
HAL Id: inria-00303330
https://hal.inria.fr/inria-00303330

Submitted on 21 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact algorithms for L(2, 1)-labeling of graphs
Frédéric Havet, Martin Klazar, Jan Kratochvil, Dieter Kratsch, Matthieu

Liedloff

To cite this version:
Frédéric Havet, Martin Klazar, Jan Kratochvil, Dieter Kratsch, Matthieu Liedloff. Exact algorithms
for L(2, 1)-labeling of graphs. [Research Report] RR-6587, INRIA. 2008. �inria-00303330�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50106581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00303330
https://hal.archives-ouvertes.fr


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

87
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Exact algorithms for L(2, 1)-labeling of graphs

Frédéric Havet — Martin Klazar — Jan Kratochvíl — Dieter Kratsch — Mathieu Liedloff

N° 6587

Juillet 2008





Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Exact algorithms for L(2, 1)-labeling of graphs

Frédéric Havet∗ , Martin Klazar † , Jan Kratochv́ıl †, Dieter Kratsch
‡ , Mathieu Liedloff ‡

Thème COM — Systèmes communicants
Équipe-Projet Mascotte

Rapport de recherche n° 6587 — Juillet 2008 — 27 pages

Abstract: The notion of distance constrained graph labelings, motivated
by the Frequency Assignment Problem, reads as follows: A mapping from
the vertex set of a graph G = (V,E) into an interval of integers {0, . . . , k} is
an L(2, 1)-labeling of G of span k if any two adjacent vertices are mapped
onto integers that are at least 2 apart, and every two vertices with a com-
mon neighbor are mapped onto distinct integers. It is known that for any
fixed k ≥ 4, deciding the existence of such a labeling is an NP-complete
problem. We present exact exponential time algorithms that are faster than
the naive O((k + 1)n) algorithm that would try all possible mappings. The
improvement is best seen in the first NP-complete case of k = 4 – here the
running time of our algorithm is O(1.3006n). Furthermore we show that
dynamic programming can be used to establish an O(3.8730n) algorithm to
compute an optimal L(2, 1)-labeling.

Key-words: colouring, contraintes de distances, L(2, 1)-étiquetage, algo-
rithme exact

∗ Projet Mascotte I3S (CNRS & UNSA) and INRIA, INRIA Sophia-Antipolis,
Frederic.Havet@sophia.inria.fr. Partially supported by the european project FET-
AEOLUS.

† Department of Applied Mathematics and Institute for Theoretical Computer Science,
Charles University, (klazar|honza)@kam.ms.mff.cuni.cz. Supported by Research grant
1M0545 of the Czech Ministry of Education.

‡ Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz,
(kratsch|liedloff)@univ-metz.fr.



Algorithmes exacts pour le L(2, 1)-étiquetage des

graphes

Résumé : La notion d’étiquetage de graphes avec des contraintes de dis-
tance, qui est motivé par le Problème d’Allocationde Fréquences, est la sui-
vante: Une application de l’ensemble des sommets d’un graphe G = (V,E)
dans un intervalle d’entiers naturels {0, . . . , k} est un L(2, 1)-étiquetage de
G de largeur ksi deux sommets adjacents recoivent des entiers à distance au
moins 2 et des sommets ayant un voisin en commun des entiers distincts.
Il est connu que pour k ≥ 4, décider de l’existence d’un tel étiquetage est
un problème NP -complet. Nous présentons ici des algorithmes exacts ex-
ponentiels qui sont plus rapides que l’algorithme naive en temps O((k+1)n)
qui essaie toutes kes possibilités. L’amélioration est particulièrement visible
dans le cas où k = 4 : dans ce cas le temps d’execution de notre algorithme
est O(1.3006n). De plus nous montrons que la programmation dynamique
peut être utilisée pour obtenir un algorithme en temps O(3.8730n) qui cal-
cule le L(2, 1)-étiquetage de largeur minimum.

Mots-clés : coloration, distance constrained, L(2, 1)-labeling, exact algo-
rithm



Exact algorithms for L(2, 1)-labeling of graphs 3

1 Introduction

History. The Frequency Assignment Problem (FAP) asks for assigning fre-
quencies to transmitters in a broadcasting network with the aim of avoiding
undesired interference. One of the graph theoretical models of FAP which
is well elaborated is the notion of distance constrained labeling of graphs.
An L(2, 1)-labeling of a graph G is a mapping from the vertex set of G into
nonnegative integers such that the labels assigned to adjacent vertices differ
by at least 2, and labels assigned to vertices of distance 2 are different. The
span of such a labeling is the maximum label used. In this model, the ver-
tices of G represent the transmitters and the edges of G express which pairs
of transmitters are too close to each other so that an undesired interference
may occur, even if the frequencies assigned to them differ by 1. This model
was introduced by Roberts [19] and since then the concept has been inten-
sively studied. Undoubtedly, distance constrained graph labelings provide
a graph invariant of significant theoretical interest. Let us mention a few
of the known results and open problems: Griggs and Yeh [11] proved that
determining the minimum possible span of G – denoted by L2,1(G) – is an
NP-hard problem. Fiala et al. [4] later proved that deciding L2,1(G) ≤ k
remains NP-complete for every fixed k ≥ 4, while Bodlaender et al. [1]
proved NP-hardness for planar inputs for k = 8. (For 4 ≤ k ≤ 7 and planar
inputs, the complexity is still open.) When the span k is part of the input,
the problem is nontrivial even for trees – though a polynomial time algo-
rithm based on bipartite matching was presented in [2], existence of a linear
time algorithm for trees is still open. Moreover, somewhat surprisingly, the
problem becomes NP-complete for series-parallel graphs [3], and thus the
L(2, 1)-labeling problem belongs to a handful of problems known to sepa-
rate graphs of tree-width 1 and 2 by P/NP-completeness dichotomy. From
the structural point of view, Griggs and Yeh [11] conjectured that every
graph of maximum degree ∆ satisfies L2,1(G) ≤ ∆2. Gonçalves [10] proved
the upper bound L2,1(G) ≤ ∆2 +∆− 2 by analyzing an algorithm of Chang
and Kuo [2]. Very recently, using probabilistic arguments, Havet, Reed and
Sereni [12] settled Griggs and Yeh conjecture for large enough ∆. However,
for ∆ > 2, the Moore graphs are the only graphs known to require span ∆2,
and for large ∆ the graphs known to require the largest span are incidence
graphs of projective planes for which L2,1 ≥ ∆2 −∆. It is an open problem
if there are infinitely many graphs satisfying L2,1(G) > ∆2 − o(∆).

Generalizations have been considered, both in the direction of taking into
account larger distances and in the direction of allowing a more complicated
structure of the frequency space. In the latter direction, circular metric was
considered by Leese et al. [16] and Liu et al. [18], showing that in certain
sense the circular metric is easier than the linear one (e.g., the circular span
of a tree is uniquely determined by its maximum degree and can thus be
determined in linear time). Fiala and Kratochv́ıl consider in [5] the utmost

RR n° 6587



4 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

generalization for the case when the metric in the frequency space can be
described by a graph, say H. They define the notion of an H(2, 1)-labeling
of G, which is a mapping from the vertex set of G into the vertex set of
H such that vertices adjacent in G are mapped onto nonadjacent (distinct)
vertices of H, and vertices with a common neighbor (in G) are mapped onto
distinct vertices of H. They also show that H(2, 1)-labelings are exactly
locally injective homomorphisms from G to H, the complement of H. In
particular, an L(2, 1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k. (The complement of the path
of length 4 is depicted in Figure 1(a).) The complexity of locally injective
homomorphisms was considered in [5, 6, 7] where a number of NP-complete
cases were identified, but the complete characterization is still open.

Regarding larger distance constraints, the general channel assignment
problem was addressed in [17] and [14]. This problem asks, given a graph
G and nonnegative integer weights w : E(G) → {0, 1, 2, . . .} on edges, for
a labeling f : V (G) → {0, 1, . . . , k} such that |f(u) − f(v)| ≥ w(uv) for
every edge uv ∈ E(G); the aim is to minimize k, the span of the assignment.
Král [14] shows that, using Dynamic Programming, this problem can be
solved in time O∗((l + 2)n), where l is the maximum edge weight and n the
number of vertices of G. Since an L(2, 1)-labeling on G can be expressed
as the channel assignment problem on G(2) (the distance power of G) with
weights 1 and 2 only – weight 1 for pairs of vertices at distance 2 in G, weight
2 for the edges of G –, an O∗(4n) time exact algorithm for the L(2, 1)-labeling
problem follows.

Our results. The goal of this paper is to explore exact exponential
time algorithms for the L(2, 1)-labeling problem. Since one cannot hope for
polynomial time algorithms (unless P = NP), our aim is to design algorithms
with running time O∗(cn) and minimizing the constant c.1 First we consider
exact algorithms deciding whether the input graph has an L(2, 1)-labeling
of span at most k. We show that it is not difficult to beat the trivial
bound c ≤ k + 1 (which follows from merely checking all possible mappings
from V (G) into {0, 1, . . . , k}) by presenting an algorithm of running time
O∗((k− 2)n) which can also be generalized to the H(2, 1)-labeling problem.
Then we refine the branching algorithm for the case of span k = 4 to achieve
an algorithm of running time O∗(1.3161n) (beating c = k − 2 = 2). By a
refined analysis we establish an improved running time of O∗(1.3006n) for
the same algorithm. We also obtain a lower bound of Ω(1.2290n) for the
worst-case running time of our algorithm.

Finally we study the problem of computing an optimal L(2, 1)-labeling,
i.e., one of the smallest span. By designing a general branching algorithm
similar to the one for span 4, we give a polynomial space algorithm for

1Here we use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some
polynomial p(n).

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 5

computing an L(2, 1)-labeling of span k, if one exists, in time O∗((k−2.5)n).
Then, we show that by a dynamic programming approach the L2,1-span of a
graph can be computed and an optimal L(2, 1)-labeling can be constructed
in time O(3.8730n) and exponential space.

Preliminaries. Throughout the paper we consider finite undirected
graphs without multiple edges or loops. The vertex set (edge set) of a graph
G is denoted by V (G) (E(G), respectively). The open (closed) neighborhood
of a vertex u in G is denoted by NG(u) (NG[u], respectively). The symbol n
is reserved for the number of vertices of the input graph, which will always
be denoted by G. The subgraph of G = (V,E) induced by S ⊆ V is denoted
by G[S]. A subset S ⊆ V fulfilling N [u]∩N [v] = ∅ for all u, v ∈ S, is called
a 2-packing of G.

Figure 1: (a) The graph H = P5. (b) A graph G with an L(2, 1)-labeling of
span 4 as a locally injective homomorphism into H.

2 Exact algorithm for locally injective homomor-

phisms

A graph homomorphism is an edge preserving vertex mapping between two
graphs. More formally, a mapping f : V (G) → V (H) is a homomorphism
from G to H if f(u)f(v) ∈ E(H) whenever uv ∈ V (G). Such a mapping
is sometimes referred to as an H-coloring of G since homomorphisms pro-
vide a generalization of the concept of graph colorings – k-colorings of G
are exactly homomorphisms from G to the complete graph Kk. Hell and
Nešeťril [13] proved that from the computational complexity point of view,
homomorphisms admit a complete dichotomy – deciding existence of a ho-
momorphism into a fixed graph H is polynomial when H is bipartite and
NP-complete otherwise. The study of exact algorithms for graph homomor-
phisms was initiated in [9].

A homomorphism f : G → H is called locally injective if for every
vertex u ∈ V (G), its neighborhood is mapped injectively into the neigh-
borhood of f(u) in H, i.e., if every two vertices with a common neighbor
in G are mapped onto distinct vertices in H. When deciding the existence
of a locally injective homomorphism, one might try to utilize the known

RR n° 6587



6 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

algorithms that list all possible homomorphisms and then check if any of
them is locally injective. It is not surprising that using the local injec-
tivity, one can often do much better. The trivial brute-force algorithm
for H-homomorphism relates the base of the exponential function that ex-
presses the running time to the number of vertices of H, while we show in
Theorem 1 that H-locally-injective-homomorphism can be solved in time
O∗((∆(H) − 1)n), where ∆(H) is the maximum degree of a vertex of H.
This, in most cases considerable, speed-up is achieved when we label the
vertices consecutively using the fact that a neighbor of an already labeled
vertex has only a limited number of candidate labels.

Without loss of generality we may assume that G is a connected graph,
since otherwise we solve the problem on each connected component of G
separately. In the algorithm, f denotes a partial labeling of the vertices of
G by vertices of H which is a candidate for a locally injective homomorphism
from G to H.

Algorithm-H-LIH(G)
if ∃v ∈ V (G) s.t. v is unlabeled and v has at least one neighbor u
which was already labeled then

foreach c ∈ NH(f(u)) \ f(NG(u)) do
set f(v) = c
Algorithm-H-LIH(G)

else
if ∃u ∈ V (G) s.t. u is unlabeled then

foreach c ∈ V (H) do
set f(u) = c
Algorithm-H-LIH(G)

else
if the labeling f is a locally injective homomorphism from G
to H then

return the labeling

Theorem 1. The H-Locally-Injective-Homomorphism problem is solved in
time O∗((∆(H)− 1)n) by Algorithm-H-LIH.

Proof. In the first step the algorithm picks an unlabeled vertex, say u, and
labels it in |V (H)| ways. In the second step, the first rule is used and a
neighbor v of u is labeled in degH(f(u)) ≤ ∆(H) ways. From this time on,
the algorithm branches each time into at most ∆(H)−1 ways. To see this, let
T = (V (G), E(T )) be an auxiliary graph which contains the edges uv from
the application of the first rule. The loop invariant of the algorithm is that
T is an acyclic graph consisting of one connected component – containing

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 7

the so far labeled vertices – and remaining isolated (and unlabeled) vertices.
Also, f(u)f(v) ∈ E(H) for every edge uv ∈ E(T ). From the third round on,
the first rule is always applied, and one edge uv is added to T . And since u
had another neighbor w in T , f(w) ∈ NH(f(u)) and so NH(f(u))\f(NG(u))
has at most ∆(H)− 1 available labels for v.

Corollary 2. The L(2, 1)-labeling problem of span k can be decided in time
O∗((k − 2)n). In particular, L(2, 1)-labeling of span 4 can be solved in time
O∗(2n).

Proof. The maximum degree of a vertex in the complement of the path of
length k is ∆(Pk+1) = k − 1.

On the other hand, the exact algorithm for channel assignment of Kral’
[14] when applied to the special case L(2, 1)-labeling has running time O∗(4n).
Thus only for small span can we hope to improve on both, the running time
O∗((k − 2)n) of Corollary 2 and the running time O∗(4n) of the dynamic
programming algorithm of Kral’.

3 A branching algorithm for computing an L(2, 1)-
labeling of span 4

In this section we present a significantly faster algorithm for the case of
L(2, 1)-labeling of span 4. The main idea is the same as for Algorithm-H-
LIH – in the first two steps we label two adjacent vertices in all possible
(i.e., at most 12) ways. Then we keep labeling the vertices one by one
(and branching into several possibilities when necessary) so that the so far
labeled part of the input graph G remains connected. It follows that every
newly labeled vertex has (at least) one labeled neighbor, and this labeled
neighbor has another (at least one) labeled neighbor. The key idea of the
speed-up is two-fold. First, we list several rules and apply them in order of
their preferences, thus aiming at reducing the number of branching steps.
Secondly, we often label several vertices at a time which leads to a more
convenient recursion for the upper bound of the running time.

Throughout this section, we assume that we are in the middle of a run
of our algorithm and that f : X → {0, 1, 2, 3, 4} is a partial L(2, 1)-labeling
of G such that the labeled vertices X ⊆ V (G) induce a connected subgraph.
Note that in order to have a chance to admit a valid labeling, G must have
maximum degree at most 3. It is also clear that every vertex of degree 3
must be labeled by 0 or 4, and we will keep checking that this condition is
satisfied by each candidate labeling f . To avoid trivial cases we assume that
G has at least one vertex of degree 3.

Now we describe the rules and discuss their effect on the running time.
When a rule is applied to a partially labeled graph, there are at least two

RR n° 6587



8 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

labeled vertices and its labeled vertices induce a connected subgraph. In
addition, it may be impossible to extend the partial L(2, 1)-labeling in which
case the algorithm stops. For the sake of clarity and brevity, this is not
written but implicitly assumed. Note that only Rules 4 and 5 use branchings.

Rule 1 - Forced extensions

(a) If u is an unlabeled vertex whose labeled neighbor v has two labeled
neighbors, then the possible label of u is uniquely determined by the
labels of v and its neighbors;

(b) if u is an unlabeled vertex with a neighbor v labeled by 1, 2 or 3,
then, since v has another labeled neighbor, the label of u is uniquely
determined by the labels of v and this neighbor;

(c) if u is an unlabeled vertex of degree 3 with a labeled neighbor v, then
the label of u is either 0 or 4 and is uniquely determined by the label
of v and its other labeled neighbor;

(d) if u is an unlabeled vertex of degree 2 such that one of its neighbors
is labeled and the other one is a (possibly unlabeled) degree 3 ver-
tex, then the label of u is uniquely determined by the labels of its
neighbor(s).

The configurations corresponding to these forced extensions are depicted
in Figure 2. In each case the label of vertex u is uniquely determined by the
ones of the already labeled vertices (in black).

Figure 2: Forced extensions.

Now we show the correctness of the four forced extensions. Let Ni =
{j : 0 ≤ j ≤ 4 and |j − i| ≥ 2}, 0 ≤ i ≤ 4, represents the set of possible
labels of neighbors of a vertex labeled by i.

Rule 1 (a): Suppose that there exists a labeled vertex v having two
labeled neighbors, say v1 and v2, and one unlabeled neighbor u. Thus, the

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 9

label of v is either 0 or 4, and the label of u must be the unique element of
Nf(v) \ {f(v1), f(v2)}.

Rule 1 (b): If there is a vertex v with f(v) ∈ {1, 2, 3} having a labeled
neighbor v′, then its remaining unlabeled neighbor must be labeled by the
unique element of Nf(v) \ {f(v′)}.

Rule 1 (c): Suppose that v is a vertex labeled by 2. The label of its
neighbors should be in N2 = {0, 4}. Thus, knowing the label of one of its
neighbors implies the label of the other. Otherwise, if v has a label different
from 2, then Nf(v) contains either 0 or 4, forcing the label of a degree-three
neighbor.

Rule 1 (d): Suppose that an unlabeled vertex u is adjacent to a labeled
vertex v and to u′, a vertex of degree 3. If f(v) = 0 then f(u) must be 2,
otherwise, there is no way to label u′. Symmetrically, if f(v) = 4 then f(u)
is set to 2. If f(v) is in {1, 2, 3} then, as in the second forced extension, the
label of u is the unique element of Nf(v) \ {f(v′)}.

Note that if Rule 1 cannot be applied, every unlabeled vertex that is
adjacent to a labeled one has degree at most 2 and each of its adjacent
labeled vertices is labeled by 0 or 4.

Definition 3. A path in G is called an extension path if all inner vertices
are unlabeled and of degree 2, at least one endpoint is labeled and the
unlabeled endpoint (if there is one) has either degree 1 or 3. (With a slight
abuse of notation we allow that the endpoints are the same vertex, so such
an extension path is in fact a cycle and the endpoint is labeled.) The length
of an extension path is its number of edges.

Lemma 4. Let P = v0v1 . . . vk be an extension path such that v0 is labeled
and vk has degree 1 (and is unlabeled). Let G′ = G[V (G)\{v1, . . . , vk}] be the
subgraph obtained by deleting the path P and let f ′ : V (G′) → {0, 1, 2, 3, 4}
be a valid extension of f to an L(2, 1)-labeling of G′. Then f ′ can be extended
to an L(2, 1)-labeling of the entire graph G.

Proof. Since deg(v0) ≤ 3 and f ′(v0) ∈ {0, 4} if deg(v0) = 3, there is always
a label, say ℓ, available for v1. The edge f ′(v0)ℓ belongs to a cycle in P5,
and we label the path P wrapping around this cycle.

Rule 2 - Easy extension� If P is an extension path with one endpoint of degree 1, Lemma 4 says
that the unlabeled vertices of P are irrelevant – we delete them from
G and continue with the reduced graph.

If neither Rule 1 nor Rule 2 can be applied, every unlabeled vertex that
is adjacent to a labeled one has degree 2.

RR n° 6587



10 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

Figure 3: Easy extension. An extension path with one unlabeled endpoint
of degree 1.

Rule 3 - Cheap extensions

(a) If P is an extension path with both endpoints labeled and of degree
2, we can decide by dynamic programming whether P has an L(2, 1)-
labeling compatible with the labeling of the labeled neighbors of its
endpoints. In the affirmative case we just delete the unlabeled vertices
and continue with the reduced graph, otherwise we reject the current
f as allowing no extension.

(b) If P is an extension path with identical endpoints, we again decide by
dynamic programming if the path has an L(2, 1)-labeling compatible
with the label of the endpoint and its labeled neighbor. And we either
reduce G or reject f , depending on the outcome.

Figure 4: Cheap extensions. (a) An extension path with both endpoints
labeled and of degree 2. (b) An extension path with identical endpoints.

The dynamic programming consumes only time polynomial in the length
of the path, and so does not affect the base of the exponential function
bounding the running time. (To be honest, it only consumes constant time
– it can be shown by case analysis that if the path is long enough, then any
combination of labelings of its terminal edges is feasible, and so the dynamic
programming is only applied to short paths of constant length.)

Rule 4 - Extensions with strong constraints� Let P be an extension path with both endpoints labeled, each with
0 or 4, such that each endpoint has only one labeled neighbor and at
least one of them has another unlabeled neighbor that does not belong
to P . In this case we branch along possible labelings of the (at most

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 11

Figure 5: Extensions with strong (a) and weak (b) constraints.

4) unlabeled neighbors of the endpoints of P , while extending each of
these labelings to entire P (by dynamic programming approach).

Now we discuss the details of this branching rule and the consequences
for the running time. The illustrative Figure 5 (a) will be helpful. Let b and
c be the labeled endpoints of P , b of degree 3 and c of degree 2 or 3, and let
a and d, respectively, be their labeled neighbors. Let further x and y be the
unlabeled neighbors of b and c, respectively, on the path P , and let u 6= x
be the other unlabeled neighbor of b; and let v 6= y be the other unlabeled
neighbor of c, if it exists.

Length 2. If the length of P is 2, then the label of x = y is uniquely
determined (in fact, it has to be 2), and we do not really branch.

Length 3. If the length of P is 3, we have the following possible labelings
of ab..cd and their extensions to abxycd (up to the symmetric labeling f ′ =
4− f):

40xy40→ 403140 40xy42→ 403142 40xy02→ 402402
40xy03→ 402403 20xy03→ 204203 20xy04→ 204204
20xy40→ 203140 20xy42→ 203142 30xy02→ 302402
30xy04→ 304204 30xy03→ 302403, 304203.

We see that most cases allow only one extension of the labeling to P , except
for the last case, where branching into two cases occurs. If this happens, we
gain at least three newly labeled vertices (x, y, u and possibly also v).

To analyze the running time of our algorithm we determine an upper
bound on the maximum number T (n) of leaves in the search tree corre-
sponding to an execution of the algorithm on an input with n unlabeled
vertices. The overall running time will then be O∗(T (n)) since the appli-
cation of every rule takes only polynomial time and reduces the number of
unlabeled vertices by at least one.

From our above analysis for Rule 4, we obtain two recurrences: T (n) =
2T (n− 3) (if c does not have another unlabeled neighbor v or if v = u) and
T (n) = 2T (n − 4) (if the neighbor v exists and is distinct from u). The
solution of a recurrence T (n) = αT (n − β) is T (n) = Θ(cn) for c = β√α.
Here we obtain c = 3

√
2 for the first recurrence and c = 4

√
2 for the second

one.

RR n° 6587



12 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

Length 4. The maximum number of possible extensions of the labelings
of an extension path P of length 4 can be established from the exhaustive
search trees in Figure 6 depicting all L(2, 1)-labelings.

2 0

3 1 4

0

2

3

2 0

4

1 3 0

2

4

2 0

3 1

4

1

2

3 0

2 4

0

2 4

3 1

1 3 0

4

1 3 0

2

4

2 0

3 1

4

1

2

4 0

2 4

0

2 4

3 1

1 3 0

3 1 4

0

2

3

2 0

0 4

1 3 0

2 4

4
1

2

2 0

3 1 4

4

1 3

2 0

1 4

0

2 4

0
2

3

1 3

3 1 4

0

2

2 0

3 1 4

4
1 3

2 0

2 4

0

2 4

0
2

3

1 3

3 1 4

0

2

1 3 0

2 4

4
1

2

Figure 6: The figures depict all possible L(2, 1)-labelings of a path starting
with labeled vertices a and b and ending with labeled vertices c and d. Recall
that the only possible labels of b and c are 0 or 4 when Rule 4 is applied.
For example, if f(a) = 2, f(b) = 0, f(c) = 0 and f(d) = 2, the first tree
shows that there are two possible labelings of a path abxyzcd : 2031402 and
2041302.

Table 1 summarizes the numbers of extensions and corresponding upper
bounds for T (n) for extension paths of lengths 2 to 4.

Length at least 5. If the path is longer, we have two possible extensions of
the labeling to the vertices x and u, and two extensions to y and v. For each
of these 4 cases we check (in polynomial time, by dynamic programming
as in Rule 3) if it extends to a labeling of P . If v exists and v 6= u, we
gain length(P ) + 1 newly labeled vertices (the unlabeled vertices of P plus

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 13

length
l of the
path P

maximum
number of
branchings t1
if deg(c) = 2

solution of the
recurrence

T (n) = t1T (n − l)

maximum
number of
branchings t2
if deg(c) = 3

solution of the
recurrence

T (n) = t2T (n− l−1)

2 1 no branching 1 no branching

3 2 O(2
n

3 ) = O(1.2600n) 2 O(2
n

4 ) = O(1.1893n)

4 2 O(2
n

4 ) = O(1.1893n) 2 O(2
n

5 ) = O(1.1487n)

Table 1: Branching on extension paths of length ≤ 4 with strong constraints.

u and v), which leads to the recurrences T (n) = 4T (n− length(P )− 1) and
T (n) = O(4

n
6 ) = O(1.2600n).

If v does not exist, it may seem to mind that we only gain length(P )
newly labeled vertices at the same cost of branching. However, in this case
we only consider two possible labelings of the pair x and u, and for each
of them we only check if it extends to a labeling of P or not. The actual
label of y is irrelevant since c has degree 2 in this case. This leads to the
recurrences T (n) = 2T (n− length(P )) and T (n) = O(2

n
5 ) = O(1.1487n).

If v = u, then u would be treated by Rule 1 since u is adjacent to c
and in that case c has degree 3. Thus v = u is not possible when applying
Rule 4.

Comparing all cases we see that the worst case is achieved when deg(c) =
2 and length(P ) = 3. Thus using any branching of Rule 4 leads to T (n) =
O(1.2600n).

If none of Rules 1-4 can be applied, then every unlabeled vertex that is
adjacent to a labeled one belongs to an extension path with one unlabeled
endpoint of degree 3. This is treated by the last branching rule.

Rule 5 - Extensions with weak constraints� Let P be an extension path with one unlabeled endpoint v of degree 3.
Let w be the neighbor of v in P , let the labeled endpoint of P be b, let
its labeled neighbor be a and let u be (if it exists) the unlabeled neigh-
bor of b not belonging to P (see Figure 5 (b)). In this case we branch
along possible labelings of v, w and (possibly) u, while extending each
of these labelings to entire P (by dynamic programming).

Table 2 summarizes the numbers of branchings for paths of length at
most 8 (these numbers can be established from the exhaustive search trees of
Figure 7 giving all such possible L(2, 1)-labelings). Again, when deg(b) = 2,
we only count the number of labelings of v and w that extend to a labeling
of P compatible with the labeling of a and b, since the actual label used on
the neighbor of b in P is irrelevant. On the other hand, when deg(b) = 3,
we count the number of labelings of v, w and u that allow an extension to

RR n° 6587



14 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

length
l of the
path P

maximum
number of
branchings t1
if deg(b) = 2

solution of the
recurrence

T (n) = t1T (n− l+1)

maximum
number of
branchings t2
if deg(b) = 3

solution of the
recurrence

T (n) = t2T (n − l)

1 1 no branching 1 no branching
2 1 no branching 1 no branching

3 2 O(2
n

3 ) = O(1.2600n) 2 O(2
n

4 ) = O(1.1893n)

4 3 O(3
n

4 ) = O(1.3161n) 3 O(3
n

5 ) = O(1.2458n)

5 3 O(3
n

5 ) = O(1.2458n) 3 O(3
n

6 ) = O(1.2010n)

6 5 O(5
n

6 ) = O(1.3077n) 6 O(6
n

7 ) = O(1.2918n)

7 5 O(5
n

7 ) = O(1.2585n) 6 O(6
n

8 ) = O(1.2511n)

8 5 O(5
n

8 ) = O(1.2229n) 7 O(7
n

9 ) = O(1.2414n)

Table 2: Branching on extension paths of length ≤ 8 with weak constraints.

a labeling of P compatible with the labels of a and b. Note that in either
case both v and b may only receive labels 0 or 4.

In the case of a longer path, we have at most 6 possible labelings of v
and w, yielding the recurrence T (n) = 6T (n − length(P )) if deg(b) = 2. If
deg(b) = 3, we have at most 12 possible labelings of v,w and u, yielding the
recurrence T (n) = 12T (n − length(P )− 1).

Since 9
√

6 < 4
√

3 and 10
√

12 < 4
√

3, the overall worst case for Rule 5
is achieved when b is a degree 2 vertex and the extension path has length 5.
Hence T (n) = O(3

n
4 ) = O(1.3161n).

Summarizing the analysis of the algorithm, we obtain the following.

Theorem 5. The existence of an L(2, 1)-labeling of span 4 can be decided
in time O∗(1.3161n). If such a labeling exists it can be computed within the
same time.

4 A refined time analysis

In this section, we report on an attempt to improve upon the upper bound
of O∗(1.3161n) for the running time of our algorithm. To do this we use a
Measure & Conquer approach (see e.g. [8]). To each graph G with a partial
labeling f we assign the following measure

µ = µ(G, f) = ñ + ǫn̂

where ñ is the number of unlabeled vertices with no labeled neighbor and n̂
is the number of unlabeled vertices having a labeled neighbor. Furthermore,
ǫ is a constant to be chosen later such that 0 ≤ ǫ ≤ 1.

This means that the weight of a vertex is 0 if it is already labeled, it is
ǫ if it is unlabeled with a labeled neighbor, and it is 1 otherwise. Note that
µ(G, f) ≤ n, where n is the number of vertices of G.

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 15

2 0

3 1 4

0

2 4
0

2

3

1 3

3 1 4
0

2

2 0
3 1 4

4
1 3

2 0

4

1 3 0

2 4
0

2

3

1 3

4
1 3 0

2 0
3

4

2 0

3 1 4
0

2

3

2 0

4

1 3 0
2

4

2 0
3 1

4
1

2

3 0

2 4

0

2 4
0

2 4

3 1

1 3 0

3 1 4
0

2

3

2 0

1 3 0

2 4
0

1

4
1 3

2 0

4

1 3 0

2 4
0

2

3

1 3

4
1 3 0

2 0
3

4

2 0

3 1 4
0

2

3

2 0

4

1 3 0
2

4

2 0
3 1

4
1

2

4 0

2 4

0

2 4
0

2 4

3 1

1 3 0

3 1 4
0

2

3

2 0

1 3 0

2 4
0

1

4
1 3

2 0

3 1 4

0

2 4
0

2

3

1 3

3 1 4
0

2

2 0
3 1 4

4
1 3

2 0

0 4

1 3 0

2 4
0

2 4

3 1

1 3 0

4

1 3 0
2

4

2 0
3 1

4
1

2

2 0

3 1 4

0
2 4

3 1

2 0
3

4

4

1 3 0
2 4

4
1

2

2 0
3 1 4

4
1 3

2 0

1 4

0

2 4

0

2 4
0

2

3

1 3

3 1 4
0

2

1 3 0
2 4

4
1

2

3 1 4

0
2 4

0

1

3 1 4

2 0
3 1

4
1

2

2 0

3 1 4

0
2 4

3 1

2 0
3

4

4

1 3 0
2 4

4
1

2

2 0
3 1 4

4
1 3

2 0

2 4

0

2 4

0

2 4
0

2

3

1 3

3 1 4
0

2

1 3 0
2 4

4
1

2

3 1 4

0
2 4

0

1

3 1 4

2 0
3 1

4
1

2

1 3 0

2 4
0

2 4

3 1

1 3 0

4

1 3 0
2

4

2 0
3 1

4
1

2

Figure 7: The trees depict all possible L(2, 1)-labelings of extension paths
of length 8 (the root edge corresponds to first two labeled vertices).

RR n° 6587



16 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

Figure 8: Extensions with strong (a) and weak (b) constraints.

Theorem 6. The running time of the algorithm of Section 3 is O∗(1.3006n).

Proof. Let G = (V,E) be a graph with a partial labeling f . We consider
the measure µ = µ(G, f) for analyzing the running time of the algorithm
presented in Section 3. The analysis of the running time is quite similar
to the one provided in Section 3, but since the measure involves the use of
different weights (i.e., ǫ or 1) depending on the status – labeled or unlabeled
– of the vertices in their neighborhoods, we obtain new recurrences. To
simplify the notation, given a vertex v we denote by w(v) the weight of
v. Namely w(v) = 1 for each unlabeled vertex v with no labeled neighbor,
w(v) = ǫ for each unlabeled vertex v with a labeled neighbor and w(v) = 0
for each labeled vertex v. Thus summing over all vertices of G the equality
µ(G, f) =

∑
v∈V w(v) holds.

Rules 1, 2 and 3. The application of Rules 1, 2 and 3 needs only a
polynomial time and cannot increase the measure µ.

Rule 4 - Extensions with strong constraints. We consider an extension
path P with both endpoints labeled and we branch on the possible labelings
of the unlabeled neighbors of the endpoints of P (see Section 3 and Figure 8
(a)).

Recall that by application of Rule 1 and Rule 2, the degrees of u and v (if
it exists) are precisely 2. Let u′ be the unlabeled neighbor of u. The weight
w(u′) can be either equal to 1 or equal to ǫ. We distinguish two cases:� If w(u′) = 1, labeling u would decrease the weight of u′ to ǫ.� If w(u′) = ǫ then denote by u′′ a labeled neighbor of u′. Due to Rule 1,

it follows that u′ has degree 2 and thus labeling u would create an
extension path P ′ = uu′u′′ of length two (u′ is the unlabeled vertex of
P ′) that can be labeled without any branching by Rule 4 (see analysis
of Rule 4 in Section 3). Thus, labeling u would decrease the weight of
u′ to 0.

If v exists, we can assume that u and v are different since otherwise if u = v,
Rule 1 (d) would label u. However, in the case that v exists it is possible
that u′ = v. Consequently, labeling the path P and the vertices u and v
would decrease the measure by at least (2ǫ+(length(P )−3)+2ǫ) if v exists,
and by at least (2ǫ + (length(P )− 3) + ǫ + min(1− ǫ, ǫ)) otherwise.

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 17

Rule 5 - Extensions with weak constraints. We consider an extension
path P with one unlabeled endpoint of degree 3 and we branch on the
possible labelings of v, w and (possibly) u (see Section 3 and Figure 8 (b)).

Let v1 and v2 be the two neighbors of v which do not belong to P . Note
that due to Rule 1 (d), neither v1 nor v2 are labeled or adjacent to a labeled
vertex.

If u exists, we can assume that u and vi, i ∈ {1, 2}, are different since
otherwise if u = vi, Rule 1 would label u. Thus, labeling the path P and the
vertex u would decrease the measure by at least (ǫ+(length(P )−1)+2−2ǫ+ǫ)
if u exists, and by at least (ǫ + (length(P )− 1) + 2− 2ǫ) otherwise.

Setting ǫ = 0.8190 and solving the corresponding recurrences we estab-
lish a running time bounded by O(1.3006n).

It is an interesting question whether a more clever choice of the measure
can lead to a more significant improvement of the upper bound on the worst-
case running time of the algorithm.

5 A lower bound

It is often the case for branching algorithms that the best known running
time is overestimated, even when using the Measure & Conquer technique.
Thus it is natural to ask for a lower bound on the worst-case running time.
Such bounds give an idea about the (yet unknown) worst-case running time
of the algorithm. In this section we prove the following:

Theorem 7. The worst case running time of our branching algorithm to

compute an L(2, 1)-labeling of span 4 is Ω
((

2 +
√

5
)n

7

)
= Ω(1.2290n).

Proof. Consider the graph Gl = (Vl, El) defined as follows (see also Fig-
ure 5).

Let Vl = {a, b} ∪ ⋃ 1≤i≤l

1≤j≤6

{vi
j} ∪

⋃
1≤i≤l{xi}. For every i, 1 ≤ i ≤ l, let

Ei = {vi
1, v

i
2}, {vi

2, v
i
3}, {vi

3, v
i
4}, {vi

4, v
i
5}, {vi

5, v
i
6}, {vi

6, x
i}. The set of edges

El is defined as {a, b} ∪ {b, v1} ∪
⋃

1≤i≤l E
i ∪ ⋃1≤i<l{vi

6, v
i+1
1 }. Given an

integer i, the subgraph induced by
⋃

1≤j≤6{vi
j} ∪

⋃
1≤i≤l{xi} is called the

i-th component of Gl. For i > 1, we denote by P i the path induced by
the vertices {vi−1

6 } ∪ ⋃1≤j≤6{vi
j}. Note that the graph Gl contains 7l + 2

vertices.
Consider an execution of the algorithm on the graph Gl. Recall that, as

a preliminary step, the algorithm has to label two adjacent vertices in all
possible ways. Suppose that a and b have been labeled such that b receives
label 0 or 4. It is not hard to check that none of the rules 1 to 3 can be applied
on the resulting (partially labeled) graph. Moreover, there is no extension
path with both endpoints labeled. Thus Rule 4 cannot be applied. Hence
the algorithm applies Rule 5 to the extension path P 1 = {b, v1

1 , v1
2 , . . . , v

1
6}.

RR n° 6587



18 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

ba v 1 v 2 v 3 v 4 v 5 v 6x1 s t c o m p o n e n t 2 n d c o m p o n e n t 3 r d c o m p o n e n t
Figure 9: The graph Gl used to prove the lower bound.

values of (f(a), f(b)) (2, 0) (3, 0) (4, 0) (0, 4) (1, 4) (2, 4)

possible values for
(f(v1

5), f(v1

6))
(2, 4)
(0, 4)
(1, 4)
(2, 0)

(4, 0)
(1, 4)
(0, 4)
(2, 4)
(2, 0)

(4, 0)
(1, 4)
(0, 4)
(2, 4)

(4, 0)
(2, 0)
(3, 0)
(0, 4)

(2, 4)
(3, 0)
(2, 0)
(4, 0)
(0, 4)

(2, 4)
(3, 0)
(2, 0)
(4, 0)

number of branch-
ings

4 5 4 4 5 4

Table 3: Number of branchings for an extension path of length 6 using Rule
5, depending on the labels of a and b. These numbers are established using
the search trees of Figure 7.

The idea is to try out all possible labelings on P 1. More precisely, the
algorithm branches along all possible labelings of v1

5 and v1
6 and extends

these labelings to the other unlabeled vertices of P 1. Then, by application
of Rule 2, the vertex x is removed from the graph (according to Lemma 4,
its label is easily obtained from a labeling of the remaining graph). The
maximum number of branchings along the extension path P 1 having length
6 is given by Table 2, i.e. 5. However, depending on the label of a and b, this
number can be even smaller. Table 3 gives the exact number of branchings,
depending on the label of a and b.

Note that once P 1 is labeled, then x is removed, v1
5 and v1

6 are labeled,
and v1

6 has label 0 or 4. Thus, we can reuse the same arguments as before by
renaming v1

5 by a and v1
6 by b, and considering the extension path P 2 from

the second component. Finally, the whole graph Gl is labeled by labeling
component by component using Rule 5.

According to Table 3, the number of branchings is either 4 or 5, depend-
ing on the labels of a and b. To analyze the running time of the algorithm
on Gl, we denote by T4(n) the maximum number of leaves in the search tree
obtained from an execution of the algorithm on a graph Gl with n unlabeled
vertices, providing that the first two vertices (e.g. a and b during the first
step, vi

5 and vi
6, 1 ≤ i < l, at the (i + 1)-th step) are labeled by (2, 0), (4, 0),

(0, 4) or (2, 4). Similarly, we define T5(n) as the maximum number of leaves
in the search tree obtained by applying the algorithm on a graph Gl with n
unlabeled vertices, providing that the first two vertices are labeled by (3, 0)
or (1, 4). Consequently, for all n ≥ 1, T5(n) ≥ T4(n).

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 19

Recall that each time an extension path P i of Gl is labeled, the whole
path becomes labeled and the corresponding vertex xi is removed. Thus,
the seven vertices are either labeled or removed from Gl. Moreover, note
that among the 4 or 5 branchings done for finding a labeling of the extension
path P i, exactly one ((3, 0) or (1, 4)) produces a branching in 5 labelings
in the next step aiming to find a labeling of P i+1 (see Table 3). Thus, we
obtain the following two recurrences:

T4(n) = 3T4(n− 7) + T5(n − 7) (1)

T5(n) = 4T4(n− 7) + T5(n − 7) (2)

Subtracting (1) from (2) yields T5(n) = T4(n) + T4(n − 7). Together
with (1) one obtains T4(n) = 4T4(n − 7) + T4(n − 14). Solving this latest

recurrence, by substituting T4(n) = αn
4 , we obtain T4(n) =

(
2 +
√

5
)n

7 (and
thus T5(n) = αn

4 (α−7
4 + 1) ≥ T4(n)).

6 Larger span

In this section we show that even in the case of larger span k we can beat
k − 2 as the base of the exponential function bounding the running time of
our branching algorithm. Unlike the case of k = 4, we do not aim at the
very best running time achieved by complicated branching rules and a fine
tuned analysis. Here we will be satisfied with an improvement of k − 2 by
an additive constant, and we rather aim at simple rules and running time
analysis. We are aware that a more careful analysis would lead to a slightly
better constant.

Theorem 8. Deciding if an input graph allows an L(2, 1)-labeling of span
k, for a fixed k ≥ 5, can be achieved in time O∗((k − 2.5)n) and polynomial
space.

Proof. Note first that in the case of span k, the label space [0..k] contains
two labels, namely 0 and k, that allow k − 1 labels on adjacent vertices,
while the other k−1 labels from [1..k−1] allow only k−2 labels on adjacent
vertices.

Our algorithm is similar to the algorithm from Section 3. Again, we start
by labeling a chosen vertex in all possible ways, then label a chosen neighbor
in all possible ways, and since then on, we keep the labeled part of the input
graph connected. In particular, every labeled vertex has at least one labeled
neighbor. We use the following rules, and assume they are applied in the
preference ordering as they are listed. (See also Figures 10, 11 and 12.)

Rule 1 - Simple branchings

(a) If a vertex v is labeled f(v) ∈ [1..k− 1] and has an unlabeled neighbor
u, branch along all possible labelings of u.

RR n° 6587



20 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

(b) If a labeled vertex v has at least two labeled neighbors and an unlabeled
neighbor u, branch along all possible labelings of u.

(c) If a labeled vertex v has two unlabeled neighbors u and w, branch
along all possible labelings of u and w.

(d) If an unlabeled vertex u has at least two labeled neighbors, branch
along all possible labelings of u.

(e) If an unlabeled vertex u has a labeled neighbor and two unlabeled
neighbors v,w, branch along all possible labelings of u, v,w.

The configurations corresponding to these forced extensions are depicted
in Figure 10.

Figure 10: Simple branchings.

If Rule 1 cannot be applied, every labeled vertex that has an unlabeled
neighbor has degree two, is labeled 0 or k, and has exactly one unlabeled
neighbor. This unlabeled neighbor has only one labeled neighbor and has
degree at most two, and so it belongs to an extension path consisting of
unlabeled vertices of degree 2, ending either in an unlabeled vertex of degree
1 or at least 3, or in a labeled vertex of degree 2. These extension paths are
treated similarly as in the algorithm of Section 3.

Rule 2 - Cheap extensions

(a) If an extension path ends with an unlabeled vertex of degree 1, disre-
gard the path and continue with the reduced graph.

(b) If an extension path ends with a labeled vertex, check by dynamic
programming if there exists a labeling of the path compatible with the
labeling of its initial and ending segments.

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 21

Figure 11: Cheap extensions. (a) An extension path with one unlabeled
endpoint of degree 1. (b) An extension path with both endpoints labeled
and of degree 2.

Rule 3 - extension path branching� If an extension path ends with an unlabeled vertex u of degree at least
3, then all neighbors of u are unlabeled (otherwise Rule 1.5 would be
applied). Let x be the degree 2 neighbor of u on the extension path
and let y, z be two of the other neighbors. Branch along all possible
labelings of u, x, y, z and for each such labeling check by dynamic pro-
gramming if it is compatible with the labeling of the initial segment
of the extension path.

Figure 12: Extension path branching. An extension path with one unlabeled
endpoint u of degree at least 3 and no labeled neighbor.

We use the simple weight function - labeled vertices get weight zero,
unlabeled vertices get label 1. The total weight in the beginning is n. Ap-
plication of Rule 2 does not involve branching, does not increase the total
weight, and consumes only polynomial amount of time.

Rule 1 (a). As v is labeled in [1..k − 1] it forbids 3 labels for u and each
of it already labeled neighbours (there is at least one) forbids another
label. Hence there are at most k− 3 possible labels for vertex u. This
leads to recurrence T (n) ≤ (k − 3)T (n − 1).

Rule 1 (b). Now v forbids at least 2 labels (with equlity if it is labeled 0 or
k) and each of its already labeled neighbours (there are at least two)
forbids another label. Hence again there are at most k − 3 possible
labels for u.

Rule 1 (c). There are at most k − 2 possible labels for u and after u is
labeled, at most k − 3 possible labels are left for w. Hence we gain 2

RR n° 6587



22 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

labeled vertices and have (k−2)(k−3) < (k−2.5)2 possibilities. This
leads to T (n) ≤ (k − 2.5)2T (n− 2).

Rule 1 (d). As the two labeled neighbors of u have different labels, to-
gether they forbid at least 4 labels for u. Hence T (n) ≤ (k−3)T (n−1).

Rule 1 (e). This case needs a slightly more careful analysis. Suppose the
labeled neighbor of u is labeled by 0. Then u cannot be labeled 0 nor
1. If it is labeled by any i ∈ [2..k − 1], we have k − 3 possible labels
for v (label 0 is blocked) and consequently k− 4 possible labels for w.
This gives (k − 2)(k − 3)(k − 4) possible labelings. If u is labeled by
k, we get k − 2 possible labels for v and k − 3 for w. So the overall
number of possibilities is (k−2)(k−3)(k−4)+(k−2)(k−3) which is
smaller than (k−2.5)3 for k ≥ 5, while we are gaining 3 newly labeled
vertices.

Rule 3. Suppose the extension path is abu1u2 . . . ut−1u, where a, b are la-
beled (b with label 0), u1, . . . , ut−1 are unlabeled vertices of degree 2,
u is an unlabeled vertex of degree at least 3, and y, z are other two
unlabeled neighbors of u. We may assume t ≥ 2, since the case t = 1
is actually Rule 1 (e).
If t = 2, we lead the case analysis according to the label which is
assigned to u. If u is labeled in [1..k − 1], we have at most k − 2
possible labels for x = u1, then k − 3 labels for y and k − 4 labels
for z. If u is labeled by k, we get k − 3 possible labels for x = u1,
k − 2 labels for y and k − 3 labels for z. Altogether there are at most
(k− 1)(k − 2)(k− 3)(k − 4) + (k− 3)(k− 2)(k − 3) possibilities for la-
beling the four vertices u1, u2, y, z. This number is less than (k−2.5)4

for k ≥ 5.
If t > 2, we either label u with 0 or k, and get (k − 1)(k − 2)(k − 3)
possibilities for labeling x, y, z for each of the two. Or u get label i ∈
[1..k−1], and for each of these k−1 cases, we have (k−2)(k−3)(k−4)
possibilities for x, y, z. Altogether we have 2(k − 1)(k − 2)(k − 3) +
(k − 1)(k − 2)(k − 3)(k − 4) possible labelings for u, x, y, z, and this
number is less than (k − 2.5)5 for k ≥ 5. For each of the labelings of
u, x, y, z, we check by dynamic programming along the extension path
if the labeling is compatible with the labeling of a and b. So we are
gaining at least 5 newly labeled vertices.

We have seen that the application of every rule leads to recurrence
T (n) ≤ (k − 2.5)ℓT (n − ℓ) for some ℓ. Hence the number of leaves of the
recursion tree is at most O((k − 2.5)n).

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 23

7 An exact dynamic programming algorithm for

L(2, 1)-labeling

Král [14] shows that the channel assignment problem can be solved in time
O∗(4n) if the maximum edge weight is 2. Hence the minimum L2,1-span of a
graph can be computed in this time. The purpose of this section is to show
that in the case of L(2, 1)-labelings, we can beat the constant 4 in the base
of the exponential function expressing the running time.

Theorem 9. The L(2, 1)-labeling problem can be solved in time O∗(15
n
2 ) =

O(3.8730n).

Proof. Let G = (V,E) be a graph. For every integer i ∈ {0, 1, . . . , 2n} and
for all subsets X,Y ⊆ V such that X ∩ Y = ∅, we introduce a Boolean
variable Lab[X,Y, i]. By Dynamic Programming we determine the values of
these variables so that

Lab[X,Y, i] is true if and only if there exists a partial L(2, 1)-labeling
L of span i for X, L : X → {0, 1, . . . , i}, such that each vertex of
N(Y ) ∩X has label at most i− 1.

Clearly, L2,1(G) = min{i | Lab[V (G), ∅, i] is true}. (Note here that L2,1(G)
is smaller than 2n, since labeling the vertices by distinct even integers is
always a valid L(2, 1)-labeling.)

Algorithm Find-L(2,1)-Span
forall X,Y ⊆ V (G), X ∩ Y = ∅, i = 0, . . . , 2n do

Lab[X,Y, i]← false

forall X,Y ⊆ V (G), X ∩ Y = ∅ do
if X is a 2-packing in G and X ∩N(Y ) = ∅ then

Lab[X,Y, 0]← true

for i = 1, . . . , 2n do
forall U,A, Y ⊆ V (G), U ∩A = U ∩ Y = A ∩ Y = ∅ do

if U is a 2-packing in G, U ∩N(Y ) = ∅ and Lab[A,U, i − 1]
then Lab[U ∪A,Y, i]← true

for i = 0, . . . , 2n do
if Lab[V (G), ∅, i] then return “L2,1(G) = i” and Halt

The correctness of the algorithm Find-L(2,1)-Span follows from the
following observations:� By the definition of L(2, 1)-labelling, each set of vertices having the

same label induces a 2-packing in G (a set of vertices pairwise at
distance greater than 2).

RR n° 6587



24 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff� For every pair of disjoint sets X and Y , X allows a partial labeling of
span 0 such that all vertices of X in N(Y ) have labels at most −1 if
and only if N(Y )∩X = ∅ and X induces a 2-packing in G. Hence the
initialization of Lab[X,Y, 0].� Let X and Y be disjoint sets of vertices and let i > 0. Suppose f is
an L(2, 1)-labeling on X of span i such that f(u) ≤ i − 1 for every
u ∈ N(Y ) ∩ X. Let U ⊆ X be the set of vertices of label exactly i,
and A = X \U . Then U must be a 2-packing in G and N(Y )∩U = ∅.
Moreover, every labeled neighbor of a vertex from U must have a
label at most i − 2. Thus the labeling f restricted to A satisfies the
requirements for A,U, and i − 1 and Lab[A,U, i − 1] should be true.
On the other hand, extending a partial labeling of A of span i − 1
to a labeling of X by setting f(u) = i for all u ∈ U gives a labeling
satisfying our requirements, provided N(Y )∩U = ∅. This justifies the
computation of Lab[X,Y, i] by dynamic programming.

To analyze the running time of our algorithm, the crucial point is the
estimation of the number of 2-packings in a connected graph. Let uk be the
number of 2-packings of size k in our graph G. For every 2-packing U of
size k, we process all pairs of disjoint subsets A,Y of V (G) \U . Since every
vertex of V (G) \U has 3 possibilities where to end up (either in A, or in Y ,
or in neither of them), there are 3n−k such pairs. Thus the running time of
our algorithm is

O∗

(
n∑

k=0

uk3
n−k

)
.

We emphasize that the proof of our estimate is constructive and itself leads
to an algorithm enumerating all 2-packings of size k of a connected graph

with running time O∗
((n/2

k

)
2k
)
.

Lemma 10. If n is even, we have uk ≤
(n/2

k

)
2k (and, in particular, uk = 0

for k > n
2 ).

Proof. We partition the vertex set of G into r stars with a1, a2, . . . , ar ver-
tices, so that a1 + a2 + · · · + ar = n and ai ≥ 2 for every i. Hence r ≤ n

2 .
To obtain such partition, we consider a spanning tree T of G. Let u and v
be, respectively, the endvertex and its neighbor on a longest path in T . All
neighbors of v, with possibly one exception, are leaves in T . These leaves
include u and with v they form a star with at least 2 vertices. Deleting it,
we get a smaller tree T ′ which we treat in the same way. This procedure ter-
minates with an empty tree and produces the required partition of vertices
into stars of size at least 2 each.

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 25

Each 2-packing can have at most one vertex in each star, and so

uk ≤
∑

1≤i1<i2<···<ik≤r

ai1ai2 . . . aik .

We obtain an upper bound on uk by maximizing this sum under the condi-
tion that the numbers a1, a2, . . . , ar are integers summing up to n and each
of them is at least 2. I.e., for the purpose of the estimate, we forget about
the underlying graph and regard ai as free integer variables; their number r
varies as well.

It is easy to show that for ai ≥ 4, the above sum does not decrease when
ai is replaced with two new numbers a′i = 2 and a′′i = ai− 2. To see this, let
us denote gk(A) =

∑
1≤i1<i2<···<ik≤r ai1ai2 . . . aik for A = {a1, a2, . . . , ar}.

Let Ã = A \ {ai} and A′ = {2, ai − 2} ∪ Ã. Then

gk(A
′) = 2(ai − 2)gk−2(Ã) + 2gk−1(Ã) + (ai − 2)gk−1(Ã) + gk(Ã)

≥ aigk−1(Ã) + gk(Ã) = gk(A).

Similarly, it does not decrease when two numbers ai, both equal to 3,
are replaced with three new numbers, all equal to 2. As n is even, it follows
that the maximum of the above sum under the stated condition is attained
for a1 = a2 = · · · = ar = 2, r = n/2. (If k ≥ 2, the sum strictly increases
after the replacements and therefore this is the only choice with maximum
sum.) The claim of the lemma follows.

A simple calculation now concludes the proof of Theorem 9 for even n:

n∑

k=0

uk3
n−k ≤

n/2∑

k=0

(
n/2

k

)
2k3n−k

= 3n/2

n/2∑

k=0

(
n/2

k

)
2k3n/2−k = 3n/2(2 + 3)n/2 = 15n/2 = (

√
15)n.

For odd n we note that the number of 2-packings in G is obviously smaller
than the number of 2-packings in a graph G′ obtained by adding a vertex
to G. Then the running time is bounded by O∗((

√
15)n+1) = O∗((

√
15)n) =

O(3.8730n).

References

[1] Bodlaender, H.L., Kloks, T., Tan, R.B., and van Leeuwen, J.,
Approximations for lambda-Colorings of Graphs. Computer Journal 47
(2004), pp. 193–204.

RR n° 6587



26 F. Havet, M. Klazar, J. Kratochv́ıl, D. Kratsch and M. Liedloff

[2] Chang, G. J., and Kuo, D., The L(2, 1)-labeling problem on graphs.
SIAM Journal on Discrete Mathematics 9 (1996), pp. 309–316.

[3] Fiala, J., Golovach, P., and Kratochv́ıl, J., Distance Con-
strained Labelings of Graphs of Bounded Treewidth. Proceedings of
ICALP 2005, LNCS 3580, 2005, pp. 360–372.

[4] Fiala, J., Kloks, T., and Kratochv́ıl, J., Fixed-parameter com-
plexity of λ-labelings. Discrete Applied Mathematics 113 (2001), pp. 59–
72.

[5] Fiala, J., and Kratochv́ıl, J., Complexity of partial covers of
graphs. Proceedings of ISAAC 2001 , LNCS 2223, 2001, pp. 537–549.

[6] Fiala, J., and Kratochv́ıl, J., Partial covers of graphs. Discus-
siones Mathematicae Graph Theory 22 (2002), pp. 89–99.

[7] Fiala, J., Kratochv́ıl, J., and Pór, A., On the computational
complexity of partial covers of theta graphs. Electronic Notes in Dis-
crete Mathematics 19 (2005), pp. 79–85.

[8] Fomin, F., Grandoni, F., and Kratsch, D., Measure and conquer:
Domination - A case study. Proceedings of ICALP 2005 , LNCS 3380,
2005, pp. 192–203.

[9] Fomin, F., Heggernes, P., and Kratsch, D., Exact algorithms
for graph homomorphisms. Theory of Computing Systems 41 (2007),
pp. 381–393.

[10] Gonçalves, D., On the L(p, 1)-labelling of graphs, DMTCS Proceed-
ings Volume AE, pp. 81–86.

[11] Griggs, J. R., and Yeh, R. K., Labelling graphs with a condition at
distance 2. SIAM Journal on Discrete Mathematics 5 (1992), pp. 586–
595.

[12] F. Havet, B. Reed and J.-S. Sereni, L(2, 1)-labellings of graphs.
Proceedings of SODA 2008 , (2008), pp. 621–630.

[13] Hell, P., and Nešetřil, J., On the complexity of H-colouring. Jour-
nal of Combinatorial Theory Series B 48 (1990), pp. 92–110.

[14] D. Král’, Channel assignment problem with variable weights. SIAM
Journal on Discrete Mathematics 20 (2006), pp. 690–704.

[15] J. Kratochv́ıl, D. Kratsch and M. Liedloff, Exact algorithms
for L(2, 1)-labeling of graphs. Proceedings of MFCS 2007 , LNCS 4708,
2007, pp. 513–524.

INRIA



Exact algorithms for L(2, 1)-labeling of graphs 27

[16] Leese, R. A., and Noble, S. D., Cyclic labellings with constraints at
two distances. Electronic Journal of Combinatorics 11 (2004), Research
paper 16.

[17] Liu, D., and Zhu, X., Multilevel distance labelings for paths and
cycles. SIAM Journal on Discrete Mathematics 19 (2005), pp. 610–
621.

[18] Liu, D., and Zhu, X., Circular Distance Two Labelings and Circular
Chromatic Numbers. Ars Combinatoria 69 (2003), pp. 177–183.

[19] Roberts, F.S. private communication to J. Griggs.

RR n° 6587



Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


	Introduction
	Exact algorithm for locally injective homomorphisms
	A branching algorithm for computing an L(2,1)-labeling of span 4
	A refined time analysis
	A lower bound
	Larger span
	An exact dynamic programming algorithm for L(2,1)-labeling

