constructions of the Object Constraint Language
(OCL) such as closures (e.g. each, collect, select) are
also available in Kermeta. The action language offered
by Kermeta is well adapted to model-oriented activities
such as:

Specification of abstract syntax, static
semantic (OCL) and dynamic semantics.
model and metamodel simulation and
prototyping
model transformation
aspect weaving

3 A generic framework for security
policies

In the literature, several security formalisms such as
RBAC or OrBAC are based on the definition of
security rules. Depending on the formalism, the type of
rules and the entity they manipulate are different. The
idea of the framework proposed in this section is to
support the definition of security policies from these
various formalisms in order to allow for the
implementation of generic tools to manipulate the
security models. In order to support this idea, the
framework must thus allow defining all the different
formalisms, and expressing models using those
formalisms.

The framework is built around a metamodel which
allows representing both particular rule-based security
formalism (such as RBAC or OrBAC) and instances of
this formalism that model actual security policies. The
metamodel was defined using the Eclipse Modelling
Framework and implemented within the Kermeta
environment.

3.1 Generic security metamodel

Figure 1 presents the generic security metamodel.
On the diagram all classes include a name attribute. In
the implementation this attribute is factorized in a
common super-class NamedElement.

The metamodel is divided in two parts: the three top
classes (PolicyType, ElementType and RuleType) are
the general concepts that allow defining any rule-based
security policy formalism. The class PolicyType is the

root class for the definition of security formalism.
Security formalism consists of a set of element types
(ElementType) and a set of rule types (RuleType). Each
rule type has a set of parameters which are typed by
element types. In the following we present how these
three classes can be instantiated to represent RBAC
and OrBAC formalisms.

Figure 1 – The meta-model for rule-based
security formalisms

The three bottom classes (Policy, Rule and Element)
on the diagram in Figure 1 allow defining actual
security policies using a formalism defined with the
three top classes. The class Policy is the root class to
instantiate in order to create a security policy. Each
policy must have a type (which is an instance of class
PolicyType discussed in the previous paragraph) and
contains elements and rules. The type of a policy
constrains the types of elements and rules it can
contain. Each element has a type which must belong to
the element types of the policy type. If the hierarchy
property of the element type is true, then the element
can contain children of the same type as itself. This is
used for example to define hierarchies of roles in
OrBAC. Finally, rules can be defined by instantiating
the Rule class. Each rule has a type which should again
belong to the policy type. Each rule has a set of
parameters which types should match the types of the
parameters of the type of the rule.

In practice the metamodel was defined as an Ecore
model in the EMF framework. The advantages of using
EMF are:

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

It generates editors that can be directly
used to define security types and policies.
It integrates smoothly in the Kermeta
environment which is used to implement
the mutation tool.

3.2 Definition of types of security policies

Figure 2 shows how the metamodel was instantiated
to model OrBAC security policies. This figure is a
snapshot of the model editor generated by EMF from
the metamodel presented in the previous section. In
OrBAC there are five types of entities: organizations,
roles, activities, views and contexts. All these types
were defined by instances of the ElementType class.
Among these types of element, only Roles can be
organized hierarchically.

OrBAC defines three types of rules: permission,
prohibition and obligation. All three types of rule have
the same five parameters: an organisation, a role, an
activity, a view and a context.

Figure 2 – OrBAC model

Figure 3 – RBAC model

Figure 3 presents the RBAC model. In the same way
as for the OrBAC model, the PolicyType class is
instantiated to model RBAC. RBAC defines four types
of entities: users, permissions, roles and constraints.

RBAC associates users with roles on one hand and
roles with permissions on the other hand. Two types of
rules have to be defined:

UserRole rules which have two parameters:
a user and a role.
RolePermission rules which have three
parameters: a role, a permission and a
constraint.

The examples of OrBAC and RBAC show how
these two existing rule based security mechanisms can
be modelled within the proposed framework. The next
subsection shows an example of how actual policies
can be modelled based on the definitions of these
formalisms.

3.3 Definition of actual security policies

Figure 4 – OrBAC security policy for a library
application

To illustrate the paper, we use the example of a
library management system. Basically, the library
system has various types of users: students, secretaries
and a director. The students can borrow books from the
library, the secretary manages the accounts of the
students but only the director can create accounts. In
the paper we only use a simplified version of the
application with just a few security rules.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

In order to validate the proposed metamodel, we
have modelled equivalent security policies for the
application using both OrBAC and RBAC. Figure 4
shows a snapshot of the OrBAC policy in the editor
generated by EMF. The model defines:

One organization : Library
Four roles: Student, Personnel, Secretary
and Director. Among these, the roles
Secretary and Director are in fact sub-roles
of Personnel.
Three activities: Borrow, ModifyAccount
and CreateAccount.
Two views: Book and UserAccount.
Two contexts: WorkingDays and
Holidays.

To illustrate the paper we have modelled five
security rules (R1 to R5) for the library:

 POLICY LibraryOrBAC (OrBAC)
 R1 -> Permission(Library Student Borrow Book
 WorkingDays)
 R2 -> Prohibition(Library Student Borrow Book Holidays)
 R3 -> Prohibition(Library Secretary Borrow Book Default)
 R4 -> Permission(Library Personnel ModifyAccount
 UserAccount WorkingDays)
 R5 -> Permission(Library Director CreateAccount
 UserAccount WorkingDays)

Figure 5 – RBAC security policy for a library
application

A similar security policy was modeled based on
RBAC. Figure 5 presents a snapshot of this model. It
includes:

Three users: alice, yves and romain.
The same four roles as the OrBAC model.
Three permissions: BorrowBook,
ModifyUserAccount and CreateUserAccount.
Two constraints: WorkingDays and Holidays.

Six rules were defined to associate users with roles
on one hand and associate permissions with roles on
the other hand:

 POLICY LibraryRBAC (RBAC)

 R1 -> UserRole(romain Student)
 R2 -> UserRole(yves Director)
 R3 -> UserRole(alice Secretary)
 R4 -> RolePermission(Student BorrowBook WorkingDays)
 R5 -> RolePermission(Personnel ModifyUserAccount
 WorkingDays)
 R6 -> RolePermission(Director CreateAccount AllTime)

The next section reuses these examples to show how
the generic mutation operators we propose can apply
on both OrBAC and RBAC security policies.

4 The mutation operators and their
implementation

This section proposes mutation operators defined on
the generic metamodel proposed in the previous
section. Section 4.1 presents the specifications of the
operators, Section 4.2 details their implementation
within the Kermeta environment and Section 4.3 shows
how they can be applied to the library example.

4.1 Mutation operators

We propose four mutation operators. Each operator
inherits from the SPMutator class and implements the
mutate method which returns a set of mutants. The
SPMutator class is related to the SecurityPolicy class
from the generic security framework. This association
allows the operator classes to manipulate the security
models.

Figure 6. The mutation operator classes

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

The following table shows the details about each
operator.

Table 1- The mutation operators

Operator Name Definition

RTT Rule type is replaced
with another one

PPR
Replaces one rule
parameter with a
different one

ANR Adds a new rule

RER Removes an existing
rule

PPD
Replaces a parameter
with one of its
descending parameters

It is worth noting that these operators are defined at
the generic level independently from any security
formalism (it can be based on RBAC, OrBAC or
anything else). In fact, these operators are defined
based only the metamodel classes:

RTT: Finds a first rule type that has the same
parameter as the type of another rule type. Then it
replaces the rule parameter of one rule having the first
rule type with the other rule type.

PPR: Chooses one rule from the set of the rules, and
then replaces one parameter with a different parameter.
It uses the knowledge provided by the metamodel (by
ruleType and parameterType classes) about how rules
are constructed.

ANR: Uses the knowledge about the defined
parameters and the way rules are built. Then it adds a
new rule that is not specified.

RER: Chooses one rule and removes it.

PPD: Chooses one rule that contains a parameter that
has descendant parameters (based on the parameters
hierarchies that is defined) then replaces it with one of
the descendants. The consequence here is that the
derived rules will be deleted and only the rule with the
descendant parameter remains.

4.2 Implementation in Kermeta

Figure 7 shows the Kermeta code for the RER
operator. The operator iterates on the set of rules and
picks a rule to produce a mutant policy.

The Kermeta syntax and the use of metamodel
allowed us to easily write the code for mutation
operators that manipulate complex data structures such

as security policy models. This is the case for the PPR
operator shown in 8.

Figure 7 – The RER operator

Figure 8 – The PPR operator

The PPR operator replaces rule parameters. It takes
into account the type of parameter and produces all
possible mutants by replacing on rule parameter with
all possible parameters.

4.3 Examples

We show here some examples of mutants obtained
for both an OrBAC and RBAC policy:

The original OrBAC policy:

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

 POLICY LibraryOrBAC (OrBAC)
 R1 -> Permission(Library Student Borrow Book
 WorkingDays)
 R2 -> Prohibition(Library Student Borrow Book Holidays)
 R3 -> Prohibition(Library Secretary Borrow Book Default)
 R4 -> Permission(Library Personnel ModifyAccount
 UserAccount WorkingDays)
 R5 -> Permission(Library Director CreateAccount
 UserAccount WorkingDays)

Examples of mutants:
RER Mutant

POLICY LibraryOrBAC-RER-R1 (OrBAC)
 R2 -> Prohibition(Library Student Borrow Book Holidays)
 R3 -> Prohibition(Library Secretary Borrow Book Default)
 R4 -> Permission(Library Personnel ModifyAccount
 UserAccount WorkingDays)
 R5 -> Permission(Library Director CreateAccount
 UserAccount WorkingDays)

RTT mutant

 POLICY LibraryOrBAC-RTS-R4-Prohibition (OrBAC)
 R1 -> Permission(Library Student Borrow Book
 WorkingDays)
 R2 -> Prohibition(Library Student Borrow Book Holidays)
 R3 -> Prohibition(Library Secretary Borrow Book Default)
 R4 -> Prohibition(Library Personnel ModifyAccount
 UserAccount WorkingDays)
 R5 -> Permission(Library Director CreateAccount
 UserAccount WorkingDays)

Next, we present some examples of mutants related
to an RBAC policy. The initial RBAC policy is
presented bellow:

 POLICY LibraryRBAC (RBAC)

 R1 -> UserRole(romain Student)
 R2 -> UserRole(yves Director)
 R3 -> UserRole(alice Secretary)
 R4 -> RolePermission(Student BorrowBook WorkingDays)
 R5 -> RolePermission(Personnel ModifyUserAccount
 WorkingDays)
 R6 -> RolePermission(Director CreateAccount AllTime)

Here are some examples of the generated mutants
RER mutant:

POLICY LibraryRBAC-RER-R5 (RBAC)
 R1 -> UserRole(romain Student)
 R2 -> UserRole(yves Director)
 R3 -> UserRole(alice Secretary)
 R4 -> RolePermission(Student BorrowBook WorkingDays)
 R6 -> RolePermission(Director CreateAccount AllTime)

PPR mutant:

POLICY LibraryRBAC-RDD-R1-Student-Personnel (RBAC)
 R1 -> UserRole(romain Personnel)
 R2 -> UserRole(yves Director)
 R3 -> UserRole(alice Secretary)
 R4 -> RolePermission(Student BorrowBook WorkingDays)
 R5 -> RolePermission(Personnel ModifyUserAccount
 WorkingDays)
 R6 -> RolePermission(Director CreateAccount AllTime)

It is important to notice that the impact of the
mutation operator depends on the access control
formalism used to define a policy. The errors that are
simulated are very different as shown in the examples.
The same operators emulate very different flaws in the
policies. For instance, the ANR operator applied to
RBAC simulate the adding a new permission, while for
OrBAC it will simulate adding a new prohibition or a
new permission. In addition, the RER operator
simulates adding a new prohibition when used for an
RBAC policy, but may lead to removing a permission
when used with an OrBAC policy. The impact of the
operator depends on the semantic and the logic of the
access control model.

5 Conclusion and further work
We presented a new approach that uses a generic

metamodel for security policy mutation. This
metamodel captures the concepts that are necessary to
model different rule-based security formalisms. Based
on this metamodel, we have modelled generic mutation
operators. These operators can be applied to simulate
flaws in security models expressed in the various rule-
based formalisms defined with our metamodel.

We studied the feasibility of this generic approach
by providing an implementation of the metamodel and
the mutation operators within the Kermeta
environment. The tool allowed us to define the OrBAC
and RBAC security formalisms, to model security
policies with these formalisms and to mutate these
models by running the generic operators.

There are two main tracks for future work. The first
one, that directly follows this initial study, consists in
validating the mutation operators on other formalisms.
In particular, we will focus on applying our approach
to produce XACML mutants and analyse the difference
with the mutants generated with dedicated operators.
The XACML syntax can be integrated and expressed
using our metamodel.

We will also study other access control models (like
MAC and DAC) and check whether we can define
them using our metamodel.

The second track for further work is to leverage the
generic framework for security formalisms definition.
It is now possible to experiment and develop other
tools in addition to the mutation tool. For example, the
framework eases experiments about the translation
from one security formalism to another.

Acknowledgments: This work is a part of the
Politess project (ANR-05-RNRT-01301),
granted by the French National Research
Agency (ANR).

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

6 References

1. R. DeMillo, R. Lipton, and F. Sayward, Hints
on Test Data Selection : Help For The
Practicing Programmer. IEEE Computer,
1978. 11(4): p. 34 - 41.

2. E. Martin and T. Xie A Fault Model and
Mutation Testing of Access Control Policies.
In Proceedings of International Conference
on World Wide Web, p. 667-676, 2007.

3. T. Mouelhi, Y. Le Traon, and B. Baudry.
Mutation analysis for security tests
qualification. In Proceedings of Mutation'07
workshop, 2007.

4. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R.
Kuhn, and R. Chandramouli, Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System
Security, 2001. 4(3): p. 224�274.

5. D. E. Bell and L.J. LaPadula. Secure
computer systems: Unified exposition and
multics interpretation. In Proceedings of
Tech. Rep. ESD-TR-73-306, The MITRE
Corporation, 1976.

6. K.J. Biba. Integrity consideration for secure
computer systems. In Proceedings of Tech.
Rep. MTR-3153, The MITRE Corporation,,
1975.

7. B. Lampson. Protection. In Proceedings of
5th Princeton Symposium on Information
Sciences and Systems,, p. 437-443, 1971.

8. A. Abou El Kalam, R. El Baida, P. Balbiani,
S. Benferhat, F. Cuppens, Y. Deswarte, A.
Miège, C. Saurel, and G. Trouessin.
Organization Based Access Control. In
Proceedings of IEEE 4th International
Workshop on Policies for Distributed Systems
and Networks, 2003.

9. Y. Le Traon, T. Mouelhi, and B. Baudry.
Testing Security Policies: Going Beyond
Function Testing. In Proceedings of
International Symposium on Software
Reliability Engineering, p. 93-102, 2007.

10. MotOrBAC. The MotOrBAC Project Home
Page. Available from:
http://motorbac.sourceforge.net/index.php?pa
ge=home&lang=en.

11. Kermeta. The KerMeta Project Home Page.
2005. Available from:
http://www.kermeta.org.

12. Metamodel. Community site for meta-
modeling and semantic modeling. 2006.
Available from: http://www.metamodel.com/.

13. T. Clark, A. Evans, P. Sammut, and J.
Willans, Applied Metamodelling: A

Foundation for Language Driven
Development. 2004. 189.

14. OMG. MOF 2.0 Core Final Adopted
Specification. 2004. Available from:
http://www.omg.org/cgi-bin/doc?ptc/03-10-
04.

15. OMG. UML 2.0 Object Constraint Language
(OCL) Final Adopted specification. 2003.
Available from: http://www.omg.org/cgi-
bin/doc?ptc/2003-10-14.

16. P.-A. Muller, F. Fleurey, and J.-M. Jézéquel.
Weaving executability into object-oriented
meta-languages. In Proceedings of
MoDELS'05, p. 264 - 278. Montego Bay,
Jamaica, October 2005.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 21, 2009 at 05:00 from IEEE Xplore. Restrictions apply.

