
HAL Id: inria-00462325
https://hal.inria.fr/inria-00462325

Submitted on 28 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Components with Futures: Semantics and
Proofs in Isabelle/HOL

Ludovic Henrio, Muhammad Uzair Khan

To cite this version:
Ludovic Henrio, Muhammad Uzair Khan. Asynchronous Components with Futures: Semantics and
Proofs in Isabelle/HOL. 7th International Workshop on Formal Engineering approaches to Software
Components and Architectures, Mar 2010, Paphos, Cyprus. pp.1-20. �inria-00462325�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50105278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00462325
https://hal.archives-ouvertes.fr

FESCA 2010

Asynchronous Components with Futures:

Semantics and Proofs in Isabelle/HOL

Ludovic Henrio and Muhammad Uzair Khan

INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis
{ludovic.henrio, muhammad.khan}@inria.fr

Abstract

Components provide an easy to use programming paradigm allowing for better re-usability of ap-
plication code. In the context of distributed programming, autonomous hierarchical components
provide a simple model for creating efficient applications. This paper presents a model for dis-
tributed components communicating asynchronously using futures – placeholders for results. Our
components communicate via asynchronous requests and replies where the requests are enqueued at
the target component, and the invoker receives a future. Then, future references can be dispersed
among components. When the result is available for a future, it needs to be transmitted to all
interested components, as determined by a future update strategy. We present formal semantics of
our component model incorporating formalisation of one such future update strategy. Our model
has been mechanically formalised in Isabelle/HOL, together with the proof of properties. This
approach validates the actual implementation of the future update strategy itself.

Keywords: Mechanised formalisation, Components, Futures, Distributed systems

1 Introduction

This paper is placed in the context of the GCM [1] component model, and aims
at proving the correctness of its reference implementation (ProActive/GCM).
Components are designed to increase the re-usability of programs. For this a
component is defined as a piece of software with well-defined server and client
interfaces (also called input and output ports). To increase scalability of the
model, components can be designed in a hierarchical way: each component
can be composed of other components. To better benefit from the compo-
nent structure, GCM is one of the component models where components are
represented and can be manipulated at run-time; this allows dynamic recon-
figuration and adaptability of component-based applications.

Our component model goes one step further in the autonomicity of the
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Henrio, Khan

components: each component is a unit of deployment and of concurrency, i.e.
components only interact by asynchronous requests, each component has its
own threads, and components do not share memory. In this context, struc-
tured communication impose the use of futures, empty objects representing
an awaited result for such asynchronous requests. To increase asynchronism,
our futures are first class; meaning a future may be passed as parameter of
requests or as part of return values. As a consequence, futures spread ev-
erywhere. Under reasonable hypotheses, it has been shown that the order in
which results are returned has no influence on the computation [4].

Even when the execution is insensitive to the order in which futures are
returned, in a real implementation of the component platform, a strategy has
to be chosen to optimally perform the communication of results. We call fu-

ture update the operation that sends a result to replace a future reference;
and future update strategies, the different ways of performing those opera-
tions. Formalising future updates is of little interest concerning the language
properties, but it is crucial to study the implementation of this language. In
order to prove the correctness of the implementation of GCM, our work aims
at specifying formally future update strategies and proving correctness or ef-
ficiency properties on futures. This paper focuses on one particular strategy
called eager home[10]. Our contribution can be summarised as follows:

• Formal specification of the component model and the eager home strategy,

• Formalisation in a theorem prover, Isabelle/HOL [13],

• Tools (lemmas, constructs) for expressing future update strategies and prov-
ing properties on components and futures,

• Mechanised proofs of correctness for future updates and registration.

To reflect the component model, we choose to specify the entire compo-
nent structure (hierarchy, interfaces, bindings). One advantage is that we can
navigate inside components, and directly reason on the application structure
in the theorem prover. The second and even more important advantage is
that it allows us to reason about component configuration and component
reconfiguration, leading to the specification of an adaptive component model.

Our intent is to provide a reliable and strong basis for reasoning on futures
and components. For this we prove a correctness property on the registration
of futures along the reduction. The Isabelle/HOL development corresponding
to this paper is already consequent and shows that: our model is adequate
and precise, it can be used to reason about futures and components, and the
specified future update strategy guarantees basic correctness properties.

This work is not restricted to the GCM component model, for example our
formalisation should also provide a model for frameworks like Creol [9].

Next section presents the related works, Section 3 presents the principles
of our component model and of future update strategies. Section 4 defines the

2

Henrio, Khan

semantics of our model. Formalisation is detailed in Section 5.

2 Related Works

Futures, first introduced in Multilisp [6] and ABCL/1 [17] are used as con-
structs for concurrency and data flow synchronisation. Futures are language
constructs that improve concurrency in a natural and transparent way. Frame-
works that make use of explicit constructs for creating futures include Mul-
tilisp [6], λ-calculus [12], Creol [9], SafeFuture API [16], and ABCL/f [15].
In contrast, futures are created implicitly in frameworks like ASP [4], Ambi-
entTalk [5], ProActive [3] and ASPfun [7]. In those object-oriented languages,
implicit creation corresponds to asynchronous method invocation. A key ben-
efit of the implicit creation is that no distinction is made between synchronous
and asynchronous operations in the program. Additionally, the futures can
be accessed explicitly or implicitly. In case of explicit access, operations like
claim and get, touch are used to access the future [9,15]. For implicit ac-
cess, operations that need the real value of an object (blocking operations)
automatically trigger synchronisation with the future update operation.

Objects and futures

Creol [9] allows explicit control over data-flow synchronisations. In [2], Creol
has been extended to support first class futures, although the future access is
explicit (using get and await). ASP [4] and ProActive [3], have transparent
first-class futures. Thus, the synchronisation is transparent and data-flow ori-
ented. In AmbientTalk [5], futures are also first-class and are transparently
manipulated; but the future access is a non-blocking operation: it is an asyn-
chronous call that returns another future. This avoids the possibility of a dead
lock as there is no synchronisation.

This differs from the approach adopted in other frameworks where access to
a future is blocking. In [9], all processes interested in the future are registered
as observers. When the result for the future is computed, all the registered
observers are notified; this is very similar to eager-message based strategy as
specified in [10]. In [16] a safe extension to Java futures is proposed, but with
explicit creation and access.

In [2], the authors provide the semantics of an object-oriented language
based on Creol [9]; it features active objects, asynchronous method calls, and
futures. They provide a proof system for proving properties relating to con-
currency. The model is multi-threaded, with only one thread active at a given
time. Our approach is quite close to this work except that we study a compo-
nent model featuring high level of abstraction, and hierarchical composition.

Also in the context of object-oriented languages, ASPfun [7] is closely re-
lated to this paper. It formalises a functional language featuring active objects,

3

Henrio, Khan

asynchronous communication, first class futures, and a type system.

While the language provides for first class futures, it does not study future
update strategies. Additionally, it does not deal with components.

Modeling components

In [11], a formalisation of the Fractal component model using Alloy, a speci-
fication language, is presented. Fractal allows for hierarchical composition of
components, and separation of functional and non-functional concerns. The
authors provide a analyser to check the consistency of model, they define key
invariants and other properties of interest. Compared to [11], we consider
asynchronous components and focus on the component dynamic behaviour.
This is crucial when specifying future management procedures.

Our work extends [8] which presents a component model giving a seman-
tics to GCM, including hierarchical components, asynchronous communica-
tion, and first class futures. Building on the structural description provided
in GCM, [8] formalises the component composition and communication se-
mantics in the presence of futures. In order to prove properties related to
the implementation of futures, we have extended [8] with the precise defini-
tion of future update strategies, including semantics and constructs for the
management of futures. With mechanised proofs, we show that our formalisa-
tion is complete and enables proofs on properties on futures and their update
strategies, thus ensuring correctness of the ProActive/GCM implementation.

3 An Asynchronous Component Model With Futures

This section defines a subset of the GCM model, but with a precisely de-
fined semantics. This model incorporates hierarchical components, and asyn-
chronous communication with futures, it uses a request-reply model.

3.1 Component structure

Our model inherit most of its structure from GCM. GCM allows hierarchical
composition of components. A coarse-grained component may be formed by
composition of several fine-grained components. A component containing one
or more subcomponents is referred to as a composite component. Primitive

components do not contain other components, they are leaf-level components
that implement the business functionality.

The only way to access a component is via its interfaces. Client interfaces
allow the component to invoke operations on other components. On the other
hand, Server interfaces receive invocations. Each client interface is plugged
to a server interface. For this, a binding connects a client interface to the
server interface that will receive messages sent by the client: requests transit

4

Henrio, Khan

Internal interfaceServer interface

External Interface Client Interface

primitive
component

Composite component

primitive
component

N

N'

Itf

Itf'

[N.itf,N ′.itf ′] ∈ bindings

Fig. 1. A composite GCM component

Request queue

Results

In
c
o
m

in
g

R
e
q
u
e
s
ts

Request

service

End of

service

Results returned to components in

Future Recipient list

Request sent

Results received from other components

Future Recipient list

+

Fig. 2. Component Behaviour

on bindings. GCM model allows for a client interface to be bound to multiple-
serve interfaces, but here, to simplify, bindings can only be one to one.

Figure 1 shows a composite component containing two primitive compo-
nents, along with bindings, and the various interfaces of the components. The
interfaces exposed to subcomponents are referred as internal interfaces, while
the external interfaces are the ones exposed to other components. In our
model, all interfaces of a given component, external or internal must have
distinct names. Additionally, each internal interface have a corresponding ex-
ternal interface of the same name; with the implication that a call received
on a external (resp. internal) server interface will be passed unchanged to the
corresponding internal (resp. external) client interface. A GCM component
may have functional or non-functional interfaces. Our model only deals with
the functional interfaces and as such, we have excluded the non-functional
interfaces from our representation. Figure 2 gives the internal structure of a
component. It shows the request queue, the results list, and the future re-
cipient list. All incoming requests are initially enqueued in the request queue.
The requests are dequeued by the execution threads, and on the termination
of execution (called “end of service”), the results are placed inside the results

list. The future recipient list contains the components which need the results
for a given request. When a result is produced, it is sent to all the components
registered for it in the recipient list.

3.2 Informal semantics

As discussed in the previous sections, our communication model is strictly
a request-reply model with no shared memory. Components are the unit of
concurrency though each component may serve multiple requests concurrently.

Communication model

We use a simple communication model relying on asynchronous request and
replies. The only interaction between components is the communication by

5

Henrio, Khan

means of requests. All request parameters are passed by copy semantics.
There are no shared object/component references (except for futures). On
the receiver side, the requests are enqueued in a message queue, which holds
the messages until they can be treated by the receiver component. Our com-
munication model is asynchronous. This means that the requests are not nec-
essarily served/treated immediately upon arrival. Requests are only enqueued
at the target component, then the component invoking the request can con-
tinue its execution without waiting for the result. Enqueuing a request is done
synchronously but the receiver is always ready to receive a request.

To ensure transparent handling of asynchronous requests with results, we
utilise futures. Futures are created automatically upon request invocation and
represent the request result, while the treatment of the request is not finished.
Once the result of the computation is available, the future is replaced by the
result value. We refer to this as updating the future value. Our futures are both
transparent and implicit: they are created and are updated automatically.

Access to a future for which the result value has not been received yet is
a blocking operation. The thread accessing such a future is blocked until the
result value becomes available. Futures are first class objects: no thread is
blocked when a future is transferred as part of requests or results.

Component behaviour

Primitive components are the basic components that implement business logic
and therefore can have any internal behaviour. They treat/serve requests
in the order they choose, providing replies for all the requests they receive.
They can call other components by emitting a request on one of their client
interface. Each primitive component must always be able to accept a request
(enqueued in its request queue), and to receive a result (that will replace
a future reference). Once the service of a request is finished, the produced
result is stored in the computed results, which is a mapping between futures
and computed values. It can then be transmitted to other components, as
determined by the future update strategy.

As opposed to the primitive components, the behaviour of the composite
components is strictly defined. Composite components serve the requests in a
FIFO order, delegating the requests to other internal or external components.
As mentioned in Section 3.1, a request received at a composite component is
delegated unchanged to a bound component. Overall, a request is emitted
by a client interface of a primitive component, and received unchanged by the
server interface of the primitive component that is (indirectly) bound to it; this
request might transit through several composite components and bindings.

6

Henrio, Khan

3.3 Future update strategies

In a real implementation, updating a future value is not a simple task. Fu-
tures may be spread over a number of components, all requiring the future
value. Additionally futures can appear in computed results, message queue,
and current state of each component. To update all these futures efficiently,
future update schemes have to be devised. The chosen scheme must ensure
that any component needing a result that has been computed, receives it.

First class futures can be updated using different strategies [4,10,14]. We
classify those strategies as either eager or lazy. Strategies are called eager
when all the references to a future are updated as soon as the future value
is calculated. They are called lazy if futures are only updated upon need,
which minimises communications but increase the time spent waiting for the
future value. Two eager strategies can be envisioned. Eager forward strategy,
where each component remembers only the components to which it has sent
the futures, and forward them the values when they become available; flow
of future updates is along the same path as the futures themselves. On the
other hand, in eager home strategy, each component is responsible for sending
the future value to all components which have a reference to the future. For
this, all components receiving the future must register themselves as a future
recipient. Finally, the lazy home strategy is the lazy version of eager home
strategy where the future values are transferred on-demand: accessing a future
reference triggers the future update.

[f,v,itf]

[f,v,itf]
host(f) = NH

N1 N2

N3

NH

register for f in NH

Fig. 3. Future registration

N
H

End of

service

N
3

N
2

N
1

Result sent to all

registered recipients

+

Fig. 4. Future update

Based on our component structure, we can derive semantics using any of
the above mentioned strategies. All three strategies are semantically equiva-
lent, as demonstrated in ASP [4]. Eager-forward strategy is simpler to imple-
ment as the flow of future updates follow the same path as the futures them-
selves. Therefore each component needs to remember only the component to
which it has transferred the future. On the other hand, for the home-based
strategies, the component serving the request needs to know about all com-
ponents to which results should be sent. This is achieved by registering all

7

Henrio, Khan

components that require the future value with the component serving the re-
quest. Such registrations are more complex as compared to simple mechanism
used in eager forward strategy. Eager-home and lazy-home strategies are sim-
ilar in nature, the only deference being the on-demand nature of component
registration in lazy strategy. For eager-home strategy, every forwarded future
has to be registered with the component computing its value; including fu-
tures inside request parameters and result values. Registration mechanism for
the lazy strategy is simpler because it is only triggered on future access. To
conclude, eager-home strategy is the more complex strategy and we selected
it for this paper in order to show that strategy can be formalised, and its
properties shown. Finally, our formalisation can also be used in the context
of Creol [9], which uses a update mechanism similar to eager-home.

Figure 3 shows the registration process for a future f which will be com-
puted by the component NH . N1, N2 and N3 all have references to the future
f , and consequently register with NH . Once the result is computed, NH sends
this result to all registered components (N1, N2, and N3) as shown in Figure 4.

4 Formal Model

In this paper, we build on the formal model presented in [8], adding precise
semantics for the future update mechanism. We start this section by the
general notations, and gradually move to more component and GCM specific
notations. The resultant model has been formalised 1 in Isabelle/HOL [13].

4.1 Structure and notations

We denote lists as [ai]
i∈1..n, while {ai}

i∈1..n is used for a finite set. Pairs are
represented with the notation (a, b). A number of operators are used in our
formalism. The operator # is the list append operation whereas [ai]

i∈1..n \ b
removes b from the list [ai]

i∈1..n whatever its position is. We use the notation
[ai 7→ bi]

i∈1..n to indicate a mapping from ai to bi. A new entry is added to
an existing mapping simply by ([ai 7→ bi]

i∈1..n)[c 7→ d]. ([ai 7→ bi]
i∈1..n)[c 7→ ∅]

removes the entry corresponding to c in the mapping, if it exists.

Let f range over futures, v range over values, itf range over interfaces and
C range over components. Additionally, S denotes a composite component
representing the component system (all components currently instantiated).
A future f is a pair (identifier, component name): f ::= (id, N). id is a unique
identifier for the future, while N is the name of the component computing
the value of the future. Similarly, we define a value v as a pair (“object
value”, set of referenced futures): v ::= (V, fi

i∈1..n), where “object value” (V)
is a structure representing the values of the underlying language but that

1 Prototype specification available at www.inria.fr/oasis/Ludovic.Henrio/misc

8

www.inria.fr/oasis/Ludovic.Henrio/misc

Henrio, Khan

we abstracted away by integers. This prevents values from being defined
recursively. We denote (Vf , f0) the value containing only a future reference
f0. The second element of v, is the set of futures contained in the value. A
Request R is a triple (future, value ,interface): R ::= (f, v, itf).

Component structure

For presenting our component model, we choose a representation that include
static information like component interfaces and bindings. This allows our
model to be expressive enough to support properties and proofs interleav-
ing the component structure and more dynamic features like future update
strategies. On a longer term basis it will also allow us to prove properties on
component reconfiguration.

Components in our model can be either composites or primitives:

C ::= Comp[N, itfs, subCp, bindings, CompState] | Prim[N, itfs, PrimState]

All components have a unique name N (there is only one component with a
given name), a list of interfaces itfs ::= [itfi]

i∈1..n, and a component state s.
Additionally, a composite has a list of subcomponents subCp ::= [Ci]

i∈1..n, and
a set of bindings bindings ::= {(Ni.itfi, N ′

i .itf
′

i)
i∈1..n}. (Ni.itfi, N ′

i .itf
′

i) belongs
to bindings if interface itfi of component named Ni is plugged to the interface
itf ′i of N ′

i (where Ni and N ′

i can either be a component name or This if the
plugged interface is the composite component that defines the bindings).

Each component state s contains a request queue: queue ::= [Ri]
i∈1..n, a

list of results mapping futures to computed values: results ::= [fi 7→ vi]
i∈1..n,

and a list of futures recipients: FRL ::= [fi 7→ {Nj}
j∈1..ni]i∈1..n. A primitive

component state additionally contains an internal state (intState), and an
associated behaviour behaviour. A behaviour is a labelled transition system
where the actions of the primitive components are the labels of transactions
and the states are the values of intState. An internal state contains a list
of current requests: currReq ::= [fi]

i∈1..n and a list of futures referenced by
the internal state: refF ::= [fi]

i∈1..n. Fields of a state are accessed through
functions. For example, queue(s) returns the current queue of the state s.
Fields are modified by the operator := as shown below. Enqueue(C, R) returns
the component C where its state s is replaced by s Lqueue := queue(s) # R M.

Additional constructs

We introduce a registration list RL to support the eager home strategy; it
maps a future to the set of components that require the value for this future:
RL ::= [fj 7→ {Ni}

i∈1..nj]j∈1..n. The structure of registration list RL is the same
as for future recipients list FRL. The registration list of future f is accessed
by RL(f), to simplify, if f /∈ dom(RL) then RL(f) = ∅. We define two new
operators for manipulating lists of components. Operator ↑ is a find operation:

9

Henrio, Khan

(subCp ↑ N) is the element of subCp which has the name N . Operator ← is
the list replacement operator: (subCp ← C1) replaces by C1 the component
in subCp that has the same name as C1. List append operator # is overloaded
for recipient list RL as:

RL#RL′ , [fj 7→ Mj | fj ∈ dom(RL) ∪ dom(RL′) ∧ Mj = RL(fj) ∪ RL′(fj)]

To simplify our semantics we introduce a number of support functions.

RqIdsSet(S) is the set of ids of all requests computed by S. It is the union
of the domains of the request queue of S (queue), its currently executing
requests (currReq), and its computed results (results), but also, recursively,
requests computed by all its subcomponents.

RefFutSet(S) is the set of all futures referenced by S and all its subcom-
ponents recursively. It contains futures referenced in the current state (refF),
futures in the parameters of the requests in the request queue (queue), futures
in the the value of computed results (results), and futures referenced by sub-
components. By extension, we define similar function RefFutSet(v), giving set
of futures in a value v.

host(f) is the name of the component computing future f (snd(f)).

cpSet(C) is the set formed of C and all the components recursively con-
tained in C.

removeResult(f, C, N) looks recursively inside the component C until a
component C ′ with name N is found. It returns C where the state s of C ′ is
replaced by s L results = results(s)[f 7→ ∅],FRL :=FRL(s)[f 7→ ∅] M

updateFV (v, f, v′) abstracts away the operation that updates a value v
by replacing the occurrences of future f by v′. We simplified it so that it
removes f from RefFutSet(v), and replaces it by RefFutSet(v′). It returns
the new value, and verifies the property:
RefFutSet (updateFV(v, f, v′)) = RefFutSet(v) \ {f} ∪ RefFutSet(v′)

getName(C) is the name of the component C.

registerListFutures(S,RL) takes a component system S and a registration
list RL and returns a new component system S ′ such that all the entries in
the RL have been added to the recipient lists (FRL) of relevant components:
The state s of each component of S is replaced by s LFRL = FRL(s) #RLM.
This only affects components with name host(f) where RL(f) 6= ∅.

A summary of the notations appears in Appendix B.

4.2 Semantics of component model

The formal semantics of our component model are given by a number of re-
duction relations defined by a set of inductive rules. The global reduction
of the component system is ❀, it triggers either −\f, v, N Z→F , or →R reduc-

10

Henrio, Khan

tions. S ⊢ C →R C ′, RL, if in component system S, component C can be
reduced to the component C ′. RL contains the list of future registrations to
be performed.

The parametrised relation −\ itf, f, v Z→O emits messages. In order to be
matched with a receive action, the statements −\ itf, f, v Z→O are used as hy-
potheses to the rules for →R for composite components. If S ⊢ C −\ itf, f, v Z→OC ′,
then in the component systemS, C emits a request on the interface itf, with pa-
rameter v, and is associated to a future f ; after the emission, C becomes C ′. A
final parametrised relation −\f, v, N Z→F expresses that a component receives
the new value for a future (future update message). if C −\f, v, N Z→F C ′, RL,
then the component C with name N receives the value v for the future f . N
should register for all the futures in v via RL.

Figure 7 presents reduction rules dealing with composite components. The
first rule embeds subcomponent reduction in composite contexts; the second
rule allows composite components to emit requests on their external client
interfaces. The three Comm-rules define the request transmission over the
different kinds of bindings. Trigger future update defines the mechanisms for
initiating future updates. Finally, the two Rcv rules performs future updates
inside composite components based on whether it is the right component for
doing the update or not. The last rule triggers →R reduction. Figure 5
illustrates the different kinds of communications expressed by the Comm-rules
and the composite call rule. The existence of the different form of rules is
due to the component structure. Classically there are two rules for stating
that a component is willing to send a communication (one for primitives and
one for composites). Additionally, as there are three kind of bindings (from a
parent component to a subcomponent, between two subcomponents, or from
a subcomponent to its parent), there are three kind of communication rules
(resp. CommChild, CommBrother, or CommParent).

CommBrothers CompositeCall

CommParentCommChild

Fig. 5. Component Communications

itf

[f,v,itf']

N

N'

[N.itf,N ′.itf ′] ∈ bindings

itf'
[f, v, itf ′]

[f !→ N]FRL

N' registers for all futures in v

Fig. 6. CommBrother

Hierarchy: Hierarchy defines the compositionality of components. If a
component C reduces to a component C ′ in isolation, then it also does so

11

Henrio, Khan

Hierarchy
(subCp ↑ N) = C S ⊢ C →R C′, RL

S ⊢ Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, (subCp← C′), bindings, s], RL

CompositeCall
queue(s) = [f, v, itf] # Q

f ′ /∈ RqIdSet(S) s′ = sLqueue := Q, results := results(s)[f 7→ (Vf , {f ′})]M

S ⊢ Comp[N, itfs, subCp, bindings, s]− \ itf, f ′, v Z→O Comp[N, itfs, subCp, bindings, s′]

CommBrothers
C = (subCp ↑ N) [N.itf, N ′.itf ′]∈bindings S ⊢ C − \ itf, f, v Z→O C′ host(f) = N ′

subCp′ = subCp← C′ subCp′′ = subCp′ ← (Enqueue(subCp′ ↑ N ′, [f, v, itf ′]))

S ⊢ Comp[N0, itfs, subCp, bindings, s]→R

Comp[N0, itfs,SubCp′′, bindings, s], [(f ′′, N ′) | f ′′ ∈ RefFutSet(v)] # [f, N]

CommChild
queue(s) = [f, v, itf]#Q [This.itf, N ′.itf ′] ∈ bindings f ′ /∈ RefFutSet(S)
host(f ′) = N ′ subCp′ = subCp← (Enqueue((subCp ↑ N ′), [f ′, v, itf ′]))

s′ := sLqueue := Q, results := results(s)[f 7→ (Vf , f ′)]M

S ⊢ Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, subCp′, bindings, s′],
[f ′, N0] # [(f ′′, N ′) | f ′′ ∈ RefFutSet(v)]

CommParent
(subCp ↑ N) = C [N.itf ′, This.itf] ∈ bindings

subCp′ = subCp← C′ S ⊢ C − \ itf ′, f, v Z→O C′ host(f) = N0

S ⊢ Comp[N0, itfs, subCp, bindings, s]→R Enqueue(Comp[N0, itfs, subCp′, bindings, s],
[f, v, itf]), [f, N]# [(f ′′, N0) | f

′′ ∈ RefFutSet(v)]

TriggerFutureUpdate
C ∈ cpSet(So) the state of C is s results(s)(f) = v FRL(s)(f) = {Ni}

i∈1..n

∀i ∈ 1..n, Si−1− \f, v, Ni Z→F Si, RLi S′ = RemoveResult(f, Sn, getName(C))

⊢ So ❀ regListFutures(S′, RL1 #RL2 # . . . #RLn)

RcvResultComposite(1)

s′ = sLresults = [fi 7→ vi | ∃ v′

i. [fi 7→ v′

i] ∈ results(s) ∧ vi = updateFV(v′

i, f, v)],
queue = [[fj , vj , itfj] | ∃ v′

j . [fj , v′

j , itfj] ∈ queue(s) ∧ vj = updateFV(v′

j , f, v)]

S ⊢ Comp[N,itfs, subCp, bindings, s]− \f, v, N Z→F

Comp[N,itfs, subCp, bindings, s’], [(f ′′, N) | f ′′ ∈ RefFutSet(v)]

RcvResultComposite(2)

N0 6= N ′ (subCp ↑ N)− \f, v, N ′ Z→F C′, RL subCp′ = subCp← C′

S ⊢ Comp[N0, itfs, subCp, bindings, s]− \f, v, N ′ Z→F Comp[N0, itfs, subCp′, bindings, s], RL

R-reduction
S ⊢ S →R S′,RL

S ❀ registerListFutures(S′,RL)

Fig. 7. Semantics of the component composition

inside a composite. The registration list is the one for the sub-component.

CompositeCall: This rule describes how a composite component emits a
call on the external client interface. This request will be handled by the en-

12

Henrio, Khan

[f',v,itf']

fresh f'

N'

f'=f

[f, v, itf]

itf
itf'

[f ′, v, itf ′]

Results

FRL

N0

[f ′
!→ N0]

N' registers for all futures in v

[This.itf,N’.itf’] ∈ bindings

Fig. 8. CommChild rule

[f,v,itf]

N0

N

itf'
itf

FRL

[f, v, itf]

[f !→ N]

N0 registers for all futures in v

[N.itf’,This.itf] ∈ bindings

Fig. 9. CommParent

closing composite. The request [f, v, itf], received on internal server interface
itf, is sent on the matching external client interface (with same name). This
call will be matched against a Comm rule that enqueues this request. A fresh
future f ′ is found for this new request. The composite component records
that the value of f is now the new future f ′, and dequeues the request.

CommBrothers: This rule expresses communication between two sibling
subcomponents of a composite component, as illustrated in Figure 6. If N and
N ′ are the names of two subcomponents of component N0, then component N
can pass a call to component N ′ if the client interface itf of N is bound to the
server interface itf ′ of N ′ ([N.itf, N ′.itf ′] ∈ bindings). The call parameters
f, v are passed unchanged to interface itf ′ of subcomponent N ′. The operation
Enqueue is used to place the request [f, v, itf ′] onto the request queue of the
destination. N is reduced simultaneously, sending the request. Component N
then register (in the RL list) for receiving the result for future f when it is
available. Similarly, N ′ also registers for all futures inside the parameter v.

CommChild: This rule expresses request delegation between a composite
component and its subcomponent as shown in Figure 8. The request [f, v, itf]
is dequeued from the request queue of the parent. A new future f ′ is created
and added to the result list of the parent as the result for this request. The new
request [f ′, v, itf ′] is enqueued at the subcomponent. The exact subcompo-
nent is determined using the bindings: a request delegated to a subcomponent
necessarily arrived an external server interface, call it itf, if This.itf is bound
to N ′.itf ′ then the request is sent to the interface itf ′ of the subcomponent
N ′. The component N0 registers in the RL list to receive the result for f ′, also
the destination N ′ registers for any future inside the request parameter v.

CommParent: This rule expresses communication between a subcomponent
and the composite component containing it, see Figure 9. When a subcompo-
nent N of a composite component N0 emits a request [f, v, itf ′] to its parent,
the request is added to the composite component’s request queue. For this,
the subcomponent interface N.itf ′ must be bound to the parent component
interface This.itf. The component N registers to receive the value for f when
it is available; also, the values for any future inside v must be sent to N0.

13

Henrio, Khan

TriggerFutureUpdate: This rule selects a computed result of a component
C in the component system So for initiating the future update process. The
value v for the future f , has to be sent to all components (Ni

i∈1..n) in future
recipient list FRL for the future f . For every component Ni, a future update
is triggered; on Ni, this is matched by the RcvResult rule.

RcvResultComposite(1): This rule expresses future update for a composite
component which is the destination of the update. At the component N , the
state s is updated such that the new value v for the future f , replaces the old
value inside both the results and queue. The values for any futures inside v
should be sent to N , this is recorded in the RL list.

RcvResultComposite(2): This rule ensures that a future update is applied
at the component that is the destination of the future update, i.e., only at
the component which has the same name as given in reduction parameter
−\f, v, N Z→F . Only the sub-component that contains a component of name
N is able to be reduced. This rule navigates in the component hierarchy, finds
the component with name N , and applies rule RcvResultComposite(1).

R-reduction: From →R, a reduction ❀ for the global component system
can be performed, after performing all future registrations.

The reduction rules for the primitive components are similar and appear in
Appendix A. We only show one of the rules below. RcvResultPrim expresses
the future update for a primitive component. All references to the future
f are replaced with the new value v. Entries are made in the FRL for any
futures present inside v. Interaction between the component semantics and
the internal state of the primitive is enabled by triggering transitions on the
primitive behaviour, here ReceiveResult.

RcvResultPrim
(s, ReceiveResult f v, s′) ∈ behaviour(s)

s′′ =s′Lresults = [fi 7→ vi | fi∈dom(results(s)) ∧ v1 =updateFV(results(s)(fi), f, v)],
queue = [[fi, vi, itfi] | [fi, v′

i, itfi] ∈ s.queue ∧ vi =updateFV (v′

i, f, v)]M

S ⊢ Prim[N,itfs, s]− \f, v, N Z→F Prim[N,itfs, s”], [(f ′′, N) | f ′′ ∈ RefFutSet(v)]

5 Formalisation in Isabelle and Properties

Isabelle/HOL is a generic interactive theorem proving framework, that allows
implementation of formalised object logic. This section outlines the mechani-
sation of our component model in Isabelle/HOL, its semantics including eager
home strategy, and several formalised proofs.

First, the definition of the component structure and the component seman-
tics are directly translated from the preceding sections as we will show below.
Then this section will describe the properties we proved using our formalisa-
tion. This is clearly the most innovative part of this paper as it shows that

14

Henrio, Khan

our formalisation is able to handle mechanised proofs entailing reasoning on
components, their structure, and futures. While the formalisation represents
a few hundreds lines of code, the proofs are much longer (above 5000 lines)
and entail reasoning interleaving component structure, semantics, and future
registration aspects.

Component model

The data type for components is defined as follows:
datatype Component =
Primitive Name (Name7→ Interface) PrimState |
Composite Name (Name7→ Interface) (Component list) (Binding set) CompState

Isabelle/HOL support for finite sets is much weaker than for list, thus it is
easier to reason on lists as compared to sets. Consequently, we utilise lists
where possible; for example, the subcomponents of a composite are defined
as a list of components, which allows inductive reasoning on the component
structure. We model the bindings in composite components as a set because
no inductive reasoning is required on bindings. In practice, we only reason on
a subset of components, that we call correct components:
constdefs CorrectComponent:: "Component 7→ bool"
"CorrectComponent C == CorrectCompStructure C ∧ distinct(RqIdList C)
∧ (RefFutSet C)⊆ (set(RqIdList C))∧ distinct(map getName(cpList C)

CorrectComponent states the correctness rule for a component as: component
should be constructed correctly (more precisely: bindings are one-to-one, and
connect an existing client interface to an existing server one, local behaviour of
primitives refer to existing interfaces, . . .). Each future should correspond to
a unique request in the component hierarchy (RqIdList has no duplicate), and
each futures referenced by the components should correspond to a request.
Finally, names of components in the composition should be unique. Note
that cpList returns list of all components in the composition, recursively
(cpSet C= set(cpList C)). The requirement of checking correct referencing
throughout the composition hierarchy is stronger than what is needed for
most proofs, and can at times be loosened, resulting in a weaker correctness
rule(shown as CorrectComponentWeak in Isabelle/HOL implementation).

Semantics

The semantics of primitive and composite components, as detailed in Sec-
tion 4.2 and Appendix A has been entirely specified in Isabelle/HOL. To
compare semantic specification in Isabelle to its mathematical equivalent, we
show below the CommParent, and compare it to Figure 7. It is easy to see
the equivalence of the two specifications (only a few intermediate variables
were removed in the Isabelle version),
CommParent:
"J(subCp↑N) = Some C,L src=N.itf’,dest=This.itfM∈ bindings; snd f= N0;S⊢ C− \f,v,NZ→O C’K"
=⇒ S⊢Composite N0 itfs subCp bindings s→R (Composite N0 Itf (subCp<-C’) bindings s)

← L id=f, param= v,invokedItf= itf M,(f,N) # (map (λ id. (id,N0)) (snd (v))

15

Henrio, Khan

Properties and proofs

The formalisation sketched above and entirely written in Isabelle/HOL is rich
enough to allow proofs of various lemmas. Our objective is to have a frame-
work rich enough to address most aspects of distributed components features,
but also the framework should be close enough to the existing component
framework so that equivalence between the implementation of the framework
and the specification is simple and convincing. We believe that our approach
is adequate to prove properties entailing component structures, asynchronous
communications, and component behaviours. More specifically in this paper
we focused on the implementation of a future update strategy. Consequently,
we only present below theorems related to future updates and registration of
futures. Of course those properties cannot be proved without relying on nu-
merous other lemmas mainly related to components structure, and navigation
inside component hierarchy. Most of the lemmas are proved by induction on
the component structure or on the reduction rules.

A first crucial theorem we proved is UpdatedFutureDisappear; it assures
that when a future has been updated, no reference to this future exist in
the updated component. More precisely, when the future f is updated, at
the component with the name N inside the component system S, the new
component C (with the name N) inside the reduced system S2 no longer has a
reference to f (LocalRefFutSet returns the list of futures referenced locally
by C, it is similar to RefFutSet but does not enter subcomponents).
lemma UpdatedFutureDisappear:
"J S− \f,v,NZ→F S2, RL; CorrectComponent S; (S2 ↑↑ N) = Some C ; f /∈ set (snd v)K
=⇒ f /∈ LocalRefFutSet C)"

Concerning future registration, the main theorem we proved in Isabelle is
the following one (GlobalRegisteredFuturesComp checks that all futures are
registered in the given component system):
theorem FuturesRegistered:
"J⊢ C1❀ C2; CorrectComponent C1; GlobalRegisteredFuturesComp C1K
=⇒ GlobalRegisteredFuturesComp C2"

It states that after global reduction ⊢C1 ❀ C2, all futures registered in C1

are also registered in the reduced system C2 along with any new futures gen-
erated as the result of component communications. Consequently, the proof
of the theorem relies on lemmas about transmission of registered futures, and
registration of newly created futures. We show two such lemmas below.

The first lemma states that, if a future f (in component named N) is
registered in C, and C reduces by →R to C’, then the f is also registered in C’.
lemma R_maintainsRegFutures:
"J S⊢ C →R C’,RL; CorrectComponent C; RegisteredFuture f N C; C∈cpSet S K
=⇒ RegisteredFuture f N C’"

The second lemma concerns registration of new futures. It states that if in a
source configuration, all futures contained in a subcomponent of C1 are regis-

16

Henrio, Khan

tered in S (expressed by LocalRegisteredFuturesComp). Let C2 be obtained
by →R reduction from C1. Then, a future referenced from a subcomponent
C’ of C2 is either initially registered in S or will be registered because a cor-
responding entry is in the registration list RL.
lemma registeredFutures_R:
"KS ⊢ C1 →R C2,RL; C1∈cpSet S;∀C∈cpSet C1. LocalRegisteredFuturesComp C S;

C’∈cpSet C2; f∈LocalRefFutSet C’ K
=⇒ RegisteredFuture f (getName C’) S ∨ (f, getName C’)∈set RL"

Above proofs are almost entirely mechanised: only properties ensuring
preservation of CorrectComponent by the reduction are left for future works.

The two theorems presented in this section ensure that the eager home
future update strategy is complete, that is it keep track of the future references
in all the component system, and then it updates all those references, removing
all references to the considered futures. Consequently, the future can safely be
garbage collected. This strategy can be thus adopted in the implementation
of the GCM; this guarantees safety of the future update implementation.

This work is not particularly tied to the use of Isabelle/HOL: similar for-
malisation and results could be obtained with another theorem prover.

6 Conclusion

This paper presented a model for distributed components communicating
asynchronously using futures. The communication model is based on a
request-reply paradigm, where requests are enqueued at target component
and invoker receives a future, representing the result. Futures are first class:
and consequently future references can be spread across components. When
the results are available, they are sent to the relevant components using a
future update strategy.

Future update strategies are somewhat neglected in the literature. We
believe that even though future update strategies need not be included for
studying properties of a language, they are still important for reasoning on
the implementation of this language. Consequently, our semantics include for-
malisation of a future update strategy. Our model is precise and expressive
enough to reason about futures and components, and to guarantee correctness
properties. The properties shown here are: futures are registered correctly
during reduction, and futures values can be safely garbage collected after
update. All of our work, the component model specification, its semantics,
and proofs of properties, has been mechanised in isabelle/HOL. Those mech-
anised proofs ensure the correctness of the implementation of future updates
in ProActive/GCM.

We now have sufficient formal constructs and tools to express future update
strategies and to study their properties. This work showed that it is possible to
formally prove completeness and correctness of our future update mechanism,

17

Henrio, Khan

and of the corresponding implementation in ProActive/GCM. The proofs are
relatively long due to the numerous reduction rules, and the rich component
structure, thus a lot of cases had to be considered. One of the main difficulties
was to design the good representation for our model in the Isabelle theorem
prover. A crucial point during the specification phase was to find the good
Isabelle/HOL abstraction to represent the component structures. We think
we found a good balance between expressiveness and abstraction, that allows
formal reasoning but is close enough to the component model implementation.

We now intend to further study the update strategies and to establish an
equivalence between different strategies. Also this framework seems to be a
good basis to study reconfiguration in distributed component systems.

References

[1] Baude, F., D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio and C. Pérez,
Gcm: a grid extension to fractal for autonomous distributed components, Annales des
Télécommunications 64 (2009).

[2] Boer, F. S. D., D. Clarke and E. B. Johnsen, A complete guide to the future, in: Proc. 16th
European Symposium on Programming (ESOP’07), LNCS 4421 (2007), pp. 316–330.

[3] Caromel, D., C. Delbé, A. di Costanzo and M. Leyton, ProActive: an integrated platform for
programming and running applications on grids and P2P systems, Computational Methods in
Science and Technology 12 (2006), pp. 69–77.

[4] Caromel, D. and L. Henrio, “A Theory of Distributed Object,” Springer-Verlag, 2005.

[5] Dedecker, J., T. V. Cutsem, S. Mostinckx and W. D. Meuter, Ambient-oriented programming
in ambienttalk, in: Proceedings of 20th European Conference on Object-oriented Programming
(ECOOP) (2006).

[6] Halstead, Jr., R. H., Multilisp: A language for concurrent symbolic computation, ACM
Transactions on Programming Languages and Systems (TOPLAS) 7 (1985), pp. 501–538.

[7] Henrio, L. and F. Kammüller, Functional active objects: Typing and formalisation, in:
Proceedings of the International Workshop on the Foundations of Coordination Languages and
Software Architecture (FOCLASA) (2009).

[8] Henrio, L., F. Kammüller and M. Rivera, An asynchronous distributed component model and
its semantics, in: FMCO 2008 (2009).

[9] Johnsen, E. B., O. Owe and I. C. Yu, Creol: a type-safe object-oriented model for distributed
concurrent systems, Theoratical Computer Science 365 (2006), pp. 23–66.

[10] Khan, M. U. and L. Henrio, First class futures: a study of update strategies, Research Report
RR-7113, INRIA (2009).
URL HAL:http://hal.archives-ouvertes.fr/inria-00435573/en/

[11] Merle, P. and J.-B. Stefani, A formal specification of the Fractal component model in Alloy,
Research Report RR-6721, INRIA (2008).
URL http://hal.inria.fr/inria-00338987/en/

[12] Niehren, J., J. Schwinghammer and G. Smolka, A concurrent lambda calculus with futures,
Theoretical Computer Science 364 (2006), pp. 338–356.

[13] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL – A Proof Assistant for Higher-Order
Logic,” LNCS 2283, Springer-Verlag, 2002.

[14] Ranaldo, N. and E. Zimeo, Analysis of different future objects update strategies in proactive,
in: IPDPS 2007: Parallel and Distributed Processing Symposium, IEEE International, 2007.

18

HAL:http://hal.archives-ouvertes.fr/inria-00435573/en/
http://hal.inria.fr/inria-00338987/en/

Henrio, Khan

[15] Taura, K., S. Matsuoka and A. Yonezawa, Abcl/f: A future-based polymorphic typed concurrent
object-oriented language - its design and implementation, in: Proceedings of the DIMACS
workshop on Specification of Parallel Algorithms (1994), pp. 275–292.

[16] Welc, A., S. Jagannathan and A. Hosking, Safe futures for java, SIGPLAN Not. 40 (2005).

[17] Yonezawa, A., E. Shibayama, T. Takada and Y. Honda, Modelling and programming in an
object-oriented concurrent language ABCL/1, in: Object-Oriented Concurrent Programming,
MIT Press, 1987 .

A Primitive Component Semantics

Tau
(PintState(s),Tau, s2) ∈ behaviour(s)

S ⊢ Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2M], []

Call
(PintState(s),Call(i1, v, f), s2) ∈ behaviour(s) f /∈ RefFutSet(S)

S ⊢ Prim[N, itfs, s]− \ i1, f, v Z→O Prim[N, itfs, sLPintState := s2M]

EndService
(PintState(s),EndService(f, v), s2) ∈ behaviour(s)

S ⊢ Prim[N, itfs, s]→R Prim[N, itfs, sLPintState :=s2, results :=results(s)#[f, v]M], []

ServeNext
(PintState(s),NewService(v, f), s2) ∈ behaviour(s) queue(s) = [f, v, i]#Q

S ⊢ Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2, queue := QM], []

RcvResultPrim
(s, ReceiveResult(f, v), s′) ∈ behaviour(s)

s′′ =s′Lresults = [fi 7→ vi | fi∈dom(results(s)) ∧ v1 =updateFV((results(s))(fi), f, v)],
queue = [[fi, vi, itfi] | [fi, v′

i, itfi] ∈ queue(s) ∧ vi =updateFV (v′

i, f, v)]M

S ⊢ Prim[N,itfs, s]− \f, v, N Z→F Prim[N,itfs, s”], [(f ′′, N) | f ′′ ∈ RefFutSet(v)]

Fig. A.1. Primitive Component Semantics

This appendix presents the reduction rules expressing the operational se-
mantics of primitive components. Each of the rule updates the internal state
of the component according to its behaviour, additionally:
Tau allows internal transitions.
Call emits a message towards another component. A new future is created to
represent the result of this call.
EndService terminates a request execution. The produced value v is stored as
the result for future f , inside the computed results.
ServeNext serves the next request, in a FIFO order. The request is dequeued.
RcvResultPrim receives a future value, and replaces all references to the future
by the new value.

19

Henrio, Khan

B Index of Notations

Summary of symbols and operations

List Append Operator

\ List remove operator

[a 7→ b] Mapping from a to b

↑ Find operator for component list

← Replace operator for component list

f Future: f ::= (id, N)

v Value: v ::= {V,fi}
i∈1..n

(Vf , f0) Special value indicating value only contains future

R Request: R ::= (f, v, itf)

s Component state: s ::= (CompState | PrimState)

itfs List of component interfaces

subCp List of subcomponents:subCp ::= {Ci}
i∈1..n

queue Request queue of current state:queue ::= [Ri]
i∈1..n

results Computed results: results ::= [fi 7→ vi]
i∈1..n

FRL Future recipient list: FRL ::= [fi 7→ {Nj}
j∈1..n]i∈1..n

currReq
Lists of requests beings served currently: currReq ::=
[fi]

i∈1..n

refF List of referenced futures in current state refF ::= [fi]
i∈1..n

Enqueue(C, R) Enqueues the request R at C, returns a new component

RL
List of registrations to be made:
RL ::= [fi 7→ {Ni}

i∈1..n]

RqIdsSet(S) All request id’s referenced in S

RefFutSet(S) All futures referenced from S and its subcomponents recur-
sively

host(f)
Returns the name of component which will compute

the result for this future. host(f) , snd(f)

cpSet(C) Returns the set containing C and all it’s sub-components
recursively

cpList(C) Returns a list containing C and all it’s sub-components re-
cursively

removeResult(f, C, N) Update the component such that all references to f are re-
moved

updateFV(v, f, v′) Update the future f by replacing old value v with v′

registerListFutures(S,RL) Register all entries in RL and return new component system
S’

GlobalRegisteredFuturesComp Function to check if all futures are registered

CorrectComponent Correctness rules (constraints) for components

20

	Introduction
	Related Works
	An Asynchronous Component Model With Futures
	Component structure
	Informal semantics
	Future update strategies

	Formal Model
	Structure and notations
	 Semantics of component model

	Formalisation in Isabelle and Properties
	Conclusion
	References
	Primitive Component Semantics
	Index of Notations

