archives-ouvertes

Srijan: a graphical toolkit for sensor network

macroprogramming
Animesh Pathak, Mahanth K. Gowda

» To cite this version:

Animesh Pathak, Mahanth K. Gowda. Srijan: a graphical toolkit for sensor network macroprogram-
ming. 7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, Aug 2009, Amsterdam, Netherlands. pp.301-
302, 10.1145/1595696.1595752 . inria-00459353

HAL Id: inria-00459353
https://hal.inria.fr /inria-00459353
Submitted on 23 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00459353
https://hal.archives-ouvertes.fr

Srijan: A Graphical Toolkit for Sensor Network
Macroprogramming-

%
Animesh Pathak
Project-team ARLES, INRIA Paris-Rocquencourt
Rocquencourt, 78153 France
animesh.pathak@inria.fr

ABSTRACT

Macroprogramming is an application development technique
for wireless sensor networks (WSNs) where the developer
specifies the behavior of the system, as opposed to that of
the constituent nodes. In this proposed demonstration, we
would like to present Srijan, a toolkit that enables appli-
cation development for WSNs in a graphical manner using
data-driven macroprogramming. It can be used in various
stages of application development, wiz. i) specification of
application as a task graph, ii) customization of the auto-
generated source files with domain-specific imperative code,
iii) specification of the target system structure, iv) compi-
lation of the macroprogram into individual customized run-
times for each constituent node of the target system, and
finally v) deployment of the auto generated node-level code
in an over-the-air manner to the nodes in the target sys-
tem. The current implementation of Srijan targets both the
Sun SPOT sensor nodes and larger nodes with J2SE. Our
demonstrattion will encourage users to perform end-to-end
WSN application development on the SPOTSs using Srijan.

Categories and Subject Descriptors: B.2.4 [Computer
Systems Organization]: Computer-Communication Networks
— Distributed Systems; D.3.3 [Software]: Programming Lan-
guages — Language Constructs and Features

General Terms: Design, Human Factors, Languages

Keywords: Sensor Networks, Toolkit, Macroprogramming

1. INTRODUCTION

*This work was supported in part by the EC FP7 CONNECT
project

*The author wishes to thank Viktor K. Prasanna, Amol
Bakshi, and Qunzhi Zhou at the University of Southern Cal-
ifornia, Luca Mottola at the Swedish Institute of Computer
Science, and Gian Pietro Picco at the University of Trento
for their contributions to the toolkit.

The work was performed during the author’s stay at IN-
RIA.

ESEC-FSE’09, August 23-28, 2009, Amsterdam, The Netherlands.

Mahanth K. GuowdaT
Institute of Technology, Banaras Hindu University
Varanasi, India 221005)
mahanth.gowda.cse06@itbhu.ac.in

Sensor network macroprogramming aims to aid the wide
adoption of networked sensing by providing the domain ex-
pert the ability to specify their applications at a high level
of abstraction. This is in contrast to the initial days of wire-
less sensor networks (WSNs), when application developers
had to manually customize a set of node-level protocols to
achieve system-wide goals, thus making the process difficult
for the domain experts, who were not well-versed in the in-
tricacies of distributed computing.

Since the goal of WSN macroprogramming research is to
make application development easier for the domain expert,
we believe that it is absolutely necessary to make easy-to-use
toolkits for macroprogramming available to them in order to
both make their task easier, as well as to gain feedback about
the macroprogramming paradigms themselves. Although
various efforts exist in literature for making WSN applica-
tion development easier, very few general purpose graphical
toolkits are publicly available for the application developer
to choose from. We believe that toolkits supporting alterna-
tive paradigms will greatly aid the application developers,
who will have a wide-range of programming styles to choose
from, depending on application, as well as personal stylistic
choice.

Our contribution, which we present in this demo, is Sri-
jan — a graphical toolkit for WSN application development
(named after the Sanskrit word for creation). Using it, the
developer can create sense-and-respond applications for het-
erogenous systems using the data-driven ATaG [1] macro-
programming language.

2. BACKGROUND

The Abstract Task Graph[l] (ATaG) macroprogramming
framework consists of an extensible, high-level programming
model, a corresponding node-level run-time system, and a
dedicated compilation framework to generate node-level code.
An ATaG program is written in a data-driven manner us-
ing a mixed imperative-declarative programming model. The
declarative portion of an ATaG program — a task graph —
consists of the following components (see Figure 1 for de-
tails).

e Abstract Data Items: The main currency of informa-
tion in an ATaG program. They represent the informa-
tion in its various stages of processing inside a WSN.

e Abstract Tasks: These represent the processing per-

!

Tnod: il . / It iti il - nodk

[P o P P L P

1@temperatureSensor] 1@t idit 1 1/room] ‘1 1@hva 1
[periodic:10] / [periodic:10] JN [anydata] J [anydata])

k-

Temperature

Sampler Collector

" Channel]
Annotations
—anty

‘ Temperature ‘ ‘ Humidity

Figure 1: An ATaG program for building environ-
ment management.

formed on the abstract data items in the system. Tasks
do not share state with other tasks, and can commu-
nicate only by producing and consuming data items.
Tasks are annotated with instantiation rules, specify-
ing where they can be located, as well as firing rules,
specifying whether a task is triggered periodically or
due to the production of certain data item(s).

e Abstract Channels: These connect tasks to the data
items consumed or produced by them, and are anno-
tated with logical scopes [3], which express the interest
of a task in a data item.

The above task graph is complemented by imperative code
for each data item and task. The developer uses this code to
specify the processing that occurs when a task fires. Note
that due to the data-driven programming model provided
by ATaG, this imperative code does not have any inter-task
communication function calls other than consuming or pro-
ducing data items (using the handleDataltemProduced()
and putData() primitives respectively).

The input to the ATaG Compiler [4] consists of the ATaG
task graph, and the imperative code for each task and data
item. In addition, the details of the target system, including
the node locations and list of attached sensors and actuators,
is also provided. The compiler then decides the placement of
the tasks of the individual nodes. The output of this process
is deployable code for each node, consisting of the tasks as-
signed to it. Additionally, the compiler generates customized
DART modules for each node, containing the logical scopes
where the data produced at the node is to be sent.

3. APP. DEVELOPMENT IN SRIJAN

We have developed the Srijan [5] graphical toolkit for WSN
macroprogramming to allow application developers to i) eas-
ily specify their application in the form of a data-driven task
graph in the ATaG macroprogramming language, ii) upload
the details of their target network, and then iii) compile this
high-level program to node-level code and iv) deploy it to
the individual constituent nodes of their networked sensing
system. The task graph for the application can be specified
using our customization of the GME [2] generic modeling en-
vironment, and the imperative code for each task and data
item is provided in Java. The toolkit produces code that is
ready to be deployed on the Sun SPOT [7] nodes that run
J2ME on the Sun Squawk virtual machine, in addition to
larger nodes running J2SE JVMs. Figure 2 and Figure 3

Task Graph
Specification GUI

Target System
Description GUI

4 _Q_ A -y
‘.]
k4 13
ma | e

Network Description

i

Compilation and
Deployment GUI

Customizable Code
Auto-generator

4

:
¢

8@ @

Auto-Generated
Imperative Code [Java]

Deployment on Nodes
[J2ME bytecode]

Figure 2: Overview of Application Development us-
ing Srijan

newatag - Root Folder - [hvactaskgraph - /Root Folder/hvac/] =loi x|
Il Be Eot Vew indow Lich — =l=ix]
IPAACET B e ool ===
T T Newe[hvactaskgrah [ATaG Aspectfaspect =] Base: [N/ Zoom 100 =
‘; Temp npler Hu Collector HVACController
® F i o
Q.
&

i i

Temperature Humidity Action
r Panel for drawing the task graph |
bt
Ql | 2
i T [rmpgmmsanpm if it
o0 Attbutes | Preferences | Propeties |
BasicinstaniatonRule rodes-per-instance
Dataltem InputChannel [Parameter fo instantiation i 1
QutputChannel Task Parameter fo mr\gmrg b
_________ N o q
[Pamsbrowser | || L____ Panelfor oditing attributes
), lEnmllensiEl — .
Aspect
Ready [EDIT [100% hewatag 0337 PM

Figure 3: Task-Graph Description in Srijan.

depict some details of the steps involved in application de-
velopment using the components of Srijan. Further details,
including videos are available at the project website [6].

We would like to utilize the opportunity provided by this
demo to get first-hand feedback on Srijan from users and
application developers of the networked sensing domain, es-
pecially on what ease-of-use issues they face, and what fea-
tures they would like. Additionally, we would be interested
in the types of applications they would like to develop, which
will guide us in our work on augmenting the ATaG language
and its compiler.

4. REFERENCES

[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The
Abstract Task Graph: A methodology for
architecture-independent programming of networked sensor
systems. In Workshop on End-to-end Sense-and-respond
Systems (EESR), 2005.

[2] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/projects/gme.

[3] L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna, and G. P.

(4]

(5]

6]
(7]

Picco. Enabling Scoping in Sensor Network
Macroprogramming. In 4th IEEE International Conference
on Mobile Ad-hoc and Sensor Systems (MASS), 2007.

A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K.
Prasanna. A compilation framework for macroprogramming
networked sensors. In Third International Conference on
Distributed Computing on Sensor Systems (DCOSS), 2007.
A. Pathak, Q. Zhou, and V. K. Prasanna. Srijan: A graphical
toolkit for wsn application development. In ProSenSe
Workshop in the 4th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS),
Santorini, Greece, June 2008.

Srijan - graphical WSN application development toolkit.
http://wsnsrijan.googlepages.com/.

Sun Small Portable Object Technology (Sun SPOT).
http://www.sunspotworld.com.

