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Exponential stability and stabilization of
sampled-data systems with time-varying
period

A. Seuret *

* GIPSA-lab, NeCS INRIA Project-Team - Control Systems
Department - INP BP 46, Domaine Universitaire - 38400 Saint
Martin d’Heres - FRANCE.

Abstract: This article proposes a novel approach to assess the exponential stability of linear
systems with sampled-data inputs. The paper considers both uncertainties in the model
parameters and in the sampling period. Inspired by the input-delay approach and the stability of
impulsive systems, the proposed method provides easy tractable stability conditions. Sufficient
stability and stabilization conditions are provided to deal with both cases of constant and time-
varying sampling periods. The period-dependent conditions are expressed using computable
linear matrix inequalities. Several examples show the efficiency and the limitation of such

stability criteria.

Keywords: Time-delay systems, time-varying delay, Lyapunov-Krasovskii functionals, linear

systems.

1. INTRODUCTION

In the last decades, a large attention has been taken to
Networked Control Systems (NCS) (see Hespanha et al.
(2007), or Zampieri (2008)). Such systems are controlled
systems containing several distributed plants which are
connected through a communication network. In such
applications, a heavy temporary load of computation in
a processor can corrupt the sampling period of a certain
controller. The variations of the sampling period will affect
the stability properties. In this article, our objective is
to guarantee the exponential stability in the case of time
varying sampling period.

Sampled-data systems have already been studied in the
literature Chen and Francis (1995); Zhang and Branicky
(2001); Zhang et al. (2001) and the references therein. It is
now reasonable to design controllers which guarantee the
robustness of the solutions of the closed-loop system un-
der periodic samplings. However the case of asynchronous
samplings still leads to several open problems such as the
guarantee of stability whatever the sampling period lying
in an interval. Recently, several articles drive the problem
of time-varying periods based on a discrete-time approach,
Yue et al. (2008); Fujioka (2009). Note that discrete-time
approaches do not fit with the case of uncertain sys-
tems or systems with time-varying parameters. Recent pa-
pers considered continuous-time modelling of systems with
sampled-data control. The idea is to represent the discrete-
time control law as a continuous but delayed input. This
was proposed in Fridman et al. (2004) where the stabil-
ity conditions are derived on a Lyapunov-Krasovskii ap-
proach. Improvements are provided in Mirkin (2007), using
the small gain theorem and in Naghshtabrizi et al. (2008)

1 This research is supported by FeedNetBack project, FP7- ICT-
2007-2 and CONNECT project, PSIROB06-174215

based on an impulsive systems analysis. These approaches
are very relevant because it cope with the problem of time-
varying sampling periods and also with uncertain systems
(see Fridman et al. (2004) and Naghshtabrizi et al. (2008)).
Nevertheless, these sufficient conditions are still conserva-
tive for time-varying period. This means that the sufficient
conditions obtained by continuous time approaches are not
able to guarantee asymptotic stability whereas the systems
is stable. Note that recent improvements are obtained in
Liu and Fridman (2009) and in Seuret (2009).

The article proposes a novel approach to obtain sufficient
conditions to exponential stability of linear time-varying
systems. Those conditions are based on the continuous-
time approach and the stability of impulsive systems. The
proposed theorems provide larger upper-bounds of the
allowable sampling period than the existing ones (based
on the continuous time approach).

This article is organized as follows. The next section for-
mulates the problem. Section 3 deals with the analysis of
exponential stability. Section 4 concerns the stabilization
of linear systems under sampled inputs. Several examples
and simulations are provided in Section 5 and show the
efficiency of the method.

Notations. Throughout the article, for a n-dimensional
state vector x and a mon-negative delay T, W represent
the set of functions x; such that x.(0) = x(t — 0) for all
0 € [-7, 0]. For any x:, the notation |x+(0)| represents
the classical Euclidean norm of the vector x+(0) = x(t)
and we define the norm [|x¢|| = supge;_., o) [2:(0)[. The
superscript ‘T’ stands for the matriz transposition. The
notation P > 0 for P € R™*™ means that P is a symmetric
positive definite matriz. The symbols I and 0 represent the
identity and the zero matrices of appropriate dimension.



2. PROBLEM FORMULATION

Consider the linear system with a sampled-data input:
#(t) = Az(t) + Bu(ty) (1)

where x € R™ and u € R™ represent the state variable and
the input vector. The matrices A and B are constant and
of appropriate dimension. We are looking for a piecewise-
constant control law of the form w(t) = uq(ty), te <
t < tpy1, where ug is a discrete-time control signal and
0=ty <t <..<tg <... arethe sampling instants. Our
objective is to ensure the stability of the system together
with a state-feedback controller of the form

u(t) = Ka(ty), te <t < titr, (2)

where the gain K in R™*™ is given. Assume that there
exists a positive scalar 7' such that the sampling interval
tk+1 — tr, = T} satisfies

VE>0, 0<T,<T. (3)

Several authors investigated in guaranteing the stability
of such a system. Substituting (2) into (1), we obtain the
following closed-loop system:

z(t) = Ax(t) + Agz(t — 7(1)), 4
T(t) =t —tg, the <t <tpy1- (4)

where Ag = BK. From (3), it follows that 7(¢) < T since
7(t) < tg41 — tr. For the sake of simplicity, the notation
7 stands for the time-varying sampling delay 7(¢). We will
further consider (4) as a linear system with uncertain and
bounded delay.

3. EXPONENTIAL STABILITY OF SYSTEMS WITH
SAMPLED INPUTS

In this section, a study of the convergence rate of the solu-
tions of sampled-data systems is provided. The objective
is to ensure that the LKF is decreasing exponentially fast
with a known decay rate 2ac > 0 during a sampling period.
Instead of ensuring V' < 0, we use the following lemma:

Lemma 1. Liu and Fridman (2009) Assume there exist
positive numbers «, § and § and a function V : RxW — R
such that the function V' (¢, ;) is continuous with respect
to the time argument ¢ and for ¢t # t;, and z; from (4) and
V satisfies

Blze(0)]* <V (t,2¢) < 6la?, (5)
V +2aV <0, (6)
lim V(t,2¢) > V(tg, 21, ), (7)

t—>t,C

Then (4) is exponentially stable with the decay rate a.

If the conditions from Lemma 1 are satisfied, the LKF is
decreasing faster than e~2®*. This expression still makes
sense if « is negative. In this situation, it means that the
LKF is not increasing faster than e2*/*, In the following,
several theorems provide sufficient conditions to ensure
(6) for the cases with constant and time-varying periods
and systems with bounded time-varying uncertainties. Our
objective here is to design a new type of Lyapunov-
Krasovskii functionals dedicated to exponential stability
with a guaranteed exponential decay rate.

3.1 Constant sampling periods

Theorem 1. For a given a € R, assume that there exist
symmetric positive definite matrices P, Py, R and S; €
R™ ™ and two matrices Sy € R™*™ and N € R2"*" that
satisfy

II, + fa(T, O)Hg <0, (8)
W Lot Dr) <0 ®

where
I, = M{ PMy + M PM, — M] S, M3
—MJ SoMs — M ST M,
~NMs — MINT + 2aM] PM;,
My = M1 Sy My + M Sy Mz + MJ RM,
+M3 So Mo + Mg S5 Mo,
and MO = [A Ad], M1 = [I 0}, M2 = [O I}, M3 =
[I —I]. The functions f, and g, are

ifa#0, fo(T,7)= (""" —1)/2a,

ifa=0, fo(T,7)=T-r,

if a >0, go(T,7) =e*T(1 —e2°7) /20, (10)
ifa <0, go(T,7) = (1 —e"2%7)/2a,

ifa=0, g(T,7)=r.

System (4) is thus exponentially stable with an exponential
decay rate « for a constant period T

Proof. Consider a € R and the novel type of functional
Va(t,ze) = o7 () Pa(t)
+fa(T,7)¢o (B)[S1C0(t) + 252 (tx)]

¢ (11)
+fulT,7) /t €T (5)MT RMog(s)ds,

where (o(t) = x(t) — z(ty), £(s) = [¢7(s) =" (tx)]". The
objective is here to ensure that AV, = V,(ty,zy,
Va(tp—1,2¢,_,) is negative definite as in the Lyapunov
approach for discrete-time systems. The functional V,, is
composed by a quadratic term and two others depending
on the delay function 7. At each sampling instant g, V,, is
equal to the quadratic term x7 (¢4 ) Pz (t)). The other terms
in V, are introduced to take into account the behavior
of the system between two successive sampling instants.
Consider a positive scalar 0 < ¢ < T and the functional
Va, at time t;, —e and i +e€. Since (o(tx+¢€) and fo (T, T —¢)
tend to 0 as € — 0 for all o € R, the following equalities
are satisfied

liH(l) Va(ty — €, x4, ) = xT (t,) Px(ty,),
lin(1) Vi(tr + 6,24, 1c) = 27 (tg) Pa(ty).

(12)
The LKF V, is thus continuous with respect to t at all
sampling instants. However as no additional conditions
are introduced on Ss, V,, is not necessary positive definite
within two sampling instants. This is the reason why
the functional can only be considered to deal with the
particular the case of constant sampling period.

The rest of the proof consists in ensuring that V,, is
decreasing exponentially within each period. To do so, we
consider W, (t,x¢) = Vo (t,x) + 2aV, (¢, ) as suggested
in Lemma 1. From (10), we have, for all o € R and for all

7€ [0,T), fulT,7) + 20fo(T,7) = —1. This leads to



W (t, ) = 227 () Pi(t) 4 20T (t) Px(t)
+2fo(T,7)2(t)T[S160(t) + Saa(ty)]
+fa (T, 7)ET (t) Mg RMo& (1)
—Co ()[S16o(t) + 2822:(1,)]

t
- [ €M R
123
Consider a matrix N € R2"*" and the following equality

t t

IN [w(t) — a(te)] = / 2N i(s)]ds = / 2N Mog(s)] ds.
t t

Since R is positive definite, a classical bounding ensures

that for all ¢ € [tg, txy1[ and for all s € [ty, t]:

267 ()N Mo(s) < ET()NRTINTE() + €7 (s) Mg RMog(s).

Integrating the previous inequality over [tg, ¢], the follow-
ing inequality is obtained

(13)

t
— [ €7 (s)My RMo&(s)ds < —2¢7 (t) N MsE(t)
ti
+rET ()NRTINTE(1),

(15)

Noting that
i(t) = Ax(t) + Aga(ty) = Mo&(t), =(t) = Mi&(t),
w(ty) = Ma&(t),  Golt) = x(t) — x(tr) = Ms&(t),

and adding (15) to (13), the following inequality is ob-
tained for all ¢ € [tg, tri1]:

Walt,ze) < € (&)[M + fo(T, 7)1z + TNRTINTIE()

The right hand term does not depend linearly on 7 but

on both 7 and a non linear function of 7, fo(7T,7) =
e?a(Tf-r)_l

5o . A first possibility to obtain sufficient condi-
tions for exponential stability would be to consider that
these two terms are independent. Then sufficient condi-
tions can be derived by taking the right hand side term at
each vertices 7 = 0,7 and fo(T,7) = fo(T,0), fo(T,T).
However this adds some conservatism to the conditions
since the cases (0, fo(T,T)) and (T, fo(T,0)) never hap-
pen. The solution proposed here is to use the proper-
ties of the exponential function to avoid this situation.
The convexity of the exponential function ensures that
e?®7 > 1+ 2a1 and €297 > 1 — 2a7. Consequently, the
following upper-bounds are obtained

if >0, 7< (2 —1)/2a < go(T,7),
if <0, 7<gq(T,7),
ifa=0, 7=go(T, 7).
Thus we have
W (t,2) <&M + folT, 7)1
+9a (T, T)NRTINT]E(2).
Then this new upper-bound depends linearly only on the
time-varying gain e=2°7. It is now sufficient to ensure that
the right-hand side of the previous equation is negative
definite for e72%" = 1 and for e72%7 = e~227 This leads
to conditions (8) and (9). The last step of the proof consists
in integrating the differential inequality over each sampling
interval. This leads to
VE >0, V(tg,x,) < V(tg_1,zq, ,)e 20E=t=1) " (16)

Consequently, we have V (g, 21, ) < V(0,20)e 2" which
implies the exponential stability of the solutions of (4).m

Remark 1. Note that, when « tends to 0, f, and g, tend
to fo and gg. This means that the conditions of Theorem

1 are continuous with respect to «. Thus choosing a = 0
in Theorem 1 leads to the asymptotic stability conditions
given in Seuret (2009).

Remark 2. Theorem 1 provides sufficient conditions for
exponential stability. It allows estimating the maximal
exponential decay rate ., by solving the following op-
timization problem:

oy, = max o such that (8) and (9) are satisfied

Liu and Fridman (2009) proposes a method to relaxe the
conditions on S;. This is exposed in the following theorem.

Theorem 2. For a given a € R, assume that there exist
symmetric positive definite matrices P, R and three ma-
trices S; = S7 € R™*" S, € R™*™ and N € R?"*" such
that (8) and (9) are satisfied and

. — P+ fa(T, O)Sl fa(T, 0)(52 — Sl) >0

3 * fa(T,0)(S; — Sy — ST) ’

(17)
System (4) is thus exponentially stable with an exponential
decay rate « for all time-varying period less than T

Proof. The proof follows the line of Liu and Fridman
(2009). Consider V,, in (11), which can be rewritten as
t

Vit z) = folT, T) /t T (s)MT RMy&(s)ds
vt [P DS BEDER S e,

The continuity of V, implies (7). We are now looking for
conditions to ensure that (5) is satisfied. As the term of
the previous equation is linear with respect to fo (T, 7),
it is sufficient to consider the positivity of this term for
fa(T,7) = fo(T,T) and fo (T, 7) = 0, which lead to P > 0
and II3 > 0. m

The previous theorem can also be relaxed as follows

Theorem 3. For a given a € R, assume that there exist
symmetric positive definite matrices P, R and three ma-
trices S; = S7 € R™" Sy € R™ ™ and N € R?"*" such
that (8) and (9) are satisfied and
I, = P+foé(Ta0)U foc(TaO)(S?_U) >0
37 * falT,0)(U — S2 — S7) ’
(18)
where U = S; + R/T. System (4) is thus exponentially
stable with an exponential decay rate a for all time-varying
period less than T.

Proof. Following the proof of Theorem 2, we apply the
Jensen’s inequality to the integral term and we use the
inequality 1/7 > 1/T. This leads to

th(S)MoT RMoé(s)ds > €7 (t) Mg R/TM3&(t)
tr

which implies
Valt,20) > €7 [P O e D |6

ensuring (5) only requires II5 to be satisfied.m
3.2 Time-varying sampling periods

The case of time-varying periods leads to additional con-
straints on the LKF. In the literature, researchers are



looking for a unique LKF of the form (11) where Ty is the
upper-bound of the sampling periods. However it leads
to additional difficulties since the LKF becomes discon-
tinuous at the sampling instant and (12) is not satisfied
any more. In the following, we prove that the exponential
stability conditions for constant sampling period also holds
for time-varying periods.

Theorem 4. Theorems 1, 2 and 3 considered with T' = T}
ensure the exponential stability for sampled systems with
time-varying periods less than Tj.

Proof. Consider now that the sampling period is not
constant, the difference between two sampling instants
T, = tpy1 — tx is time varying but satisfies T, < Tp.
Consider now the following functional for all ¢ € [tx, tg41[

Vr(t,x) = xT(t)Px(t)
+fo (T, 7)C0 (£)[S160(t) + 2S22:(t)],

(T ) / €7 () MT RMo€ (s)ds

This is the same functional as in Theorem 1, 2 and 3 but
the time-varying period appears in the functional. Since T},
is constant over t € [tg, txy1[, the same stability analysis
as in Theorem 1 leads to

Wi(t,xy) = VIt zy) + 2V (t, xt),

Wit z) < T (O + foTh, 7,

+9a(Th, YNR'NTIS(t)

As the right hand side of the previous inequality depends
linearly on e~2°7, the conditions derived when e =297 =1

(19)

and e297 = ¢=2°T%x lead to
II; + fa(Tk; O)HQ <0, (20)
I, + go(Th, Tx) NRTINT < 0, (21)

ensure that W7 < 0 for all constant sampling periods
Ty. We can also apply the same argument to e 2Tk to
(20). From its definition, fu (7%, 0) is linear with respect to
e2@Ti Ensuring that (20) is thus satisfied for e2*T% = 1 and
29Tk = ¢29To This leads to (8) and IT; > 0. Consider now
the second inequality (21). If o < 0, the same argument
holds for =27k = 1 and leads directly to (9). If a > 0,
we note that R is positive definite and that
9o (Tr, 1) < eQO‘T"(l — e_QO‘T’“)/Qa.
Then we have
I + go(Th, TH)NR™'NT <
M, + e2*T(1 — e72T) /2aNRTINT|
which is linear with respect to e=2%T%. We can apply the
same argument as for (20) which leads to II; < 0 which
is already included in (9) and to (9) using the Schur
complement. To conclude the proof, the same argument
is employed to II3 > 0 with "= Ty and to IT§ > 0 using
the inequality 1/T} > 1/T;. m
Remark 3. Based on Theorem 4, we can prove that Theo-
rems 2 and 3 also deal with time-varying sampling periods.

A corollary is provided to cope with asymptotic stability.

Corollary 1. Assume that there exist symmetric positive
definite matrices P, R and S; € R™*"™ and two matrices
Sy € R™ ™ and N € R?"X" that satisfy

II, ToN
II; + TpIls < 0, « —ThR

P+U+ToS1 —U+Tp(S2— 51) <0
* U—l—To(Sl—SQ—Sg) ’

<0,

System (4) is thus asymptotically stable for all time-
varying period less than Tj.

3.8 Parameter uncertainties

An extension to the case of systems with parameter
uncertainties can be dealt by considering system (4) and
with A and A4 from the time-varying uncertain polytope
given by

M
Ve RY, Q) =) Nt
k=1

where for all t € Rt and i = 1,.., M, Zf\il Ai(t) =1, and
Ai(t) > 0. The Q vertices of the polytope are described
by Q; = [A(¢) Aa(i)]. The conditions of Theorems 1 and
2 are not linear with respect matrices A and A, because
of the term MJ RMj3. Thus a direct extension to the case
of polytopic systems is not straightforward and requires
some attention provided in the sequel:

Theorem 5. Assume that there exist symmetric positive
definite matrices P, R and S € R™™ and a matrix
N € R?*" guch that 115 > 0 and forall [ = 1,..., M

I+ fo(To, O)ITS fo(To,0)Mi" R
[ 1 JalTo, O _fz(TO’OgR }<o, (22)
] <o )

where
T = MTPM; + M PM;, — MY S M;
—2MF So M3z — MgS;‘FMg
—N'Ms; — MIN* +2aMTPM,,
T = MT Sy M+ M Sy Ms
+MISoMi + M ST M,
and My, for k = 0,1,2,3 are given in Theorem 1 and
M = [A* AY]. System (4) with polytopic uncertainties
is thus exponentially stable with an exponential decay rate
« for all time-varying sampling periods less than T'.

Proof. Consider the first condition of Theorem 1. This
inequality is not linear with respect to the matrix A and
Ay because of the term MJ RM;. Noting that it can be
rewritten as (RMy)T R~ (RM,), the first condition Theo-
rem 1 is obtained by application of the Schur complement.
Consider the second LMI of Theorem 1 which is linear
with respect to the system parameters A and A;. Then
the extension to polytopic systems is straightforward. As
both conditions become linear with respect to the matrices
A and Ay, one has to solve simultaneously the LMIs for
all the € vertices. Finally instead of a single matrix N in
(14), we considered

M M t

23" N(ON; [(t) — 2(t)] =23 A1) / [N Mo&(s)] ds,
k=1 k=1 2

which leads to (22) and (23).m

4. STABILIZATION WITH A SAMPLED STATE
FEEDBACK

Theorem 6. Assume that there exist symmetric positive
definite matrices @, W and U € R™*" and two matrices
Z € R?"*™ and Y € R™*™such that satisfy:



|:\I/1 4 faiTo,O)‘IJQ J}:;(gg:(%>§43:| <0, (24)
e e

where My, for k =0,...,3 are given in Theorem 1 and
U, = M{(AP + PATYM, — ey MY PMs3
_GQ(MgPMB + Mér.PMQ) - NMg - (]v_Mg)T
+MEBY My + MI(BY)T M, + 2aMT PM;,
Uy = 2¢; (M APM, + MI BY M)
+262(My APMy + My BY M),
Uy = M PAT + MJ(BY)", ¥, = 2P+ R.
The sampled control law (2) with the gain K = YQ™!

exponentially stabilizes system (1) with a decay rate « for
any time-varying sampling period less than T

Proof. Consider Theorem 5 with only one polytope. As
P and R are positive definite, we can define P = P!
and R~'. Consider (22) and pre and post-multiply it by

= 0 — PO
1=y Rl} where = = [0 p

rewritten as follows:

—_
—
[l

} . The first condition is

EILE + fa(To, 0)EILE fo(To,0)(MsE)T ] _
* —fa(To,0)R™*
Using the equalities
M= = PM,, My= = PM,,

M3= = APM, + BKPM,,

and introducing the matrix variable Y = K P, the devel-
opment of =II4= is given by
EILE = 2M3 PS{APM; + 2M3 PS, BY M,
+2M] PSy APM, + 2M.] PSy BY M,

In order to obtain an LMI, the following constraints S; =
e1P71 and Sy = €3 P! are introduced. Thus it is easy to
see that ZI14= leads to Ws. The next step of the proof uses
the inequality (P — R™Y)R(P — R™1) > 0 since P and R
are positive definite. This ensures that —ﬁ_l < —-2P+R.
Define the variables R = PRP and N = = NP. We

have ¥U; = ETﬂlE as defined in Theorem 6. Consider

(23) with M% = Ms, for all i. Pre and post-multiply it
- =0

by =9 = [0 P} We have

[ ga(To, To)N

E'ILE gu(To,To)ENP | _ i
* —ga(To, To)R

x  —go(To, To)PRP <0,

]
5. EXAMPLES
5.1 Example 1

Consider system (1) from Fridman et al. (2004), Naghsh-
tabrizi et al. (2008) with

0 1 0 0
A= {0 0.1}’ Aa= [0.375 1.15}

The results for asymptotic stability (o = 0) are summa-
rized in Table 1. In this table, the acronym NDV means
the number of decisions variables. One can see the the
proposed Theorems requires less complexity. It can also

Theorems To NDV
Fridman et al. (2004) 0.8696 5n2 + 2n
Yue et al. (2004) 0.8696 ™2 +n
Yue et al. (2005) 0.8871 16n2 + 3n
Naghshtabrizi et al. (2008) | 1.1137 | 3.5n% + 1.5n
Mirkin (2007) 1.3659 | 0.5(n? +n) +1
Seuret (2009) 1.6894 3.5n2 + 1.5n
Liu and Fridman (2009) 1.69 11n2 + 2n
Th.1,2 1.719 4.5n% 4 1.5n
Th.3 1.720 4.5n% + 1.5n

Table 1. Maximal allowable sampling period Ty
for Example 1

Theorems To NDV

Fridman et al. (2004) 0.8696 5n2 + 2n

Yue et al. (2004) 0.8696 ™2 +n

Yue et al. (2005) 0.8871 | 16n2% +3n
Naghshtabrizi et al. (2008) | 1.9999 | 3.5n2 + 1.5n

Liu and Fridman (2009) 2.53 11n2 + 2n
Th.1 1.99 [ 4502+ 1.5n
Th.2&3 2.51 | 4.5n2 4+ 1.5n

Table 2. Maximal allowable sampling period Ty
for Example 2

be seen that the results from Theorems 1, 2 and 3 are less
conservative than the ones from the literature. In Seuret
(2009), the upper bound T = 1.719 was already obtained
for constant sampling periods. Here we prove that the
same upper-bound also holds for time-varying sampling
periods. Figure 1 shows the relation between the maximal
convergence rate « and the upper-bound of the time-
varying sampling period given by Theorems 1,2,3. One
can see that Theorem 3 leads to less conservative than the
other two. Note that the conditions for all these theorems
hold for negative a’s. One can also see a discontinuity in
the slope at Ty = 1.72 which corresponds to the definitions
of f, and g,.

5.2 Example 2

Consider system (1) from Fridman et al. (2004), Naghsh-
tabrizi et al. (2008) with

—2 0 ~1 0
A:[o —0.9]’ Ad:[—l —1]

The results on asymptotic stability (¢ = 0) are summa-
rized in Table 2. It can be seen that the maximal allowable
sampling periods provided by Theorem 1 and 2 are the
same as the ones from Naghshtabrizi et al. (2008). In Liu
and Fridman (2009), the authors derive less conservative
result because of the introduction of additional terms in
the LKF and slack matrices. Nevertheless, this example
show the limits of those approaches in such case since the
systems remain stable for some T} greater than 3.

5.3 Example 3
Consider the uncertain system from Fridman et al. (2004)
defined by
A= 105 B— 1+ g0
g1 —1]”’ -1

where |g1] < 0.1, and |g2| < 0.3. In Fridman et al.
(2004), Naghshtabrizi et al. (2008) and in Seuret (2009),
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Fig. 3. Relation between exponential decay rate o and the
upper-bound of the sampling period Ty for Example
3 based on conditions from Theorem 5 and the con-
troller gains K7 and K>

it was respectively proven that the state feedback gain
K, = —[2.6884 0.6649] stabilizes the system for any
time-varying sampling periods smaller than 0.35s, 0.4476s,
0.602s. Theorem 5 ensures that the closed-loop system
is stable for all time-varying sampling period less than
0.720s which is greater than the others. Moreover based
on an extension of Theorem 6 to polytopic systems with
€1 = eo = 1, the gain Ky = —[2.3719 0.5879] ensures
stability for all time-varying sampling periods less than
0.624s. This gain with Theorem 4 leads to stability for all
time-varying sampling periods less than 0.821s. Figure 2
shows the evolution of the convergence rate with respect
to the maximum allowable sampling period T for this
systems with K; and K5. We can see that Ky leads to
a larger stability time-varying sampling Ty = 0.821 than
K, where stability is ensured for 7' < 0.72. However the
performances of the system with the control gain K; are
better when Tj < 0.7.

6. CONCLUSION

In this article, an analysis of linear invariant and time-
varying systems with constant and time-varying sampling

periods is provided. More especially, we prove that the
conditions for asymptotic and exponential stability for
constant and time-varying sampling periods are equiva-
lent. Tractable conditions are derived to ensure exponen-
tial stability with an estimate of the convergence rate.
The conditions are also valid for negative a which help to
evaluate the exponential divergence rate of the solutions.
The examples show the efficiency of the method and the
reduction of the conservatism compared to others results
from the literature. This has been treated by a continuous-
time approach which helps to cope with uncertain or time-
varying systems.
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