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Abstract: We describe in this document several depth maps estimation methods, in different video
contexts. For standard (monocular) videos of fixed scene and moving camera, we present a technique
to extract both the 3D structure of the scene and the camera poses over time. These information are
exploited to generate dense depth maps for each image of the video, through optical flow estimation
algorithms. We also present a depth maps extraction method for multi-view sequences aiming at gen-
erating MVD content for 3DTV. These works are compared to existing approaches used at writing time
in the 3DV group of MPEG for normalization purposes. Finally, we demonstrate how such depth maps
can be exploited to perform relief auto-stereoscopic rendering, in a dynamic and interactive way, without
sacrifying the real-time computation constraint.
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Estimation et utilisation de cartes de profondeur en 3DTV

Résumé : Nous décrivons dans ce document plusieurs méthodes d’estimation de cartes de profondeur,
dans des contextes video différents. Pour des vidéos classiques (monoculaires) de scènes fixes avec ca-
méra en mouvement, nous présentons une technique d’estimation de la structure 3D et des poses de la
caméra au cours du temps, exploitée pour générer des cartes de profondeur denses pour chaque image
avec des algorithmes d’estimation du flot optique. Nous présentons également une méthode d’extraction
de cartes de profondeur pour des séquences multi-vues en vue de la génération de contenus MVD pour la
TV 3D. Ces travaux sont comparés au approches existantes en cours dans le groupe 3DV de MPEG pour la
normalisation. Nous démontrons enfin que de telles cartes peuvent être exploités pour effectuer un rendu
en relief auto-stérééoscopique, de façon dynamique et interractive tout en restant dans les contraintes du
calcul temps-réel.

Mots-clés : Cartes de profondeur, cartes de disparité, Structure from Motion, Vidéos multi-vues,
Vidéos 3D, 3DTV, Normalisation, Auto-stéréoscopie, GPGPU, Flot optique
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Foreword

1 - The Futurim@ges project

These works have been funded by the French project Futurim@ges, during years 2008 and 2009. The goal
of the project itself was to study the future TV video formats that could be introduced before the next five
years (so around 2015 by the time the project has been closed). Immersion seems to be a key point of this
evolution, and studies have been conducted in three different axes:

# HDTV in the high frequency and progressive mode (1080p50)
# HDR (High Dynamic Range) images with higher contrasts (light power) and extended colorimetric

spaces
# 3DTV as the relief visualization without glasses

The INRIA has been involved in this project to work on the 3DTV field, especially on depths maps extrac-
tion from video content, and study of 3d representations and their impact on the coding and compression
chain.

2 - Purpose of this document

The purpose of this document is to summarize works that have been done in depth maps estimation and
uses within the TEMICS team at the INRIA Lab for the past two years. It is not intended to be a course on
Computer Vision of Computer Graphics, so the reader should be quite familiar with these fields. Some
basic notes are sometimes reminded however.

3 - Required notions

More precisely, the reader should be familiar with the following concepts :

# Computer Vision

– The principle of depth maps
– The pinhole camera model
– Projective geometry
– Stereo Matching
– Further Reading:

* Multiple View Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [HZ04]

* Visual 3D Modeling from Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Pol04]

# Computer Graphics

– The OpenGL pipeline
– Shader programming
– Off-screen rendering
– Further Reading:

* OpenGL Programming Guide (Red Book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [BSe05]

* OpenGL Shading Language (Orange Book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Ros06]

* OpenGL FrameBuffer Object 101/202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Jon]
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8 Gaël Sourimant

4 - Videos licensing terms

Some of the videos presented in this document, for which depth maps extraction results are illustrated,
are not the property of the INRIA. We remind here the attached licensing information.

4.1 - MPEG Videos

4.1.1 - Copyright notice

Individuals and organizations extracting sequences from this archive agree that the sequences and all
intellectual property rights therein remain the property of the respective owners listed below. These ma-
terials may only be used for the purpose of developing, testing and promulgating technology standards.
The respective owners make no warranties with respect to the materials and expressly disclaim any war-
ranties regarding their fitness for any purpose.

4.1.2 - Videos owners

Lovebird1 ETRI (Electronics and Telecommunications Research Institute), MPEG-
Korea Forum
161 Gajeong, Yuseong Gu, Daejeon, 305-700,
Republic of Korea

Cafe Gwangju Institute of Science and Technology (GIST)
1 Oryong-dong, Buk-gu, Gwangju, 500-712,
Republic of Korea

Newspaper Gwangju Institute of Science and Technology (GIST)
1 Oryong-dong, Buk-gu, Gwangju, 500-712,
Republic of Korea

Book Arrival Fraunhofer Institut für Nachrichtentechnik, Heinrich-Hertz-Institut,
Einsteinufer 37, 10587 Berlin
Germany

Balloons Nagoya University Tanimoto Laboratory,
Japan

❚❛❜❧❡ ✶✳ ▲✐st ♦❢ t❤❡ ❞✐✛❡r❡♥t ✈✐❞❡♦s ♦✇♥❡rs ♣r❡s❡♥t❡❞ ✐♥ t❤✐s ❞♦❝✉♠❡♥t

4.2 - Home Videos

The videos Home - New York, Arctic, Kilimanjaro, Coral are extracted from the movie Home, by Yann
Arthus-Bertrand.
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Depth maps estimation and use for 3DTV 9

PART I

Depth maps estimation for monocular videos

5 - Interpolation of existing depth maps

Depth maps estimation from monocular videos is extremely challenging in general. In fact this is an in-
verse problem, where one wants to retrieve 3d information from 2d datasets (namely the video). In the
general case, 2d motion within the video is the only cue used to compute the corresponding 3d informa-
tion, and this motion can be induced either by moving objects in the scene, or by the camera motion itself.
So as to simplify this problem, we restricted our study to videos of static scenes with a moving camera.
More specifically, we seek here to extract a depth map for each image of the video. We will first see how
such maps can be computed using previous works on the subject. Then, we will present our algorithms
to compute the scene structure throughout the whole videos.

5.1 - Previous works

Depth maps estimation from such videos has already been dealt with within the TEMICS team, by Galpin
[Gal02] and Balter [Bal05]. These works intend to extract a 3d structure from videos in order to compress
them efficiently at low bit rates. The global principle of the method is illustrated on Figure 1. First of all,
the video is partitioned into Gops of variable size, depending on the scene content, and the camera pose
(position plus orientation) is estimated using a Structure from Motion algorithm for each input image. The
depth map for the first Gop image (or keyframe) is computed, leading to a simple 3d model describing
the whole Gop. This model is textured with the corresponding keyframe.
To sum up, this algorithm transforms a group of N images into a single texture plus depth map, associated
with N camera poses. This is why such a representation is very efficient in compression terms at low bit
rates. For higher bit rates however, the reconstructed quality drops due to 3d artifacts, such as textures
stretching.
We can see on Figure 1 that the video is divided into a number of Gops largely inferior to the number
of input images. As such, few depth maps are estimated. As we seek to find a unique depth map for
each input image, we first proposed to compute such a 3d representation, and take advantage of it to
interpolate the depth maps for the remaining images (i.e. for the non keyframe images).

5.2 - Depth maps interpolation

One solution to associate a depth map to each input image would be to consider successive pairs of im-
ages in order to estimate the scene depth. However, the inter-frame displacement is way too small in
this case to allow such an estimation. We thus exploit the Gop-based representation presented in the
previous section to calculate intermediate maps.
We are no longer in the context of sequential video analysis (in which the Gop selection is made) but
rather in the reconstruction — or synthesis — case, where the 3d representation is displayed for each
estimated camera position. This is illustrated in the lower part of Figure 1. We describe hereafter three
different methods to compute such interpolation: a naive solution, one using blended depth maps and a
final one requiring the computation of a global 3d model of the scene.

5.2.1 - Naive solution

Reconstructing the original video is done in the following way: for each estimated camera position (i.e.

for each temporal instant), a 3d model computed using the associated Gop depth map is displayed for
the current pose. The 3d engine used for display is based on OpenGL. Each Gop being associated to a
unique depth map, the displayed model is the one linked to the Gop the camera position belongs to.
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10 Gaël Sourimant

Image sequence

Camera positions

I0 I1 I2 I3 I4 I5

K0 K1

︸︷︷︸

GOP0

[R0|t0] [R1|t1] [R2|t2] [R3|t3] [R4|t4] [R5|t5]

Keyframes

K0 K1

Textures

3D models

︸︷︷︸

M2

Camera positions [R0|t0] [R1|t1] [R2|t2] [R3|t3] [R4|t4] [R5|t5]

Reconstructed im-
age sequence

Fig. 1. Global view of Galpin’s algorithm

Using the rendering engine, one can thus display the z-buffer of the model instead of its textured version.
This z-buffer corresponds to the desired depth map with a proper scaling. An example of such computed
maps is given on Figure 2. In that case, the displayed 3d model is a regular mesh for which each node
corresponds to a pixel in the depth map.
The major limitation of this approach comes from the use of the meshes associated to each Gop. At
Gop transitions, in the classical video reconstruction stage (meaning while displaying textures instead of
depth maps), on can observe texture stretching between the last Gop image and the first of the following
one (see Figure 3). This effect is caused by two distinct phenomena:

1. The mesh topology does not take into account the depth discontinuities, leading to textures stret-
ching by the end of Gops.

2. No hard consistency is forced between two successive meshes, and the topological differences thus
appear clearly during transitions.

In our case, texture stretching does not occur: we do not aim at reconstructing the images and thus use
the original frames instead for each time instant. However, these issues arise also within depth maps.
Texture stretching are just replaced by depth discontinuities, which may worsen the future uses of these
2d+z videos (for instance for auto-stereoscopic display or views interpolation).

INRIA



Depth maps estimation and use for 3DTV 11

(a) Sequence Saint Sauveur

(b) Sequence Clôıtre

(c) Sequence Escalier

Fig. 2. Naive depth maps estimation by projection

5.2.2 - Depths blending

One solution to reduce the artifacts described in the previous section consists in blending the successive
meshes over time. Let t0 be the first image of a Gop, and tn be the first image of the following Gop. Let t
be a frame between t0 and tn for which we want to compute a depth map. We compute the depth map Zt

as a linear interpolation between the known depth maps Zt0 and Ztn
associated to t0 and tn respectively:

Zt = (1− α) · Zt0 + α · Ztn
, with α = (t− t0)/(tn − t) (1)

Here α is a time-based linear interpolation, but it could also be a geometric-based interpolation depend-
ing on the respective camera positions at times t, t0 and tn.
This approach requires a highly accurate 3d registration between the successive meshes. Otherwise,
depth inconsistencies appear, especially around meshes boundaries.
This type of interpolation has already been used by [Gal02] in texture space, in order to improve the re-
constructed image sequence quality.

5.2.3 - Global model

We have seen that Gops bad transitions are mainly due to topological changes among the successive 3d

models. We thus tried to compute a global 3d representation of the scene, which is no longer based on a
sequences of meshes, but on a global 3d model which integrates all geometrical information provided by
the depth maps of each Gop.
One type of such representation is a volumetric description of the scene using an octree. Using such
representation, we discard the artificial connectivity introduced between depth discontinuities (which
do not describe the physical state of the scene), and also the stretching occurring at Gops transitions.
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12 Gaël Sourimant

(a) Sequence Saint Sauveur

(b) Sequence Clôıtre

(c) Sequence Escalier

Fig. 3. Depth maps for successive frames, with difference image

Fig. 4. Virtual view of a volumetric scene representation

This is a direct consequence of the fact that with an octree representation, there is only a single mesh to
display.
A rendering of such representation is presented on Figure 4, for a virtual point of view, with both the
textured and the z-buffer version. This 3d model is the one displayed all along the video. The octree
model is colored using the original images of the video.

INRIA



Depth maps estimation and use for 3DTV 13

(a) Sequence Saint Sauveur

(b) Sequence Clôıtre

Fig. 5. Images and associated maps using a global model

Different 2d+z results are illustrated on Figure 5. Here the depth values have been rescaled for better
viewing. The depth maps have been filtered (with a median filter) to smooth the small local discontinu-
ities due to the volumetric representation.

5.2.4 - Discussion

We presented in this section exploratory experiments on depth maps interpolation for 2d+z videos gen-
eration. The presented methods rely heavily on the results of Galpin’s algorithm [Gal02]. Unfortunately,
this algorithm does not provide accurate enough depth maps. First of all, Galpin’s algorithm relies on
motion estimator using a deformable 2d mesh, which smooths the resulting vector field, and finally the
related depth maps. Such smoothing corrupts the depth values around depth contours; leading to poor
interpolated values in these areas.

As a consequence, we present in the following section a new Structure from Motion algorithm, based on
more recent algorithms of the literature, to replace Galpin’s algorithm. We will see how such algorithm
can also be exploited to compute accurately depth maps for each input image directly, without any inter-
polation computation.
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6 - Structure from Motion algorithm

We have seen in the previous section that depth maps extraction by interpolation may not be a viable
option. This results is mainly due to the fact that camera poses are not extracted accurately enough,
leading somewhat to incorrect depth description of the scene. As a consequence, we present here a novel
Structure from Motion algorithm (SfM), using more recent and reliable works from the literature. This
algorithm aims principally at extracting camera poses and scene structure in a single pass. As will be
stated below, the structure of the scene will be sparse, meaning that we do not obtain a dense depth
representation for each image, but rather a 3d point cloud describing the whole scene. The principal
information to extract here is the pose of the camera at each time1, which will be further used for dense
depth maps extraction.

An overview of our method is depicted on Figure 6. Input and/or output data are depicted in straight
blue rectangles, while algorithmic blocks are drawn in red rounded rectangles. SfM is computed through
several passes, and no longer on the flow as in [Gal02]. First, features points are tracked throughout the
whole video. Then these points are used to partition the image sequence into Gops, following Galpin’s
idea, leading to a pool of keyframes. In a final pass, quasi-euclidean reconstruction (poses and structure)
are computed using all keyframes, and remaining camera poses (for non keyframe images) are deduced
by interpolation.

6.1 - Feature points extraction and tracking

Our SfM algorithm uses feature points as base low level primitives. This is a classical approach, and
extraction and tracking of such features are well known problems. The most commonly used feature
detectors in the literature are those of Harris & Stephens [HS88], Shi & Tomasi [ST94], SIFT [Low04] or
SURF [BTG06]. In this study, we focus SURF features since they are known to outperform other feature
types for calibration and 3d reconstruction tasks [BTG06].

6.1.1 - Features extraction

In our algorithm, we use the implementation of SURF features extraction provided by the OpenCV library,
within the function ❝✈❊①tr❛❝t❙❯❘❋✭✮. An example of extracted feature is presented on Figure 7, for
two different frames of a video. Light green dots in the images represent the extracted features with this
method.

1In this part, we speak indifferently of “poses of the cameras” or “camera poses over time”. In fact, assuming that
the scene is static and the camera is moving is strictly equivalent to consider a fixed scene with many cameras at
different positions for a single time instant.

N input images

M camera poses
3D points cloud

List of 2D image
points

N camera poses
N depth maps

M < N selected
images

Sparse scene
reconstruction

Dense scene
reconstruction

Selection of
keyframes

Feature points
extraction and

tracking

Fig. 6. Overview of our Structure from Motion algorithm
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Fig. 7. Extracted SURF features from the sequence Home - New York

6.1.2 - Features tracking

Principle In Lowe’s original paper [Low04], the features descriptors were used to match the extracted
SIFT points across different images. More precisely, if x1 and x2 are SIFT features extracted from images
I1 and I2 respectively, and d1 and d2 are their associated descriptors, the point xi

1 is matched to xj
2 if and

only if the difference in L2 norm between their descriptors is sufficiently small, and xj
2 is the closest point

to xi
1 among x2 in terms of that norm:

xi
1 matches xj

2 ⇐⇒ xj
2 = argmin

j

(

‖di
1 − dj

2‖2 with ‖di
1 − dj

2‖2 < λ
)

(2)

This principle can also be applied to SIFT features. However, we seek here to find matches across succes-
sive images of the very same video. With such data, Lowe’s matching method is not the best suited one,
since it does not integrates the prior of small inter-frame motion.
A more efficient alternative is to use Tomasi & Kanade feature tracker [TK91, ST94]. It is also implemented
in OpenCV within the function ❝✈❈❛❧❝❖♣t✐❝❛❧❋❧♦✇P②r▲❑✭✮.

Tracking over time Once features have been detected in the first image, tracking is performed until
the last video frame is reached. For each frame, the complete tracking procedure can be split into three
steps. First, matches are found between the previous image It−1 and It using the method described in
the previous paragraph. Then, to ensure matches are robust, an outlier removal pass is applied. This
step consists in estimating the epipolar geometry between the two images which is induced by the point
matches, by means of the fundamental matrix F:

∀i, xi
t

⊤
Fxi

t−1 = 0 (3)

F is computed in a robust way using a Least Median of Squares (LMedS) approach, given a desired prob-
ability that the estimated matrix is correct (typically 0.99). In a very similar way it could be computed
within a RANSAC robust procedure [FB81]. Outliers are detected during the robust phase. Such computa-
tion can be performed using OpenCV’s ❝✈❋✐♥❞❋✉♥❞❛♠❡t❛❧▼❛t✭✮ function. Finally, points that were lost
during the matching process are replaced by new ones. Thus the detection phase is run and only new fea-
tures that are sufficiently far away from still tracked points are integrated. The minimal distance between
old and incoming features is typically about 8 pixels.
Tracking results are depicted on Figure 8, where line segments represent the position over time of the
tracked points, for the same images than in Figure 7.

6.2 - Keyframes selection

6.2.1 - Principle

Since we work with videos (as opposed to unordered images), the inter-frame baseline is very narrow,
meaning that the camera displacement between two images is very small. As a consequence, it would
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Fig. 8. Tracked SURF features from the sequence Home - New York

Fig. 9. Relation between baseline and reconstruction error

be a bad idea to try to reconstruct the scene and the camera poses using successive images. In fact, the
scene reconstruction error is highly correlated to the relative cameras relative displacement and orien-
tation, which impacts the distance on the 2d point matches. If 2d points measurements are corrupted
with (Gaussian) noise, noise influence will decrease with the distance between matches, and as such 3d

reconstruction error will also be reduced. This is illustrated on Figure 9. On the left side, the baseline
between the two cameras is small, leading to a small 2d displacement (red arrow) and a large potential
3d reconstruction error (gray zone). On the contrary, on the right side the baseline is larger, leading to a
small reconstruction error. The dashed lines represent the “error cones” induced by the noise corrupting
the 2d points measurements.

It is this need for relevant images to compute the desired reconstruction that imposes to select keyframes
from the video. The computation of the camera poses and the scene structure will be performed using
point matches across these keyframes. Unfortunately, keyframe selection from videos for reconstruction
tasks is not well documented in the literature. To our knowledge, this is mainly due to the fact that such
process is highly dependent on the input data, and that writing a generic algorithm to this purpose that
works with almost any video “is still to some extent a black art” [HZ04].

6.2.2 - Previous works

Several tools to detect which images could be relevant keyframes have however been described. In [Pol04],
given a keyframe I0, the following one Ik maximizes the product between the number of matches and
an image-based distance. The proposed distance is the median distance between points x1 transferred

INRIA
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through an average planar homography H and the corresponding points x2 in the target image:

dist(I0, Ik) = median
i

(

‖Hxi
1 − xi

2‖2
)

(4)

A similar procedure is applied in [SSS08], although the data considered here are unordered photographs.
Once point matches have been computed, an homography H is computed between image pairs, through
a robust RANSAC procedure, and the percentage of inlier points (i.e. for which the homography transfer
is a good model) is stored. Then initial reconstruction is performed using the image pair with the lowest
number of inliers, provided there are at least 100 matches between them. Indeed, homographic transfer
is a very good model for points belonging to images for instance acquired from a pure rotational camera,
or for points all belonging to the same plane in space. In both cases, reconstruction is nearly unfeasible,
and thus image pairs validating this homographic model should not be considered.
In [Gal02], where video frames are processed on the flow, a more complex procedure is setup to select
keyframes. In consists in the combination of several criteria, which are image- and projective-based:

# Lost points during tracking are not replaced, so the percentage of still tracked points should be
above a given threshold.

# The mean motion amplitude between tracked points should also be above some given threshold.
# Epipolar geometry is estimated between pairs of images, and only those with a small enough epipo-

lar residual (symmetric distance between points and epipolar lines corresponding with the associ-
ated points transfered by the fundamental matrix F) can be selected.

Given a keyframe I0, the selected next keyframe is the one which validates these three criteria and which
is the furthest away from I0 in terms of frames number.

6.2.3 - Our method

Our approach approach is quite similar to [Gal02]. We combine several criteria in order to select proper
keyframes. The main difference is that we compute a light prior reconstruction (camera poses and 3d

points) to determine whether an image pair is well suited. More details on such reconstruction are de-
tailed in Section 6.3. Given a keyframe Ik, we search for the best next keyframe Ik+n, with n ∈ {1;N}.
First, we remove from the image search space all frames which do not fulfill the following criteria:

# The number of matched points should be large enough.
# The mean 2d motion between matched points should be large enough too.
# The fundamental matrix F is computed, and the essential matrix E is then derived by removing the

intrinsics influence with user-provided approximate parameters. E is decomposed into a rotation
matrix R and a translation vector t, corresponding to the relative pose of the cameras, from which
we triangulate the matched points to get their 3d position. If a sufficiently large number of points
are reconstructed (meaning they are in front of both cameras, see Section 6.3), the reconstruction
is considered as viable.

For all frames which passed these three tests, we finally compute a score sn upon the projective relation-
ships between Ik and Ik+n, and the selected keyframe will be the one maximizing sn:

sn = ǫn
h/ǫn

e (5)

ǫn
h is the homographic residual. Similarly to [Pol04], we have:

ǫn
h =

1

M

M
∑

i=1

(

‖Hxi
k − xi

k+n‖2
)

with M = card(xk) (6)

In the same way, following [Gal02], ǫn
e is the epipolar residual, deduced from F. For two matched points

(x1, x2) in images I1 and I2, x⊤
1 F is the epipolar line l1 in I2 corresponding to x1, while Fx2 is the epipolar

line l2 in I1 corresponding to x1. The epipolar residual is then defined as the mean euclidean distance
between points and the corresponding epipolar line:

ǫn
e =

1

M

M
∑

i=1

0.5
(

‖xi
k − Fxi

k+n‖2 + ‖xi
k+n − xi

n

⊤
F‖2

)

with M = card(xk) (7)
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Once a keyframe has been selected, it is set as the initial frame to search the following keyframe within
the video, until the last image is reached.

6.3 - Sparse Structure from Motion

At this point, the information extracted from input images are a list of 2d matched points at each time,
and a segmentation of the video into keyframes for which we assume a good reconstruction (3d points
and poses) can be derived. Since we do not have any metric information on the viewed scene, our recon-
struction will be at best euclidean, and defined up to a scale factor. As such, we first compute the scene
reconstruction from the two first keyframes, while fixing this scale. The reconstruction is then upgraded
by adding sequentially the remaining keyframes one after the other.

6.3.1 - Initial reconstruction

During this phase, we compute the relative pose of the two keyframes together with the 3d coordinates
of the feature points matched across them. It is thus very similar to the last removal criteria described in
Section 6.2.3. However, the reconstruction is here computed more precisely. We now explain with more
detail this step.

Pose estimation Let Ik0
and Ik1

be the first two keyframes. Here we derive the pose of these two using
only the measured 2d point matches. The reason why we speak of relative pose is that we only define the
pose for Ik1

. Indeed, we initialize the pose [R|t]k0
to be at the origin of an arbitrary 3d space, with no

orientation component:

[R|t]k0
=





1 0 0
0 1 0
0 0 1









0
0
0



 (8)

For such camera pair configuration, one speaks of canonical cameras. Notice that the camera for image
Ik0

thus corresponds to the origin of the 3d space in which our reconstruction will be expressed.

To determine [R|t]k1
, we first compute the fundamental matrix F in a RANSAC-based robust approach as

already stated. This matrix holds the projective relationship relating the camera pair given the matched
points. F is then transformed into an essential matrix E by removing the (projective) influence the intrin-
sic parameters held in K:

E = K⊤FK (9)

Notice that we do not know precisely these parameters. Instead, we use an approximation provided by
the user.

The interesting thing about E is that it can itself be decomposed into the product of a rotational and
a translational components (for more details on the following statements, and associated proofs, see
[HZ04]):

E = [t]× R, with the skew-symmetric matrix [t]× =





0 −tz ty
tz 0 −tx
−ty tx 0



 (10)

R and t are retrieved using the properties of E. The essential matrix is a 3× 3 matrix with rank 2, thus it’s
third singular value is zero. Moreover, the other two singular values are equal. This come from the product
decomposition of E holding a skew-symmetric matrix. So the first step to find R and t is to compute a
SVD of E and then normalize it:

E = UDV⊤
 U diag(1, 1, 0) V⊤ (11)
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A B

A B

AB

AB

(c) (d)

(b)(a)

Fig. 10. The four possible decompositions of the essential matrix

Then, from this decomposed essential matrix, there are four possible choices for the camera pose Pk1
=

[R|t], which are:
Pk1

= [UWV⊤ | + u3]

or [UWV⊤ | − u3]

or [UW⊤V⊤ | + u3]

or [UW⊤V⊤ | − u3]

with t = U[0, 0, 1]⊤ = u3 and W =





0 −1 0
1 0 0
0 0 1





(12)

Notice that here the (unknown) scale is set by enforcing the constraint ‖t‖ = 1, which is a convenient
normalization for the baseline of the two camera matrices.

Geometrically, these four choices (depending on the signs of R and t) correspond to the four possible
camera configurations depicted on Figure 10. Between the left and right sides there is a baseline reversal.
Between the top and bottom lines, camera B rotates with a 180◦ angle around the baseline. As one can
see, a reconstructed point X will be in front of both cameras in one of these configurations only (case (a)).

Therefore the last step to determine the choice of R and t can be made by triangulating matched points
and check whether they are in front of both cameras of not. We now explain how such triangulation can
be performed.

Triangulation Here we do not aim at computing precise 3d position of matched points. Such accu-
rate measures are derived once camera poses are estimated (see Section 6.3.2). We describe here a sim-
ple linear triangulation method. In each image, we have corresponding measurements x1 ∼ P1X and
x2 ∼ P2X. These equations can be combined to form a linear system of the form AX = 0. First, the
homogeneous scale factor is eliminated by a cross product for each image points, giving three equations
of which two are linearly independent. For instance, writing x× (PX) = 0 gives:

x (p3⊤X) − (p1⊤X) = 0
y (p3⊤X) − (p2⊤X) = 0
x (p2⊤X) − y (p1⊤X) = 0

(13)
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where pi⊤ are the rows ofP . An equation of the form AX = 0 can then be composed:

A =









x1 p3⊤
1 − p1⊤

1

y1 p3⊤
1 − p2⊤

1

x2 p3⊤
2 − p1⊤

2

y2 p3⊤
2 − p2⊤

2









(14)

This is a redundant set of equations since the solution is determined up to scale. This solution is found
using the Direct Linear Transformation method (DLT): X is the unit singular vector corresponding to the
smallest singular value of A, which is retrieved using a SVD decomposition.

There are two particular things to notice in this triangulation problem. First, the poses used are those
modeling the projection, meaning that the intrinsic parameters are taken into account: P = K[R|t].
Second, since linear problems are very sensitive to noise, input data are normalized in an isotropic way.
For each image, we compute the 3× 3 transformation T which brings the 2d points x in such a way that
the origin of their coordinates is their centroid, and the mean distance to their centroid equals

√
2. The

transformation is applied to both matched points and projection matrices, thus providing new input data
to the triangulation process, which are less sensitive to noise:

x̄ = Tx and P̄ = TP (15)

We also implemented the optimal non-iterative triangulation method presented in [HS97]. It relies on the
modification of the 2d points coordinated to minimize the projection error. However, it did not provide
more valuable results than the DLT associated to bindle adjustment.

Back to pose selection Testing with a single point to determine if it is in front of both camera is the-
oretically sufficient to determine which of the four solutions for [R|t] has to be picked. However, due
to numerical instability and possible errors in points measurements, all points are not always in front of
both cameras. As a consequence, we triangulate all points and pick the configuration which maximizes
the number of front points. Those that do not fulfill this constraint are removed from consideration.

Refinement by resection At this point, we computed the pose for the first two keyframes, together with
and initial scene structure based on matched points. As a final step to this estimation, we refine the
pose for Ik1

in a non linear way, using the resection principle. Given matches between measured 2d

points and computed 3d points, we use the projective relationship x ∼ PX to get a finer estimation of
the 6 unknown parameters of P (3 parameters for rotation, and 3 for translation). We use a Levenberg-
Marquardt optimization to find the pose that minimizes the projection (euclidean) error between the 2d

points and the projected 3d points, using the decomposition of E as an initialization.
The most important thing here is to correctly model the rotation. If modeled as a 3 × 3 matrix, the final
solution is not constrained (and with a high probability will not) to be a rotation matrix. As a consequence,
the rotation parameters we optimize are the imaginary part of the unit quaternion describing the rotation
in R3. Further information on how such modeling can be integrated and derived in projection equations
is given in Appendices B and C.

Finally, the whole structure and motion is put in a 2-views Bundle Adjustment step (see Section 6.3.2) in
order to refine the estimated position of the 3d points.

6.3.2 - Reconstruction upgrade

Once the first two keyframes are added and the scene scale is set, upgrading the reconstruction is dealt
with by adding the subsequent keyframes one after the other, to provide a global set of 3d points and
camera poses, all expressed in the first camera’s coordinate system.
One has to be very careful here, since this phase is highly prone to drift. There is not one good way to do
it, so the ideas expressed below are mainly taken as proposals from [HZ04, Pol04]. As in reconstruction
initialization, the new camera pose is estimated, so are the unknown 3d points, and finally all of these are
refined in a non linear optimization step.
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Pose resection We seek here to compute the pose of keyframe image Ikn
. First we establish a list of

2d/ 3d matches from the features that have been tracked from Ikn−1
, and for which the 3d position has

already been computed, either during initialization or a previous keyframe integration. These matches
are input into a non linear resection step to infer the new camera pose, pose which is initialized to the
one found for the previous keyframe in order to begin not far from the solution and avoid if possible local
minima during optimization.

Points prediction In this step, we try to fill the holes left by our point tracking system, and add new
information to our structure. We try to infer the coordinates of all 2d points that have been tracked until
Ikn−1

, but have been lost for Ikn
.

For these points, the 3d position is already estimated. The resected new camera pose is used to predict the
2d position by projection. From this list of new 2d points x̃, we only keep those for which the following
constraints are preserved:

1. The fundamental matrix F derived from matched points is used to measure the epipolar residual ǫe

between the new point in kn and the former position in kn−1. A predicted point should not violate
the epipolar geometry estimated with trusted measures and points from x̃ with ǫe > 1 pixel are
discarded.

2. Predicted points should be color-consistent with matched old ones. Thus the distance between
points’ color is submitted to thresholding to keep only visually similar points. This operation is just
a simple and fast way to remove more undesirable points. The key here is not to find all lost points,
but rather ensure that predicted ones keep consistent with the ongoing estimation and avoid drift.

Triangulation The next step consists simply in triangulating points which have been matched between
kn−1 and kn but for which no 3d information is available. This is the case when these points correspond
to features that have replace lost ones near kn−1. In the same spirit that for initialization, only points that
can be triangulated in front of both cameras are kept.

Outliers removal This step can be viewed as a local (in terms of keyframes) consistency check. The
key idea remains to avoid drift in both poses and structure estimation. Here, the projection error over
successive keyframes is used as an error measure. The number M of integrated keyframes is left to the
user, but is (obviously) more than two.
For all known 3d points X, we compute the mean projection error over the last M keyframes, using the
estimated camera poses. All features with such mean error superior to some threshold λ are completely
discarded from the whole estimation. Assuming that an inlier point should be kept at least 95% of the
time, and that measurements are corrupted by a zero mean Gaussian noise with a σ standard deviation,
we set λ to 5.99σ2 ([HZ04], Section 4.7). Traditionally, we set σ to one pixel.
One could point out that as the number of estimated keyframes increases, the projection error change for
a given feature is only dependent on its new 2d position. However, as will be stated below, both camera
poses and 3d points will eventually be corrected afterwards, thus requiring this consistency check several
times over the same keyframes.

Pose resection. . . again This pose resection step is exactly the same that the one performed at the up-
grade beginning. It’s purpose is to integrate the corrections that have been made in the features pool to
get a better camera pose estimation. The only difference is that it is initialized with the previous estima-
tion instead of the pose of the preceding keyframe. Again, the goal here is to (hopefully) compute data
while avoiding numerical drifts.

Bundle Adjustment This is the final step of the keyframe integration process. As for outliers removal,
its purpose is to integrate estimated data over several previous keyframes. However, we do not discard
features here, but correct the points 3d positions and camera poses at the same time, minimizing the
projection error. Notice that here 2d points coordinates are considered as trustful data and as such are
not modified. This minimization can be seen as a generalization of the resection estimation over several
views, where 3d coordinates are also put in the optimization process.
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Fig. 11. Sparse SfM for sequence Home - Arctic

The minimization itself is performed through a Levenberg-Marquardt loop, but in a specific way. Indeed,
minimizing such system requires for instance the inversion of matrices that can be extremely large (more
than one million elements), making the optimization process way too time consuming. Fortunately, the
system to be minimized is also extremely sparse. This comes from the fact that not all points are viewed
from all the cameras. Thus the data matrices can be reorganized to make them less sparse, and more
importantly, much smaller [HZ04]. The partial derivatives towards the different projection equations pa-
rameters necessary to the LM loop are presented in Appendix C.

In a more technical concern, so as to compute this minimization, we use the Sparse Bundle Adjustment

library wrote by Lourakis & Argyros [LA09].

6.3.3 - Results

We present in this section some results on sparse reconstruction. On Figures 11, 12 and 13, we present
visual results of these reconstructions. On the top row are depicted the first (left) and last (right) images of
the video. The bottom row shows two different and virtual points of view the the computed reconstruc-
tion. Cameras for the keyframes are showed as blue pyramids, illustrating their position and orientation.
The camera centered on the flat grid represents the first camera of the video and the the 3d space origin.
The 3d scene points are represented as small colored dots, the color being the one extracted from the
corresponding 2d point in the first image it appears.

6.4 - Dense Structure from Motion

Up to this point, we have achieved to build a 3d representation of the input video containing a 3d points
cloud modeling the viewed scene, together with an estimated position and orientation of the acquisi-
tion camera for a subset of the images. All data in this representation are expressed in a single arbitrary
coordinate system, namely the one of the camera for the first image.
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Fig. 12. Sparse SfM for sequence Home - Kilimanjaro

Fig. 13. Sparse SfM for sequence Home - New York
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However, these works focus on the estimation of depth maps for every single image of the input video.
This means that the sparse representation we just estimated has to be densified. First of all, we have
to retrieve estimated for the camera poses not only for the keyframes but for all images. This is motion
densification. Secondly, we need to compute a 3d position for each pixel of each image: this is what depth
maps are. That corresponds to a structure densification step.
We now highlight how such densification is tackled in our framework.

6.4.1 - Dense motion

Motion estimation for non keyframe images is kind of the easy part of the whole densification step. There
are two possible approaches to this problem. The first one is to consider tracked feature points related
to estimated 3d points to compute the remaining poses by resection, followed by a non linear refine-
ment step (for instance by running the Bundle Adjustment for all images between two given keyframes).
The second one is to assume that cameras for two neighboring keyframes are spatially close enough for
cameras in between to be computed by pose interpolation. This is the method we chose.
A warning has to be set here. Though translation interpolation may appear straightforward, rotation in-
terpolation is not. It’s quality will be directly related to rotation representation used. For instance — and

Ref?

the same that for pose refinement applies here — interpolating rotation matrices while constraining the
result to be still a rotation matrix will be highly challenging. We use instead an angle-vector representa-
tion, the vector in consideration being unitary.

Let’s consider here two keyframes, k1 and k2. Their translation components are denoted t1 and t2, and
the vector-angle representations of the orientations are (u1, θ1) and (u2, θ2). We then compute the pose
for each non keyframe k ∈ {k1 + 1, k2 − 1} by linear interpolation:







t = (1− λ) t1 + λ t2

u = (1− λ) u1 + λ u2

θ = (1− λ) θ1 + λ θ2

with λ =
k − k1

k2 − k1
(16)

Notice that for numerical safety reasons, the vector u is renormalized once interpolated to ensure its
unitary property.

6.4.2 - Dense structure

From sparse points to depth maps Formally, a pixel in a depth map holds the Z coordinate of a point
belonging to the associated line of view. This line passes through both the considered pixel and the cam-
era center, and the Z value is expressed in the camera coordinate frame. Thus deriving a 3d point position
associated to each pixel for an image is equivalent to have a depth map, up to a rotation and translation
transformation to bring them in the camera frame.
During this project, we explored two different ways to reach this goal. Surprisingly, none of them take
directly advantage on the already estimated 3d points, but rather recompute them at once for each pixel
of each image. Here the existing structure has only been used as a strong and robust support to camera
poses estimation. The key idea is rather the same than for 3d points computation: they are “triangulated”
(see following section for the use of quotes here), which requires on one side two images and the asso-
ciated camera poses, and on the other side matched features between images. Here all pixels have to be
matched. Differently speaking, all we need now is the motion flow between the two images.
We now provide more details on how motion flow can be estimated, and how depth maps are derived in
such context.

Rectification approach Traditionally, depth maps estimation in such context is performed via epipolar
rectification. This rectification step constists in finding a transformation for an image pair constraining
the epipolar lines to be parallel to image lines. Motion estimation is thus reduced to the 1D problem of
disparities computation (see Part II).
We implemented three different methods to achieve such rectification: projective rectification [Har99],
quasi-euclidean rectification [FI08] which minimizes images distortions, and polar rectification [PKG99],
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(a) Iref (b) Iside

(c) Motion flow (d) Motion coding

Fig. 14. Optical flow estimation example for two images

which also minimizes transformed images distortions while allowing rectification in case epipoles are in
the images (which is not the case for the two other methods).
However, such rectified images have to be coupled with a good stereo matching algorithm to compute
the corresponding depth maps. Due to historical reasons, by the time these rectified methods were im-
plemented, we did not have a good enough stereo matching algorithm, and thus turned to optical flow
based methods.

Optical flow approach Another way to derive the motion flow of pixels is to directly use an optical flow
algorithm. In [Gal02], such method is employed as a support for features tracking, and lately for depth
maps retrieval. However, optical flow estimators were not efficient enough up to recently. For instance,
motion at objects boundaries is often poorly estimated, leading to a blurred or smoothed motion, and
as such to inaccurate depth contours in the final maps. However, this topic recently received greater
interest, especially through the Middlebury evaluation framework [BSL+07]2, and very efficient methods
have been proposed.
The method we use is that of Werlberger et al. [WTP+09]. The principle of the motion estimation with
these works is presented in Section 9.1. An example of the estimated motion that can be computed is
depicted in Figure 14. The color wheel represents the color-code of the motion: orientation of the motion
vectors is attached to the color, while the amplitude is represented by the saturation of this color. As one
can see, motion boundaries are correctly dealt with.

Assume such motion flow has been computed for an image pair (Iref , Iside). Then for each pixel x in Iref ,
we use its matched position x + δ in Iside to triangulate its 3d coordinates X, given the estimated poses
Pref = [Rref | tref ] andPside. Finally, X is transformed to be expressed inPref coordinate system:

X = Rref X + tref (17)

2 http://vision.middlebury.edu/flow/
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+© Large coverage
-© Small angles

+© Wider angles
-© Small coverage

+© Large coverage
+© Large angles

Fig. 15. Reconstruction quality criterion based on 3D space measurements.

The value stored in the depth map for pixel x is then simply the Z coordinate XZ .

The real problem here is not how motion is computed or 3d points triangulated, but rather which images
to choose to perform such task. Given Iref , the problem translates to find Iside. This issue is similar to the
keyframe selection algorithm, except for now the camera poses are known for each image. We propose
now a criterion measuring the relevancy for images to be associated to Iref , for a depth map computation
purpose.
We search an image Iside in a local window W around Iref , with W = {ref−N, ref +N}−{ref}which
maximizes a reconstruction quality objective function. We believe the baseline between cameras is not a
relevant enough criterion to measure such future reconstruction quality, and we use instead a 3d space
measure corresponding to the sum of the angles formed by already computed 3d points and the cameras
positions, which are denoted here Cref and Ci. This is illustrated on Figure 15. On the left side, baseline
is small, leading to poor reconstruction quality evaluation since 3d triangulation will be highly corrupted
by noise. Notice considered angles are quite small. The right side depicts the contrary (and good) case. In
the middle, we illustrate a camera configuration for which the baseline may seem sufficient, but which is
not that good since images share small image common parts. For two given cameras the quality is thus
measured as:

qual(Cref , Ci) =
Mi
∑

j=1

̂CrefXjCi

⇔ qual(Cref , Ci) =
Mi
∑

j=1

−−−−−→
XjCref ·

−−−→
XjCi

‖
−−−−−→
XjCref‖‖

−−−→
XjCi‖

(18)

with Mi the number of 3d points both seen from images Iref and Ii. Notice that we do not compute the
mean of such angles, but the sum of them for a given camera pair. This penalizes configuration such as
the middle one on Figure 15. Finally, we have:

Iside = argmax
i∈W

(qual(Cref , Ci)) (19)

Depths scaling The last remaining problem concerns the scaling of depth maps. Indeed, such maps are
generally stored and used as greyscale images. As such, the range of estimated depths should be scaled
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to fit the {0, 255} range of grey values. For now on, this scale is provided by the user, but it should be
computed in an automatic way (for instance by analyzing the depths of already reconstructed points).

6.4.3 - Results

We present in this section some results of depth maps extraction from monocular videos. The figures we
show represent a subset from first to last images of given videos, with associated depth maps. The four
sequences presented are extracted from the movie Home. The source images are extracted from a 720p,
24Hz, and H.264 encoded video. They hold between 125 and 300 images. For none of these videos the
internal camera parameters are known. They are thus initialized to approximate values.

In Figure 16, it is relatively hard to distinguish some zones within the images, on one hand because of the
ice structure, and on the other hand because of the uniform sky. We can see that though ground and icy
parts seem correctly modeled, the sky part is pushed towards some mean depth value. This is because 3d

motion estimation here is very hard in such zones where points are at infinity and are completely uniform.
Nevertheless, for near structures, the depths and discontinuities are well estimated, and consistent across
images, though no temporal consistency has been enforced.

For the sequence in Figure 17, the viewed structure is somewhat binary: the ground (or at least the water
surface) on one side, and the low altitude clouds on the other side. We wanted here to test our algorithm
against data with no well determined contours (the clouds). Moreover, this video doesn’t respect the
simple pinhole camera model we use, without radial distortion. This distortion is quite important here
with the short focal length used to acquire the video. We can notice that the zones corresponding to the
ground are white within the depths maps. This is due to the fact that depth maps scaling parameterization
has not been well done. However, this does not impact on the relief visualization of the video: the ground
is modeled as a flat zone far away from the camera. We notice finally that dense cloud zones are correctly
estimated, but their boundaries tend to be propagated towards their neighbors. This is partly due to the
fact that zones between clouds, on the ground, are mainly uniform and 2d motion is propagated between
them.

The video depicted on Figure 18 is easier to deal with. This appear clearly in the depth maps quality,
especially around the discontinuities, all along the video. There is a small error however that can be
noticed. In the last image, a small white dot appears on top of the ice part. It corresponds to the helicopter
shadow, which violates the static scene constraint: it is a small moving object on the ground surface. As a
consequence, it has a smaller 2d motion amplitude than the ground, and is estimated as much more far
away from it, giving this large Z value.

The video presented in Figure 19 combines several aspects leading to a good depth maps estimation:
smooth camera motion at constant speed, highly textured images and dense scene (compared to Corail ).
The depth contours are well delineated, and the relative depths correctly estimated. This is the typical
video providing well conditioned input data to dense depth reconstruction.

6.5 - Conclusion and perspectives

We presented in this section a new SfM method built upon video inputs, to produce depth maps for each
input image. It relies on recent state-of-the art algorithms, and provide relevant enough results to display
the resulting 2d+z videos in an auto-stereoscopic way (see Part III).

Several issues remain unsolved however, and shall be dealt with in upcoming works. First of all, It must be
noticed that the optical flow-based method we present is less efficient than Galpin’s one [Gal02] around
the epipoles, when they are in the images. This can be explained by the fact that Galpin’s method cumu-
lates frame-to-frame 2d motion while our methods computes motion fields directly between an image
pair. So at the epipole zone the motion is zero and no 3d information can be retrieved, while when cu-
mulating motion, very small displacements around the epipoles can be detected.
Deeper studies shall also be conducted towards epipolar rectification and depth maps estimation relying
on disparities instead of triangulation. Indeed, in this project rectification works have been performed

RT n➦ 0379
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Fig. 16. Depth maps extraction for sequence Home - Arctic

before optical flow ones, and were intended to be associated with stereo matching algorithms. However,
the results were too poor to be exploited due to the lack of precision in the rectification process. Such
non quite exactly registered stereo pairs could be input to the optical flow algorithm to compute disparity
maps, and thus depth maps. More precision could be attained in the epipoles zones using Pollefeys’ polar
rectification framework [PKG99].
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Fig. 17. Depth maps extraction for sequence Home - Coral
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Fig. 18. Depth maps extraction for sequence Home - Kilimanjaro
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Fig. 19. Depth maps extraction for sequence Home - New York
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PART II

Depth maps estimation for multi-view videos

7 - Introduction

We present in this part similar works than those described in the previous part, as we seek to compute
depth maps for video content. However, these works differ by the use of multi-view input content. This
is an essential problem in 3DTV. Indeed, depth maps represent the primary source of direct 3d informa-
tion3, for any video content.
In the future 3DTV broadcasting scheme, we know that many display types will be available, leading to
many required input 3DTV content. Let’s say, to take an extreme example, that two users want to see a
broadcasted live TV show. The first one uses his mobile phone, requiring two different views of the scene.
The second one needs 256 views to perform 3d display on his brand new and hypothetical holographic
display, and, unluckily, none of them share any of the views they need. Does this mean that on stage there
should be at least these 258 acquired points of view? Obviously not, and that’s where depth maps become
very handy. They are used to generate intermediate point of views.
On the other hand, if we compare with depth maps extraction from the previous part, we see that a single
camera setup is not an option. It would require much more advanced frameworks to overcome the re-
straining hypothesis of moving camera, static scene, non deformable objects, etc. This is why multi-view
videos are acquired in the very beginning.
We now describe with more details what multi-view contents are, the base principle of depth-disparity
relationship, and give a few words on ongoing works towards normalization for depth maps extraction. In
the following sections, we describe our methods to extract depths from such videos.

7.1 - Multi-view videos

We assume here the same acquisition context than the one proposed by the MPEG group. We consider
that input videos are recorded by an aligned camera bank, with non converging cameras. Their image
planes are thus aligned to the same virtual 3d plane (see Figure 20). As such, input views can not be used
directly to perform auto-stereoscopic display.
We notice that such recording process is very difficult to set up, and thus input images are generally cor-
rected to be perfectly aligned not only geometrically speaking, but also chromatically.

3 As opposed to indirect 3d information, for instance a couple of stereoscopic images, which do not represent 3d

information but can be used provide a 3d experience.

C1 C2 C3 C4 C5 C6

Fig. 20. Illustration of a camera bank. Cameras are aligned and point towards parallel directions.
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7.2 - About depth and disparity

Given two images extracted from a multi-view video, as presented in the previous section, we generally
seek to estimate the disparities between these images, before getting the related depth. These disparities
correspond to the 2d motion flow amplitude between the two images. Let’s take for instance the cameras
C1 and C2 from Figure 20. C1 is associated to the left image while C2 is associated to the right one. The dis-
parity map for C1 given the couple (C1, C2) represents for each pixel in C1 the amplitude of the horizontal

motion from this pixel to its match in C2.
This notion of horizontal motion is very important. It comes directly from the geometrical configuration
of the cameras (image planes parallel to the baseline), which enforces matched points across images to
be on the very same line. In projective geometry, it corresponds to an image pair for which the epipoles
are at infinity, and epipolar lines aligned to image lines.
Disparity maps estimation being dealt with only along image lines, it is greatly simplified. This principle
is applied since many years in the Stereo Matching community, where one seeks to find depth maps from
stereo pair images.

It is important to notice that one may speak indifferently in the community of depth maps of dispar-
ity maps, though they do not encode the same information. This is due to the fact that the former are
inversely proportional to the latter. For a given camera pair and their associated disparity maps, two ad-
ditional information are required to retrieve the corresponding depth maps: the cameras focal length f
(which should be the same for both cameras) and the baseline b between their optical centers. In case of
non square pixels, and thus different values for vertical and horizontal focal lengths, the horizontal value
is considered. For a pixel x with disparity d, the depth value can thus be computed in the following way:

zx =
f ∗ b

dx

(20)

This relationship can be explained using Figure 21, where data are depicted in blue while the unknown z
coordinate is in red, with Thales’ theorem.
It should be noticed that particular attention has to be paid to disparity values used for depths computa-
tion. A zero disparity corresponds to a point too far away from the cameras, so that its projected motion
between the images is not measurable within the pixel grid. Such points are called points at infinity in
this context, and are consequently associated to an infinite depth value. In a framework where depths
are stored in a scaled image with a given min/max range, specific treatments should be applied to such
points.

7.3 - Related normalization works

Ongoing works for future 3DTV complete framework normalization deal with several aspects:

# Acquisition of multi-view content
# 3d representation
# Intermediate views generation
# Coding / compression and transmission
# etc.

The main 3d representation in use is here the depth map. As such, extraction of this information has been
addressed by the MPEG community under the form of a Depth Estimation Reference Software (DERS).
This software transforms multi-view videos into multi-view plus depth videos (MVD). Evaluation of such
generated depth maps is performed through virtual views synthesis using another reference software:
VSRS, the View Synthesis Reference Software.

7.3.1 - Depth estimation

Depth maps estimation within the DERS is mainly inspired by the works belonging to the Stereo Matching
community of the past few years. To simplify, disparities are estimated in three different steps [SS02]:

1. Local search of pixel matches along image lines
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Fig. 21. Relationship between disparities and depths.
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Fig. 22. Depth estimation framework for the DERS

2. Global optimization over the whole image
3. Post-processing

More details on the Stereo Matching principle are given in the following section. It has been adapted
here to fit the requirements of the multi-view context. Instead of using only two views (left and right), the
DERS considers three input view (left, central and right). The disparity map is computed for the central
view using motion estimation from both the left and right views, to tackle efficiently with occluded zones
for instance. Implicitly, this framework imposes that motions from left or right views be equivalent and
thus that the three cameras are perfectly aligned, the central one being at an equal distance from the two
others. This depth estimation framework for the DERS is illustrated on Figure 22 (here, for illustration
purposes, we show depth maps for the sequence Cafe computed with our method, described in Section
9). For instance, the disparity map for view 3 is computed using pixels motion between view 3 and views
2 and 4.
The DERS cannot estimate disparity maps for all views at once. They are estimated for each views sepa-
rately. Moreover, the DERS does not output depth values and these have to be computed from disparities
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(a) Newspaper (b) Book Arrival

Fig. 23. Example of disparity maps extraction for two MPEG test sequences

Cam ParsL Cam ParsC Cam ParsR

ViewL ViewR

DepthRDepthL

Virtual View

Fig. 24. Virtual view generation framework using the VSRS

if depths maps are required for another application. Finally, with such framework, disparities for extreme
views can not be computed since a side view is missing.

Figure 23 illustrates depth maps extraction results for two test sequences: Newspaper and Book Arrival.
Disparity maps are encoded in greyscale images: dark values indicate pixels far away from the cameras
while bright values depict near objects. Depths maps for Newspaper are computed in an automatic way
while manual disparity data have been integrated in the estimation for Book Arrival. Some disparities are
badly estimated (Newspaper : pixels on the background above the left-most character are noted much
nearer than they should do). Some inconsistencies between the maps can also be noticed (Newspaper :
on the top-right part of the background ; Book Arrival : on the ground, to the bottom-right side).

This disparity estimation phase is crucial, since it impacts on all the remaining steps of the chain. To our
point of view, the DERS did not behave well enough as is. We thus present in Section 8 more elaborated
works on Stereo Matching which could be integrated to the DERS. In Section 9, another software similar
to the spirit of DERS is presented. It is based on Werlberger’s optical flow algorithm [WTP+09].

7.3.2 - View synthesis

Evaluation of disparity or depth maps can be performed using the following protocol. Two non neighbor-
ing views and their associated maps are considered. The VSRS is used to generate an intermediate view,
corresponding to one of the acquired views. These two views — the generated one and the acquired one
– are then compared using an objective metric. This metric can be for instance the PSNR, or the more
recent PSPNR measure, which aims to consider perceptual differences between the images.

The VSRS uses as input data two videos and their associated disparity maps (which are converted inter-
nally to depth maps), corresponding to two different acquired views. It also needs the camera parameters
of these two views (both intrinsic and extrinsic). This process is illustrated on Figure 24. A central view
is generated, using the camera parameters which are desired for this virtual point of view and the other
input data. No 3d information is generated with the VSRS, only 2d images.
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8 - Stereo matching approach

Our Stereo Matching algorithm has been originally developed to compute depth maps for pairs of rectified
images in the monocular context (see Part I). It could also be applied to the multi-view context in a similar
way, except that here input images are already rectified. We review in this section the principles of out
algorithm, together with evaluation results with stereo images from the Middlebury benchmark dataset4.
Foreword note: These works have not been used in fine, either for the monocular case of the multi-view
one. The optical flow-based framework is preferred in both cases. However, since the DERS is based on
such methods, we though it would be interesting to describe related works we made on the subject.

8.1 - Framework

We quickly review here the essential concepts of the Stereo Matching framework. A much more complete
review can be found in [SS02].
Stereo Matching can often be split into three successive steps :

1. Local matching
2. Global optimization
3. Post-processing

Input data consist in a set of two stereo-rectified images I1 and I2. The stereo-rectification constraint
implies that matches across images are along the same image lines (see Section 7.2). The stereo matching
process consists in finding, for each pixel (x, y) in, let’s say, I1, the corresponding pixel (x ± d, y) in I2.
The variable d represents the disparity for this pixel. It’s sign depends on the left/right ordering of the
images (see Figure 25). A local search space for d is defined, between a minimum and maximum disparity
possible values: d ∈ [dmin, dmax]. To summarize, the search space used here is defined in R3 for each
image. It is called the Disparity Space Image (DSI).
The local matching procedure consists in computing matching costs in the DSI for each pixel, in the
neighborhood of this pixel. Generally, the disparity associated to a given pixel is the one with the lowest
matching cost. The global optimization step’s purpose is to regularize the DSI so that the disparities be
more consistent over all the image. The post-processing can have several purposes: outliers filling, plane
fitting to smooth disparity maps, etc.
We now explain with more details our Stereo Matching procedure.

8.2 - Local Matching

Our local matching procedure is based on the local self-adaptive method described in [KSK06]. Two dif-
ferent matching costs are combined to form the final matching cost in the DSI: the sum of absolute differ-
ence (SAD) and the sum of the gradient difference (GRAD). The considered neighborhood for each pixel is

4 http://vision.middlebury.edu/stereo

X

Y

Pixel costs for disparities d ∈ {dmin, dmax}
Image 1 Image 2

DSI

{

search window D
is

p
s

Fig. 25. Disparity search space principle
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a 3× 3 block centered on the aforementioned pixel.

DSISAD(x, y, d) =

1
∑

i=−1

1
∑

j=−1

|I1(x + j, y + i)− I2(x + j ± d, y + i)| (21)

DSIGRAD(x, y, d) =

1
∑

i=−1

1
∑

j=−1

∇I1(x + j, y + i)−∇I2(x + j ± d, y + i) (22)

The final cost stored in the DSI for a given pixel is computed by optimizing a weighting coefficient α with
regards to a cross validation criterion. We assume here α is given. The way to compute it automatically is
presented below. Given α, we have:

DSIα = (1− α) · DSISAD + α · DSIGRAD, with α ∈ [0, 1] (23)

A disparity map D can then be computed by assigning to each pixel the disparity corresponding to the
minimal cost in the DSI. This is a Winner Take All (WTA) strategy:

∀(x, y), D(x, y) = argmin
d

DSIα(x, y, d) (24)

Since we have an image pair, this disparity map can be computed for both images. We can then measure
the amount of consistent disparity pixels across the images. This is the cross check test.

N =
∑

(x,y)

Ψ(D1(x, y),D2(x, y)),

with Ψ(D1(x, y),D2(x, y)) =

{

1 if |D1(x, y)−D2(x±D1(x, y), y)| < λ
0 otherwise

(25)

This relationship denotes the fact the displacement from I1 to I2 should be the same than from I2 to I1.
Differences should only occur on objects and image boundaries, where pixels are viewed in one image
but not the other. The parameter λ is a tolerance threshold on the motion difference, and is generally set
to 1 pixel.
Coming back to our α value, the final DSI is computed by optimizing α such that it maximizes N :

DSI = argmax
α

N (26)

The method used to optimize α is not described in the original paper. However, by computing the value
of N for a high number of α samples, and several image pairs, we found out that the N function’s deriva-
tive was almost monotonic and decreasing, meaning that N has one maximum, for all our data sets. This
is illustrated on Figure 26 for four stereo pairs. As a consequence, to solve for α in fast way, we sample
ten times the α range, take the maximum value α1, and take another ten shorter samples around α1 to
refine the maximum value. It could be of course computed in a more elegant way through non linear op-
timization (with Levenberg-Marquardt or Newton-Raphson) without special care for initialization, since
local minima are assumed to be very close to the optimal solution. It has to be tested to see whether it
converges in less than 20 iterations, in which case it will replace efficiently our procedure.

8.3 - Global optimization

So as to limit noise inherent to local matching and enhance disparity results, the DSI’s costs are optimized
for the whole image using hierarchical belief propagation [SZS03]. For comparison purposes, the DERS

uses a graph-cuts based global optimization approach [KZ01], which is known as slower and less efficient
than hierarchical belief propagation in this context [SZS03, YWY+06].
At this point, information stored in the DSI are no longer used. The disparity maps are deduced using the
WTA approach, and a post-processing step can be applied to enhance the final results.
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Fig. 26. Cross check quality vs. α

8.4 - Post-processing

One very important thing to keep in mind while enhancing disparity maps is that not all pixels are valid.
As already stated, some of them can not be defined since there are parts of images that are only visible in
one of them. These pixels are noted as outliers. One simple way to detect outliers is to apply the cross
check test. Outlier pixels are those which violate the Ψ criterion (Equation 25).

With the assumption that the viewed scene is piece-wise planar, and that depth discontinuities occur at
color boundaries in input images, one can apply segment-based plane fitting to smooth disparities in
uniform areas while preserving depth contours. Input images are over-segmented with a mean-shift pro-
cedure [CM02], and a robust plane fitting algorithm is applied independently on each segment, without
taking into account detected outliers. This procedure is based on voting, and is described in [WZ08].

A last outliers detection step can be performed, provided holes are correctly filled using neighboring inlier
pixels.

8.5 - Results

We present here some disparity maps results from stereoscopic image pairs extracted from the Middle-
bury database. Each figure, from 27 to 36 is composed of four sub-images. The two top images depict
the stereo pair used as input. The right bottom image represents the ground truth disparity provided in
the database, corresponding to the upper left image. The bottom left image represents the disparity map
computed with our method.
For each stereoscopic pair, two disparity maps are outputted. Computation times vary form thirty sec-
onds to two minutes approximately. The validity percentage for the displayed disparity map is also re-
ported (figures are given in the illustrations captions). This validity measure represents the portion of
pixels for which the difference between the estimated disparity and the ground truth disparity is lower
than one pixel. Since our algorithm is fully symmetric, results are very similar for the non shown right
images. This percentage varies from 60% to 98.5%, the majority of the results being close to 85% valid
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pixels. The low score for the Plastic sequence (61.23%) seems to be due to a shift in the disparity values.
The disparity map itself is globally consistent with the ground truth (see Figure 35).
Some pixels are shown in black in the disparity maps. In the ground truth maps, they correspond to
unknown pixels, which are only visible in a single image. In our results, they correspond to segments for
which a disparity plane equation could not be computed, due to a large majority of outlier pixels in the
given segment. In such case, inpainting methods should be applied.

8.6 - Discussion

The Stereo Matching method we presented in this section provides satisfying results with the state of the
art database, but suffers from large computation times. However, input data are here very well calibrated,
and the results may not be this good for instance with rectified stereo pairs extracted from a monocular
sequence. Moreover, the outlier removal phase is not currently compensated by an efficient disparity
prediction for missing pixels.
For these reasons, we explored another approach, based on new optical flow estimation algorithms. This
method is presented in the following section.

Fig. 27. Disparities for Tsukuba - 32.2s. - 96.67% Fig. 28. Disparities for Venus - 63.1s. - 97.57%

Fig. 29. Disparities for Cones - 104.2s. - 89.09% Fig. 30. Disparities for Teddy - 94.0s. - 85.39%
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Fig. 31. Disparities for Art - 115.0s. - 82.45% Fig. 32. Disparities for Moebius - 116.0s. - 81.84%

Fig. 33. Disparities for Cloth 1 - 81.1s. - 95.38% Fig. 34. Disparities for Cloth 3 - 85.6s. - 95.12%

Fig. 35. Disparities for Plastic - 108.6s. - 61.23% Fig. 36. Disparities for Wood 2 - 119.8s. - 98.84%
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9 - Optical flow approach

9.1 - Principle and Werlberger’s method

Based on the observation that a disparity field estimation is nothing else but a dense motion estimation
between two images, we explored a new path towards recent optical flow estimation methods. These opti-
cal flow algorithms are a part of the 2d motion estimation algorithms. Their particularity comes from the
fact that they seek to find the projected relative motion of scene points with regards to the cameras, which
should be the closest possible to the “true” projected motion. With such definition, they can be opposed
to motion estimation methods used in the video coding community, which aim at finding motion vectors
that minimize an motion-compensated image difference in a local search window. For instance, in large
textureless regions, if all motion vectors are equivalent in terms of image difference, they will favor null
vectors since they are easier to encode, which will not represent the true 2d motion.

We now derive the Optical Flow Constraint (OFC) in a more formal way, going to Werlberger’s formulation.
The essential principles are explained. Much more details can be found in [Tro09]. The OFC comes from
the brightness consistency between two images I1 and I2. The brightness of a pixel x in I1 should be
equal to the brightness of the matching pixel displaced by a motion vector u(x) in I2:

I1(x) = I2(x + u(x)) (27)

By linearizing this brightness consistency constraint with a Taylor expansion, and dropping the negligible
second- and higher-order terms, one gets the OFC:

u(x)⊤∇I2(x) + I2(x)− I1(x) = 0 (28)

Horn & Schunk showed that solving for u can be performed in an energy minimization framework [HS81]:

ū = argmin
u

E(u) = argmin
u

(Edata(I1, I2) + Eprior(u)) (29)

Starting from this model, one can setup the energy formalization as a disparity preserving and spatially
continuous formulation of the optical flow problem, based on a L1 data term and an isotropic Total-
Variation regularization term [PBB+06, ZPB07]:

Edata(I1, I2) = λ

∫

Ω

|I2(x + u(x))− I1(x)| dx dy (30)

Eprior(u) =

∫

Ω

|∇ux|+ |∇uy| dx dy (31)

Here Ω represents the image domain, and∇u is the spatial gradient of the motion field.
By linearizing the data term, one gets a convex optimization problem:

Edata(I1, I2) = λ

∫

Ω

|ρ(u(x))| dx dy, (32)

with ρ(u(x)) being the Optical Flow Constraint from Equation 28. Such convex formulation ensures the
minimizer to find the global minimum of the energy functional. Finally, to make their algorithm even
more robust, [WTP+09] introduce an anisotropic (i.e. image-driven) regularization based on the robust
Huber norm [Hub81].

Another extension of their approach consists in integration in the flow estimation not only the current
image and the following, but also the previous image. The goal, in the original publication, is to cope with
single degraded images within a video, for instance with historical video material.
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Color Images

View 1 View 2 View 3 View 4 View 5

Left to right disparities

Disp 1→2 Disp 2→3 Disp 3→4 Disp 4→5

Right to left disparities

Combined disparities

Disp 1 Disp 2 Disp 3 Disp 4 Disp 5

Disp 1←2 Disp 2←3 Disp 3←4 Disp 4←5

Fig. 37. Global framework of disparity estimation with mv2mvd

9.2 - Using optical flow in a MVD context

In this section, we present a software based on optical flow estimation explained in the previous section,
designed to directly convert multi-view videos to multi-view videos plus depth. It is called mv2mvd.

Contrary to the DERS, it computes the disparity and / or depth maps for all views in one single pass. It’s
core uses the CUDA-based library5 developed in parallel with [WTP+09]. The core framework of mv2mvd

is depicted on Figure 37. One one hand, disparities are computed from left to right views (Figure 37,
second row). On the other hand, they are estimated from right to left (Figure 37, third row). The interest
of such two-side computation is to be able to locate occlusion zones where the motion field would be
incorrect (a pixel in one view would not be visible in the other view). In fact, cross check is performed (see
Section 8.2) to detect outlier pixels in each computed disparity map, which are finally combined (Figure
37, fourth row) by taking the minimal value of each disparity pair, to avoid the foreground fattening effect
[SS02] exhibited by window-based algorithms.

9.3 - Results

We present in Figure 38 disparity maps extracted with out method for the sequences Newspaper, Book

Arrival and Lovebird 1, together with original images and disparity maps computed with the DERS and
provided to the MPEG community. Each line in the figure is related to one of the original views. The
original images are in the first column, disparity maps computed with mv2mvd are in the second one,

5 See http://www.gpu4vision.org
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while DERS-based maps are in the third column. For the sequence Lovebird 1, notice that the gamma
of the images has been modified for display purposes in this document (with the same amount for both
maps types).

We remind that contrary to the DERS, results are computed for all desired views in a single pass. We can
notice that globally, estimated disparities seem perceptually more relevant with regards to the scene with
our approach. For instance, for the sequence Newspaper, the background of the scene is correct. With
the DERS, numerous zones with different depths appear, while the depth of the background is physically
the same with regards to acquisition cameras. As for the sequence Book Arrival, we can notice a greater
spatial stability in the estimated depths, which appear more noisy in the DERS case. This comes for the
latter from the application of plane fitting on mean-shift segments, which break the local spatial depth
consistency applied to each segment. Finally, for the Lovebird 1 sequence, one can see that out method
is better suited to get depths variations and contours (see the building in the background, which appears
more quantized in the DERS version). This sequence is quite hard to tackle since it holds a very wide range
of disparities, from the foreground characters to the background buildings.

On Figure 39, we show visual differences between our optical flow-based disparities, and disparities de-
duced from a depth camera (z-cam) acquisition of the scene. These results are presented for the central of
the five input views of the Cafe sequence. How such z-cam acquisition has been performed is described
in [LKJH10]. Keeping in mind that these z-cam-based disparities are not raw and have been interpolated
to fit the full video resolution, it is worth notice that our method competes very well with — and some-
times outperforms — the depth sensors. For instance, depth contours seem sharper with our method
(all sub-images). We are even able to retrieve small depth details with much less noise (bottom right
sub-image, for the chair part). However, for uniform zones with depths gradients, disparities are better
estimated with the z-cam (see the furthest table for instance), where our method discretizes too heavily
the resulting signal, while (again) better retrieving depth contours.

On Figures 40, 41 and 42, we present evaluation results of our disparity maps in terms of virtual views
synthesis quality. The evaluation protocol used is the one used by the MPEG community.
Disparity maps are computed for views N − 1 and N + 1. These maps are used as input to the VSRS

in order to synthesize the view N . This virtual view is then compared to the original view N in terms
of PSNR, spatial PSPNR and temporal PSPNR, with the Pspnr tool provided to the MPEG community. We
present for each sequence and each of these three measures three different plots (quality measure against
video frame number). The red curve is associated to disparity maps generated by the DERS. The blue
and black curves are respectively associated to our method without (MV2MVD F2) or with (MV2MVD F3)
the integration of the symmetry constraint (see Section 9.1). The dashed horizontal lines in the figures
correspond to the mean values over the whole considered sequence.
We notice that from now on, it is difficult to bring a clear conclusion to this evaluation procedure. Indeed,
the quality of synthesized views seem to depend mainly on the input data. An ordering of the different
methods per sequence is provided in Table 2. It appears however that our method seem to better behave
in most of the cases than the DERS. We must also notice that compared to the DERS, there is absolutely
no temporal consistency enforced in our algorithm, since it seems to provide stable enough results from
one instant to the other, which is not the case of the reference software.

Sequence 1st 2nd 3rd

Newspaper Mv2mvd F3 Ders Mv2mvd F2

Book Arrival Mv2mvd F2 Mv2mvd F3 Ders

Lovebird 1 Mv2mvd F3 Mv2mvd F2 Ders

Table 2. Ordering of methods by synthesized views quality

INRIA



Depth maps estimation and use for 3DTV 45

(a) Sequence Newspaper

(b) Sequence Book Arrival

(c) Sequence Lovebird 1

Fig. 38. Comparison of extracted disparity maps between DERS and our method
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Color Image

Z-Camera (zc) Optical Flow (of)

zc of

zc of zc of

zc of

Fig. 39. Comparison between Z-Camera- and Optical Flow-based disparities
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(a) PSNR

(b) Spatial PSPNR (c) Temporal PSPNR

Fig. 40. Virtual view evaluation for Newspaper

(a) PSNR

(b) Spatial PSPNR (c) Temporal PSPNR

Fig. 41. Virtual view evaluation for Book Arrival
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(a) PSNR

(b) Spatial PSPNR (c) Temporal PSPNR

Fig. 42. Virtual view evaluation for Lovebird 1
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10 - Conclusion and perspectives

We presented in this part a set of tools allowing the computation of depth maps for multi-view videos, on
one side by using methods described in the stereo matching literature, and on the other side by exploiting
recent advances in optical flow estimation.
The generated maps have been evaluated in terms of synthesized views quality using the VSRS reference
software. It appears that our method gives promising results compared to maps computed by the asso-
ciated reference software for depths extraction (the DERS). However, these results are subject to many
interpretations and both methods are hardly comparable for the following reasons:

# No temporal consistency enforcement is integrated in out method, contrary to the DERS. This is
due to the fact that such temporal consistency in the DERS can be interpreted as based on the as-
sumption that the cameras are fixed, which we believe is way too restrictive.

# We do not propose to integrate depth masks during the estimation to provide manual data enhanc-
ing the final results, contrary to the DERS.

# At writing time, we were not able to constrain the optical flow estimation to be performed along
image lines, as it should be with correctly rectified input stereo or multi-view images. We only select
the horizontal component of the computed motion flow.

# Our method is only based on the luminance component of the input images, not on the RGB space,
contrary, again, to the DERS.

Despite all these limitations with regards to the DERS, our method is able to compute depth maps totally
relevant in terms of virtual views synthesis. Moreover, being implemented on the GPU, it is far faster that
the DERS. The computational time can be reduced from 15 times to 150 times depending on the method
used to compute the disparities with the reference software. And lastly, on an ease of use vision, our
method computes maps for all views when a DERS execution is only valid for a single view, and has to be
run independently for all of them.
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PART III

Depth maps uses

11 - Depth-based auto-stereoscopic display

In the previous parts of this document, we saw that depth maps could be of several uses. They can be
exploited to build a more advanced 3d representation of the scene, to add information used to enhance
multi-view video coding, etc. In this section, we show that depth maps can also be used to add a relief ex-
perience to the video viewing, with auto-stereoscopic displays. We thus explain briefly how such displays
work, how one can implement a rendering engine dedicated to such display, and finally detail how depth
maps can be integrated to this purpose.
An extensive and comprehensive analysis of auto-stereoscopic displays can also be found in [MBBB07],
from which several figures in this section come.

11.1 - The auto-stereoscopic principle

The stereoscopy principle itself is very simple: one has the sensation of viewing the scene in three dimen-
sions if both eyes receive different signals corresponding to two different — and well calibrated — points
of view of this scene. Thus, there must exist a device between the display and the user eyes to split the
video signal. Traditionally, one uses glasses.

Auto-stereoscopic screens The auto-stereoscopic principle relies on the fact that the user doesn’t need
glasses anymore. The “signal separation” device is deported on the display screen itself. That’s why one
speaks of auto-stereoscopic displays: they are classical screens covered with a fine separation layer. This
principle implies that images displayed on the screen must be of a specific nature: they will be split into
several sub-images sent to each users’ eyes. So the different images that will be sent to the user(s) are
interlaced into one single image that is finally separated and sent to different eyes.

Multi-users displays One thing to notice about auto-stereoscopic displays is that they are not necessar-
ily meant to be viewed by a single user. They are intended to display scenes in 3d with enough comfort
for several users.
Let’s assume from now on that such display only sends two different views to the users. The signal sep-
aration creates in the space in front of the screen what we call viewing cones, which intersect in viewing

zones. These zones represent the location in space where a user will be able to see the two different sig-
nals on both eyes. This principle in the 2-views case is illustrated on Figure 43. As on can see, the viewing
zone is quite limited and the user has to be at a correct distance from the screen, and this distance has
a very limited validity range. Moreover, the position within this viewing distance is very important, since
one time over two, the user is badly positioned since his left eye will receive the right video signal and vice

versa.
To overcome these limitations, an auto-stereoscopic display can send a higher number of views. This is
illustrated on Figure 44. As one can see, here the range of the viewing distance is increased. By moving
forward or backward, a user will not necessarily see always the same views, but he will see a correct view
on each eye. Moreover, the position comfort is increased: a user can move more freely in the viewing zones
and still receive the views in the correct order. A good rule of thumb for the positioning is to consider that
with N views, the user (within the viewing distance) will be correctly positioned N − 1 times over N .
However, remember that all displayable views should be stored in one single image before view splitting.
As a consequence, increasing the number of views decreases the possible spatial resolutions the what the
user sees, since screens are of limited physical resolution.
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Left eye zone

Right eye zone

Screen

{3D viewing zone

(a) Correct viewing distance is limited

(b) Well positioned

(c) Badly positioned

Fig. 43. Limitations of the 2-views auto-stereoscopy

Screen

stereo

stereo

stereo

Fig. 44. Increased viewing distance and position with N views

Auto-stereoscopic techniques Several techniques exist to perform the video separation signal on top of
the screen. The two principal ones are the lenticular panel and the parallax barrier. They are illustrated
on Figure 45. The lenticular panel is composed of small spherical lenses. Each lens covers several pixels of
the LCD screen and deviated the outgoing light in the desired directions so that the user will see different
pixels depending on its position. The parallax barrier is composed of a black and opaque mask in front
of the screen, pierced with tiny holes letting the screen outgoing light pass through in desired directions.
As for the lenticular panel, the barrier’s holes are intended to let the user see only a predefined set of LCD

pixels. Moreover, due to the masking process, the brightness of the signal the user views may be highly
reduced reduced compared to the lens-based system.

11.2 - Implementation of an auto-stereoscopic rendering

If one wishes to implement an application designed to display auto-stereoscopic content with an ade-
quate screen, there are two main issues to solve. First of all, the different views required by the display
have to be correctly generated. This requires to know the configuration of the virtual cameras that would
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Fig. 45. Examples of auto-stereoscopic techniques

correspond to the different views acquisition. Secondly, once the views are generated, they have to be
correctly interleaved in one single image so that one viewed through the auto-stereoscopic layer system,
each user’s eyes see a different input view.
From now on, we take the example of the design of an OpenGL application targeted to perform auto-
stereoscopic rendering, so that both the virtual views generation and interleaving procedures can be de-
scribed.

11.2.1 - Virtual views generation

In a classical OpenGL rendering engine, without auto-stereoscopic display, the view generation procedure
is held in a single infinite display loop. In Listing 1, the method ❞✐s♣❧❛②✭✮ is called infinitely until the
application is stopped. The viewport setup correspond to the determination of the screen zone on which
the image will be rendered. The two point we are interested in for the virtual views generation are the
setup of the camera pose and projection.

1 ❅❖✈❡rr✐❞❡
2 public void ❞✐s♣❧❛②(●▲❆✉t♦❉r❛✇❛❜❧❡ ❛r❣✵) {
3 / / Setup viewport

4 . . .
5 / / Setup camera project ion

6 . . .
7 / / Setup camera pose

8 . . .
9 / / Render scene

10 . . .
11 }

Listing 1. OpenGL typical display loop

Setting the poses We assume from now on that we know some reference camera Cr, which corresponds
to the virtual OpenGL camera that would have been used without auto-stereoscopic display. We are in-
terested in knowing how to place the virtual cameras Ci

a used for auto-stereoscopic rendering. The key
point here is to understand that a neighboring camera pair (Ci

a, Ci+1
a ) in the virtual world shall represent

the users eyes in the real world.
The whole real / virtual correspondence setup is depicted on Figure 46. We consider fronto-parallel virtual
cameras, in terms of positioning, as in the multi-view acquisition case. See [MBBB07] for a justification.
As a consequence, the information we have to provide to our rendering engine is the relative cameras
spread ∆cam. To compute such spread, we match in our model the following information:

# As already stated, the user’s eyes are matched to the virtual cameras, thus the distance ∆eye is asso-
ciated to the desired camera spread ∆cam.
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Fig. 46. Relationship between user’s eyes and virtual cameras positioning

# In auto-stereoscopic display, one has the sensation that some viewed objects are in front of the
screen while others are behind. With this statement in mind, we define a virtual and non displayed
3d plane in the virtual space, parallel to the camera’s image planes. We call it the focus plane. So the
screen in the real world is matched to the virtual focus plane, and the distance du between the user
and the screen is associated to the distance df between the virtual cameras and the focus plane.

With such modeling of the virtual cameras positioning, one can easily deduce the camera spread:

∆cam = α
∆eye · df

du

, (33)

with α being an additional scalar allowing to arbitrarily reduce or strengthen the auto-stereoscopic effect.

Setting the projection Defining the cameras’ projection matrices can be performed in several ways in
OpenGL. The hard constraint set by the auto-stereoscopic display is that we want the display scene to be
rendered in such a way that all image planes can be superimposed, contrary to multi-view acquisitions
described in Part II. This is illustrated in Figure 47a. To setup such projection, we must first remind how
it can be defined in OpenGL.
The rendering engine only displays the virtual objects that fall into the frustum. It is a truncated pyramid
defined by the camera center, the image plane, and two cutting planes: the near plane (Πnear) and the far
plane (Πfar). The focus plane is between them (see Figure 47b, left part). These information are sufficient
to define a simple pinhole camera projection.
In OpenGL framework, such view frustum can be defined using the function ❣❧❋r✉st✉♠✭✮, which takes
six input distances parameters: the near and far distances for the cutting planes, and four additional
distances defining the near plane borders (see Figure 47b, right part). These are distances expressed in
the near plane’s space, from the projected optical center.
As one may guess, to define the cameras’ projection in our auto-stereoscopic setup, it is sufficient to shift
the left and right parameter distances with the correct amount so that all the focus planes will match.

11.2.2 - Virtual views interleaving

Once a camera has been correctly set, the scene is rendered for the desired point of view. This process
is repeated until all necessary points of view have been computed. Then the rendered images are inter-
leaved and displayed onto the auto-stereoscopic screen. We describe in this section how to efficiently
store the temporary images on one hand, and how to interleave them correctly for the targeted display.
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Fig. 47. Projection modeling for auto-stereoscopy

Frame buffer objects The Frame Buffer Object architecture (FBO) is an extension of OpenGL for doing
flexible off-screen rendering, including — and that’s what we are interested in here — rendering to a tex-
ture. It’s general purpose is to capture images that would normally be drawn to the screen, to implement
a large variety of image filters or post-processing effects. The advantage of FBOs in terms of speed is that
they do not suffer from the overhead associated with OpenGL drawing context switching. They are also
known to largely outperform other off-screen rendering techniques, such as Pixel Buffers. The classical
way to use a FBO for rendering to textures is to create it, attaching a depth buffer to it to perform standard
depth tests, and attach the desired number of texture objects. The FBO creation procedure is summarized
in Listing 2.
In our context, once a virtual camera has been parameterized, we do not render the scene in the standard
frame buffer (which is displayed on the screen), but rather in one of the texture units attached to a FBO.
Thus the display loop will resemble to this:

1. Select (bind) the Frame Buffer Object
2. For each desired point of view

(a) Select the texture unit to draw on in th FBO

(b) Configure the camera pose and projection
(c) Render the scene

3. Interleave and display all textures attached to the FBO

4. Unbind the FBO

Notice that it is much more efficient to switch between textures within a FBO than between FBOs them-
selves. As such, depending on the desired number of views, one may want to maximize the number of
textures attached to a FBO (which is limited and hardware dependent).

Shader-based interleaving At this point, we consider that the scene has been rendered for all the wanted
views, and stored in the FBO’s attached textures. Nothing has been displayed to the screen yet. To perform
the interleaving, we use a Fragment Shader. The principle is the following: OpenGL’s state is restored so
that we can render objects on the screen. A simple quadrilateral, which covers the entire screen, is then
displayed. The trick is to tell OpenGL that this quad has multiple textures, which are the textures com-
puted earlier. Then the shader is applied to interleave these multiple textures and provide a final unique
texture applied and displayed on the quad — and of course on the screen.
/newpar The only remaining problem is to know the interleaving function. This is an issue in the sense
that the interleaving for a given pixel depends from its position on the screen, and that this function is
hardware-dependent (with regards to the auto-stereoscopic display used). As such, it is generally very
hard to model this function for a given screen. To overcome this problem, we use instead interleaving
masks, which can be retrieved by reverse engineering. These masks are defined as additional textures
attached to the quad, and as such they are fed to fragment shader program, in a multiply-additive way:

∀ pixel x, shader(x) =

N
∑

i=1

texture(x) ∗mask(x), with N the number of views (34)
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Fig. 48. Fragment shader-based interleaving process

The shader program itself is very simple. A GLSL version of it is given in Listing 3, for a display function
using eight views. The whole interleaving procedure is summarized on Figure 48.

Code excerpts

1 public boolean ✐♥✐t❋❇❖( int ✇✐❞t❤, int ❤❡✐❣❤t) {
2
3 / / Check i f extension i s available on current graphic implementation

4 i f ( !❣❧ .✐s❊①t❡♥s✐♦♥❆✈❛✐❧❛❜❧❡(✧●▲❴❊❳❚❴❢r❛♠❡❜✉❢❢❡r❴♦❜❥❡❝t✧ ) ) {
5 ❙②st❡♠ .❡rr .♣r✐♥t❧♥(✧●▲❴❊❳❚❴❢r❛♠❡❜✉❢❢❡r❴♦❜❥❡❝t ♥♦t s✉♣♣♦rt❡❞ ✦✧ ) ;
6 return f a l s e ;
7 }
8
9 / / Generate frame buffer o b j e c t and s t o r e id ( idFBO i s an int )

10 int ✐❞t❛❜ [ ] = new int [ 1 ] ;
11 ❣❧ . glGenFramebuffersEXT ( 1 , ✐❞t❛❜, 0 ) ;
12 ✐❞❋❇❖ = ✐❞t❛❜ [ 0 ] ;
13
14 / / Bind the FBO to make i t s context a c t i v e

15 ❣❧ . glBindFramebufferEXT (●▲ .●▲❴❋❘❆▼❊❇❯❋❋❊❘❴❊❳❚, ✐❞❋❇❖ ) ;
16
17 / / Generate render buffer o b j e c t and save id ( idRenderBuffer i s an int )

18 ❣❧ . glGenRenderbuffersEXT ( 1 , ✐❞t❛❜, 0 ) ;
19 ✐❞❘❡♥❞❡r❇✉❢❢❡r = ✐❞t❛❜ [ 0 ] ;
20
21 / / I n i t i a l i z e depth storage

22 ❣❧ . glBindRenderbufferEXT (●▲ .●▲❴❘❊◆❉❊❘❇❯❋❋❊❘❴❊❳❚, ✐❞❘❡♥❞❡r❇✉❢❢❡r ) ;
23 ❣❧ . glRenderbufferStorageEXT (●▲ .●▲❴❘❊◆❉❊❘❇❯❋❋❊❘❴❊❳❚,
24 ●▲ .●▲❴❉❊P❚❍❴❈❖▼P❖◆❊◆❚, ✇✐❞t❤, ❤❡✐❣❤t ) ;
25 ❣❧ . glBindRenderbufferEXT (●▲ .●▲❴❘❊◆❉❊❘❇❯❋❋❊❘❴❊❳❚, 0 ) ;
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26
27 / / Attach depth storage to FBO

28 ❣❧ . glFramebufferRenderbufferEXT (●▲ .●▲❴❋❘❆▼❊❇❯❋❋❊❘❴❊❳❚, ●▲ .●▲❴❉❊P❚❍❴❆❚❚❆❈❍▼❊◆❚❴❊❳❚,
29 ●▲ .●▲❴❘❊◆❉❊❘❇❯❋❋❊❘❴❊❳❚, ✐❞❘❡♥❞❡r❇✉❢❢❡r ) ;
30
31 / / Here f o r the example we w i l l attach two t e x t u r e s . Beware that the number of available

32 / / t e x t u r e s to be attached i s hardware dependent , and proper t e s t s should be run here .

33
34 / / Generate t e x t u r e s o b j e c t s ids

35 / / Note : int idTexs [ ] = new int [ 2 ] ;

36 ❣❧ . glGenTextures ( 2 , ✐❞❚❡①s, 0 ) ;
37
38 / / Create texture o b j e c t s and attach them to the FBO as color b u f f e r s

39 for ( int ✐ = 0 ; ✐ < ♥ ; ✐++) {
40 ❣❧ . glBindTexture (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ✐❞❚❡①s[✐ ] ) ;
41 ❣❧ . glTexParameteri (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ●▲ .●▲❴❚❊❳❚❯❘❊❴▼■◆❴❋■▲❚❊❘, ●▲ .●▲❴◆❊❆❘❊❙❚ ) ;
42 ❣❧ . glTexParameteri (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ●▲ .●▲❴❚❊❳❚❯❘❊❴▼❆●❴❋■▲❚❊❘, ●▲ .●▲❴◆❊❆❘❊❙❚ ) ;
43 ❣❧ . glTexParameterf (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ●▲ .●▲❴❚❊❳❚❯❘❊❴❲❘❆P❴❙, ●▲ .●▲❴❈▲❆▼P❴❚❖❴❊❉●❊ ) ;
44 ❣❧ . glTexParameterf (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ●▲ .●▲❴❚❊❳❚❯❘❊❴❲❘❆P❴❚, ●▲ .●▲❴❈▲❆▼P❴❚❖❴❊❉●❊ ) ;
45 ❣❧ . glTexImage2D (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, 0 , ●▲ .●▲❴❘●❇, ✇✐❞t❤, ❤❡✐❣❤t, 0 ,
46 ●▲ .●▲❴❘●❇, ●▲ .●▲❴❯◆❙■●◆❊❉❴❇❨❚❊, null ) ;
47 ❣❧ . glBindTexture (●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, 0 ) ;
48 ❣❧ . glFramebufferTexture2DEXT (●▲ .●▲❴❋❘❆▼❊❇❯❋❋❊❘❴❊❳❚, ●▲ .●▲❴❈❖▲❖❘❴❆❚❚❆❈❍▼❊◆❚✵❴❊❳❚+✐ ,
49 ●▲ .●▲❴❚❊❳❚❯❘❊❴✷❉, ✐❞❚❡①s[✐ ] , 0 ) ;
50 }
51
52 / / Unbind the FBO

53 ❣❧ . glBindFramebufferEXT (●▲ .●▲❴❋❘❆▼❊❇❯❋❋❊❘❴❊❳❚, 0 ) ;
54
55 return true ;
56 }

Listing 2. FBO creation

1 uniform sampler2D ✐♠❛❣❡s [ 8 ] ;
2 uniform sampler2D ♠❛s❦s [ 8 ] ;
3
4 void ♠❛✐♥( ) {
5 vec4 ❝♦❧♦r✵ = texture2D (✐♠❛❣❡s[ 0 ] , gl_TexCoord [ 0 ] .st ) ;
6 vec4 ❝♦❧♦r✶ = texture2D (✐♠❛❣❡s[ 1 ] , gl_TexCoord [ 0 ] .st ) ;
7 vec4 ❝♦❧♦r✷ = texture2D (✐♠❛❣❡s[ 2 ] , gl_TexCoord [ 0 ] .st ) ;
8 vec4 ❝♦❧♦r✸ = texture2D (✐♠❛❣❡s[ 3 ] , gl_TexCoord [ 0 ] .st ) ;
9 vec4 ❝♦❧♦r✹ = texture2D (✐♠❛❣❡s[ 4 ] , gl_TexCoord [ 0 ] .st ) ;

10 vec4 ❝♦❧♦r✺ = texture2D (✐♠❛❣❡s[ 5 ] , gl_TexCoord [ 0 ] .st ) ;
11 vec4 ❝♦❧♦r✻ = texture2D (✐♠❛❣❡s[ 6 ] , gl_TexCoord [ 0 ] .st ) ;
12 vec4 ❝♦❧♦r✼ = texture2D (✐♠❛❣❡s[ 7 ] , gl_TexCoord [ 0 ] .st ) ;
13 vec4 ♠❛s❦✵ = texture2D (♠❛s❦s[ 0 ] , gl_TexCoord [ 0 ] .st ) ;
14 vec4 ♠❛s❦✶ = texture2D (♠❛s❦s[ 1 ] , gl_TexCoord [ 0 ] .st ) ;
15 vec4 ♠❛s❦✷ = texture2D (♠❛s❦s[ 2 ] , gl_TexCoord [ 0 ] .st ) ;
16 vec4 ♠❛s❦✸ = texture2D (♠❛s❦s[ 3 ] , gl_TexCoord [ 0 ] .st ) ;
17 vec4 ♠❛s❦✹ = texture2D (♠❛s❦s[ 4 ] , gl_TexCoord [ 0 ] .st ) ;
18 vec4 ♠❛s❦✺ = texture2D (♠❛s❦s[ 5 ] , gl_TexCoord [ 0 ] .st ) ;
19 vec4 ♠❛s❦✻ = texture2D (♠❛s❦s[ 6 ] , gl_TexCoord [ 0 ] .st ) ;
20 vec4 ♠❛s❦✼ = texture2D (♠❛s❦s[ 7 ] , gl_TexCoord [ 0 ] .st ) ;
21 ❣❧❴❋r❛❣❈♦❧♦r = ❝♦❧♦r✵ * ♠❛s❦✵ + ❝♦❧♦r✶ * ♠❛s❦✶ + ❝♦❧♦r✷ * ♠❛s❦✷ + ❝♦❧♦r✸ * ♠❛s❦✸ +
22 ❝♦❧♦r✹ * ♠❛s❦✹ + ❝♦❧♦r✺ * ♠❛s❦✺ + ❝♦❧♦r✻ * ♠❛s❦✻ + ❝♦❧♦r✼ * ♠❛s❦✼ ;
23 }

Listing 3. Fragment shader for auto-stereoscopic interleaving

11.3 - Example: auto-stereoscopic 2D+Z rendering

The auto-stereoscopic rendering engine described in Section 11.2 is generic with regards to the rendered
scene. We now describe how to render 2d + Z videos in such framework.
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Fig. 49. Construction of a 3D mesh for 2D+Z rendering

11.3.1 - Representing the scene in 3D

2d + Z videos are sequences composed of standard images (the texture information) and depth maps
(the 3d information). In our auto-stereoscopic scheme, a 3d scene has to be rendered using OpenGL
routines. As a consequence, the input sequences have to be converted into 3d textured meshes. With few
additional information, a depth map can be converted into such mesh.

To compute a mesh representing the scene at a given time from a depth map, we first build a regular
planar mesh, whose nodes correspond to pixel positions. This mesh is associated to the image plane of
the camera. Then, every single node of the mesh is pushed along its line of sight such that its Z coordinate
in the camera frame is equal to the value read in the depth map. This mesh is then textured with the
original image from the video. This is illustrated in Figure 49.

Here three parameters are required: the focal length f , and the nearest and farthest depth values zmin and
zmax. The only constraint is that the three of them be expressed with the same units, but the unit itself
does not matter. These parameters are generally given the the depth maps providers, for instance the
DERS or our depth map extraction software mv2mvd. The focal length is physically the distance between
the camera sensor (CCD or roll film) and the lens’ optical center. The two last parameters are simply the
mapping parameters used to convert the greyscale depth maps image values to the desired depths.

Following this idea, the function mapping a pixel position x = [x, y]⊤ to a 3d point X = [X, Y, Z]⊤ is
the following (w and h are the input video dimensions, d is the value read in the depth map):

1 − Initialize X to X̄ to build the planar mesh:
X̄ =

[

x− w
2 , y − h

2 , zmin

]

2 − Build X by modifying X̄:

X =







Z = Z̄ + (zmax − zmin) ∗ d
X = X̄ ∗ Z/f
Y = Ȳ ∗ Z/f

(35)

11.3.2 - Real-time 3D depth mapping

We saw in Section 11.2 that real-time rendering is an important issue in auto-stereoscopic display, and
that interleaving operations for instance have to be run on the GPU through a shader to be performed in
real time. The problem is basically the same here: 3d mesh generation from depth maps has to be done
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very fast in case one has to view a video, let’s say at 25Hz, without loosing the real time auto-stereoscopic
ability.

The solution for such model generation is once again found in the extensive use of shaders. This time, we
do not use a fragment shader performing operations on “pixels”, but rather a vertex shader that operates
directly on the given 3d points. The other trick used here is to be aware that in depth map-based render-
ing, the 3d rendered scene is viewed and expressed in the camera coordinate system. As a consequence,
the 3d planar mesh defined before modifying its nodes’ position is always exactly the same for every sin-
gle image of the video. It follows that this mesh is built once and for all before rendering the first image,
and the modification of its nodes is done on the flow in the vertex shader. One has never to modify these
points position outside the shader. Then, for all the video it is always the same mesh that is displayed. The
vertex shader program modifying the nodes’ positions is given in Listing 4. Notice that in this example,
the Z coordinates are negative due to OpenGL default coordinate system.

1 uniform f l o a t ③♠✐♥ ;
2 uniform f l o a t ③♠❛① ;
3 uniform f l o a t ❢♦❝❛❧ ;
4 uniform sampler2D ❞❡♣t❤ [ 1 ] ;
5
6 void ♠❛✐♥( ) {
7 / / Map the multi−texture coordinates to c l a s s i c a l texture coordinates in [ 0 ; 1 ]

8 / / Multi−texturing i s used because of the 2 color / depth t e x t u r e s

9 gl_TexCoord [ 0 ] = gl_MultiTexCoord0 ;
10 / / Read the depth value from the depth texture

11 f l o a t r❡❛❞❉❡♣t❤ = texture2D (❞❡♣t❤[ 0 ] , gl_TexCoord [ 0 ] .st ) .① ;
12 / / Inhomogeneous normalization

13 gl_Vertex /= ( gl_Vertex .✇ ) ;
14 / / Compute the new vertex posit ion

15 gl_Vertex .③ −= (③♠❛①−③♠✐♥) * r❡❛❞❉❡♣t❤ ;
16 gl_Vertex .① *= −(gl_Vertex .③/❢♦❝❛❧ ) ;
17 gl_Vertex .② *= −(gl_Vertex .③/❢♦❝❛❧ ) ;
18 / / Mandatory : Compute the posit ion of the projected vertex in the camera frame ,

19 / / including the i n t r i n s i c s influence . This i s the mandatory output of the vertex shader

20 ❣❧❴P♦s✐t✐♦♥ = ❣❧❴▼♦❞❡❧❱✐❡✇Pr♦❥❡❝t✐♦♥▼❛tr✐① * gl_Vertex ;
21 }

Listing 4. Vertex shader for 2D+Z rendering

11.4 - Further notes

Software This auto-stereoscopic rendering engine associated to the viewing of 2d + Z videos has been
successfully implemented in a small Java application named M3dPlayer Lite. It runs in (’almost always’,
see notes below) real-time on a Linux 32bits computer with 2GB of RAM and a Inter®Core™2 Duo 6700
CPU, and a Quadro FX 3500M graphics card. It has been demonstrated with several videos, with our
extracted depth maps.

Depth maps quality In such auto-stereoscopic context, it is highly hard to differentiate between our
depth maps or DERS’ ones. This comes from the fact that auto-stereoscopy tends to generate very local
virtual views, thus lowering the depth artifacts influence. Moreover, it appears that false depths in large
textureless regions does not impact on perceptual quality of 3d experience. A final concern on depth
maps quality is that for auto-stereoscopy purposes, extremely accurate depth contours estimation is not
an issue. It may in fact be a problem due to our internal mesh representation, since it is completely
connected, leading to texture stretchings at depth contours when not correctly positioned with regards to
the screen.

Input videos resolution Another point to keep in mind is that spatial resolution of 3d visualization is
driven not by the input data, but by the auto-stereoscopic screen itself, which is much lower that the LCD

panel itself. As such it is pointless to feed the application with for instance HD content when the device
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itself will output for each eye SD images. This would have for consequence to increase the required texture
allocation for both images and depth maps, and the number of 3d points rendered by OpenGL ; this may
drop the rendered frames per second number drastically. That is why in the first paragraph of this section
we said that rendering is almost always performed in real-time: it is not the case when one provides
irrelevant input content.

The Frame Buffer Object trick With the same resolution wonders, it is very important to notice that
the resolution of the textures attached to the FBO do not need to be at full resolution, even if they are
stretched by OpenGL to fit the final quadrilateral dimensions (in a very good manner by the way). In our
application, we use square texture units of size 1024 × 1024 pixels. Increasing this resolution may also
make the FPS fall since the memory amount on the graphics card is much more limited. In our case we
have 256MB of such memory. However, the mask textures shall them be at full resolution since they define
pixel-wise interpolation coefficients and must not be corrupted by images interpolations.
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Appendixes

A - The depth map model

X

Y
Z

P

ZP

F

❋✐❣✳ ✺✵✳ ❉❡♣t❤ ♠❛♣ ♣r✐♥❝✐♣❧❡

Depth maps can be considered as 3d information added to images.
They are generally encoded as grayscale images, to which one generally
associates corresponding min and max depth values for scaling pur-
poses: black matches to a minmal depth while white matches a max-
imal depth. Depths in between are linearly interpolated. Another for-
mulation, used in Z-Buffering within graphics card, is non linear be-
tween the min and the max, so that more numerical precision be allo-
cation to near objects.

Each pixel in the depth maps describes the depth of the corresponding
pixel in the image, relative to the camera coordinate system. In the clas-
sical (X,Y, Z) ∈ R3 camera space, the stored value corresponds to the
Z coordinate of the point (see Figure 50).

Given an image pixel p = (x, y) and a corresponding depth value
ZP , the complete 3d coordinates are retrieved using the camera focal
length f :

XP = x · ZP

f

YP = y · ZP

f

(36)

B - Rotations and their representations

Several representations exists to model rotations in 3d space. The one used in the pihole camera model,
and in projection equations, is the 3 × 3 matrix formulation. However, hard constraints are set on such
matrix formulation: they are orthogonal and their determinant is equal to 1.

R⊤ = R−1 and det(R) = 1 (37)

These constraints are attibutable to the dimension of the rotations in 3d space, which is 3.

Such constraints are hard ot maintain in several rotation-related computation, such as rotations inter-
polations or derivations in non linear optimization frameworks. As such, other equivalent but better
dimensionned formulations are preferred in these cases. We present here two of them: the axis-angle
formulation, and the quaternion formulation.

B.1 - Axis-angle formulation

θ

φ

Z

X

Y

❋✐❣✳ ✺✶✳ ❆①✐s✲❛♥❣❧❡ r♦✲

t❛t✐♦♥ ❢♦r♠✉❧❛t✐♦♥

The axis-angle representation, also known as the exponential coordinates of a ro-
tation, parameterizes the rotation by a unit oriented 3-vector φ giving the rotation
direction, and a scalar θ representing the angle, or the amount, of the rotation
(with the right hand grip rule). This representation comes from Euler’s rotation
theorem [Eul76].

We use this formulation as a simple way to compute rotations interpolations in 3d

space.
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B.1.1 - From matrix to axis-angle representation

The transformation between a rotation matrix to an axis-angle representation is
performed in two successive steps. First, the rotation angle is computed:

θ = arccos

(

trace(R)− 1

2

)

(38)

Then, the angle is used to determine the normalized axis of the rotation:

φ =
1

2 sin(θ)











R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2











(39)

B.1.2 - From axis-angle to matrix representation

The transformation between an axis-angle rotation to a rotation matrix is drived by the exponential map
transformation, leading to the well known Rofrigues’ rotation formula:

R = I + [φ]× sin(θ) + [φ]2×(1− cos(θ)), (40)

with [·]× beeing the operator giving the antisymmetric matrix equivalent to the cross-product.

B.2 - Quaternion formulation

Quaternions can be seen as an extension of complex numbers, mainly used in mechanics in three-di-
mentional space [DFM07]. To make it very quick6 if complex numbers have a real and an imaginary part,
then quaternions have a real part and a three-dimentional imaginary part: q = q0 + q1 i + q2 j + q3 k =
(q0, [q1, q2, q3]

⊤).

Given a rotation represented with the axis-angle (θ, φ), the equivalent rotation quaternion has the follow-
ing form:

q =

(

cos

(

θ

2

)

, φ sin

(

θ

2

))

(41)

One speaks of unit quaternions, since their euclidean norm equals 1.

B.2.1 - Rotating a point or vector in 3-space with quaternions

One of the reason why quaternions are very usefull is that rotating a point or a vector can be performed
directly with quaternion multiplications. Let X be a 3d point. It can be represented by a quaternion with
a null real part and its coordinates assigned to the imaginary part: qx =

(

0, [X, Y, Z]⊤
)

. Rotating X with
the rotation described in a quaternion q is done by multiplying the corresponding imaginary quaternion
by q and its conjugate q∗ in the Hamilton product sense:

X′ = RX = q qx q∗ (42)

It can of course be easily verified that the real part of X′ is equal to zero.

6If you don’t know anything about quaternions, Google them, you’ll find their main properties needed for further
understanding (conjugation, norm, multiplication, etc.)
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B.2.2 - Minimal representation

One can also notice that such rotation quaternions can be represented only with their imaginary part,
leading to a 3-vector space representation corresponding to the exact dimension of a rotation, since the
real part can be deduced from the imaginary part, using its norm:

∥

∥[q1, q2, q3]
⊤
∥

∥

2
= sin2

(

θ

2

)

⇒ q0 = cos

(

θ

2

)

=

√

1− ‖[q1, q2, q3]⊤‖2 (43)

These properties are particularly interesting in our context, more precisely when we need to derivate
projection equations in non-linear optimization frameworks, where the modified rotation values need to
maintain the rotations properties (see for instance Section C).

B.2.3 - From quaternion to axis-angle representation

The transformation from an axis-angle representation to a quaternion beeing straightforward (only a co-
sine and a sine need to be computed), we just remind here the reverse transformation (which is quite
strightforward too).

First, the rotation angle θ can be deduced from the real part of the quaternion, and then the unit vector φ
is derived by a scalar division of the imaginary part:

θ = 2 arccos(q0) and φ =
[q1, q2, q3]

⊤

sin( θ
2 )

(44)

B.2.4 - From quaternion to matrix representation

The matrix formulation of the unit rotation quaternion q = (q0, [q1, q2, q3]
⊤) is the following:

R =











q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3











(45)

B.2.5 - From matrix to quaternion representation

Finding a quaternion equivalent to a rotation matrix R can be numerically unstable when the trace of R
is close to zero. We describe here a robust method to find R given q.
First, let Ra,a be the diagonal element with the largest absolute value. We compute the temporary value
r =

√

1 + Ra,a −Rb,b −Rc,c, with abc being an even permutation of xyz (i.e. xyz, zxy of yzx). The
quaternion indexes 1, 2, 3 are mapped in the notation to x, y, z. The quaternion q may now be written:































q0 = (Rc,b −Rb,c) /2r

qa = r/2

qb = (Ra,b + Rb,a) /2r

qc = (Rc,a + Ra,c) /2r

(46)

C - Derivating projection equations

We provide in this section the details of the partial derivative of the projection equations with regards to
rotations, translations, structure (i.e. 3d points) and camera intrinsics. These derivatives are used to build
the Jacobian matrices in Levenberg-Marquardt optimizations, such as resection or bundle adjustment.
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C.1 - Projection equations

We consider the standard projection relationship x ∼ K[R|t]X. We want to express the coordinates x
and y from x, using the quaternion representation for the rotation R, namely q = (ra, [rx, ry, rz]

⊤), with

ra =
√

1− r2
x − r2

y − r2
z .

Let also (fx, fy, u0, v0) be the camera intrinsic parameters, (X, Y, Z) the coordinates of the original 3d
point X, and (tx, ty, tz) the translation coordinates.

We define the following temporary variable QX = [QX , QY , QZ ]⊤, corresponding to the coordinates of
X expressed in the camera coordinate system (QX = RX + t):

QX =



















QX = X
(

1− 2r2
y − 2r2

z

)

+ 2 Y (rxry − rarz) + 2 Z (rary + rxrz) + tx

QY = Y
(

1− 2r2
x − 2r2

z

)

+ 2 X (rarz + rxry) + 2 Z (ryrz − rarx) + ty

QZ = Z
(

1− 2r2
x − 2r2

y

)

+ 2 X (rxrz − rary) + 2 Y (rarx + ryrz) + tz

(47)

We can now write the projection equations, i.e. the projected 2d coordinates of x regarding structure,
motion and camera parameters:

x : (K,q, t,X) 7→ fxQX

QZ

+ u0

y : (K,q, t,X) 7→ fyQY

QZ

+ v0

(48)

C.2 - Structure partial derivatives

In this section, we derive the projection equations 48 with regards to the structure parameters, namely
the coordinates of the 3d point X.

∂x

∂X
=

fx

QZ

(

1− 2r2
y − 2r2

z

)

− 2
fxQx

Q2
Z

(rxrz − rary)

∂x

∂Y
= 2

fx

QZ

(rxry − rarz) − 2
fxQx

Q2
Z

(rarx + ryrz)

∂x

∂Z
= 2

fx

QZ

(rary + rxrz) − fxQx

Q2
Z

(

1− 2r2
x − 2r2

y

)

∂y

∂X
= 2

fy

QZ

(rarz + rxry) − 2
fyQy

Q2
Z

(rxrz − rary)

∂y

∂Y
=

fy

QZ

(

1− 2r2
x − 2r2

z

)

− 2
fyQy

Q2
Z

(rarx + ryrz)

∂y

∂Z
= 2

fy

QZ

(ryrz − rarx) − fyQy

Q2
Z

(

1− 2r2
x − 2r2

y

)

C.3 - Motion partial derivatives

In this section, we derive the projection equations 48 with regards to the six camera pose parameters,
namely the three translation ones [tx, ty, tz]

⊤ and the three rotation ones [rx, ry, rz]
⊤.
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∂x

∂rx

=
2fx

QZ



Y

(

ry +
rxrz

ra

)

+ Z

(

rz −
rxry

ra

)

−
QX

(

X
(

rz +
rxry

ra

)

+ Y
(

ra − r2

x

ra

)

− 2Zrx

)

QZ





∂x

∂ry

=
2fx

QZ






Y

(

rx +
ryrz

ra

)

+ Z

(

ra −
r2
y

ra

)

− 2Xry −
QX

(

X
(

r2

y

ra
− ra

)

+ Y
(

rz − rxry

ra

)

− 2Zry

)

QZ







∂x

∂rz

=
2fx

QZ



Y

(

r2
z

ra

− ra

)

+ Z

(

rx −
ryrz

ra

)

− 2Xrz −
QX

(

X
(

rx +
ryrz

ra

)

+ Y
(

ry − rxrz

ra

))

QZ





∂y

∂rx

=
2fy

QZ



X

(

ry −
rxrz

ra

)

+ Z

(

r2
x

ra

− ra

)

− 2Y rx −
QY

(

X
(

rz +
rxry

ra

)

+ Y
(

ra − r2

x

ra

)

− 2Zrx

)

QZ





∂y

∂ry

=
2fy

QZ






X

(

rx −
ryrz

ra

)

+ Z

(

rz +
rxry

ra

)

−
QY

(

X
(

r2

y

ra
− ra

)

+ Y
(

rz − rxry

ra

)

− 2Zry

)

QZ







∂y

∂rz

=
2fy

QZ



X

(

ra −
r2
x

ra

)

+ Z

(

ry +
rxrz

ra

)

− 2Y rz −
QY

(

X
(

rx +
ryrz

ra

)

+ Y
(

ry − rxrz

ra

))

QZ





∂x

∂tx
=

fx

QZ

∂x

∂ty
= 0

∂x

∂tz
= −fxQX

Q2
Z

∂y

∂tx
= 0

∂y

∂ty
=

fy

QZ

∂y

∂tz
= −fyQY

Q2
Z

C.4 - Intrinsics partial derivatives

In this section, we derive the projection equations 48 with regards to the four camera intrinsic parameters,
namely (fx, fy, u0, v0).

∂x

∂fx

=
QX

QZ

∂x

∂fy

= 0
∂x

∂u0
= 1

∂x

∂v0
= 0

∂y

∂fx

= 0
∂y

∂fy

=
QY

QZ

∂y

∂u0
= 0

∂y

∂v0
= 1
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