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ZEONS, LATTICES OF PARTITIONS, AND FREE
PROBABILITY

RENÉ SCHOTT AND G. STACEY STAPLES

Abstract. Central to the theory of free probability is the notion of sum-
ming multiplicative functionals on the lattice of non-crossing partitions. In
this paper, a graph-theoretic perspective of partitions is investigated in which
independent sets in graphs correspond to non-crossing partitions. By associ-
ating particular graphs with elements of “zeon” algebras (commutative sub-
algebras of fermion algebras), multiplicative functions can be summed over
segments of lattices of partitions by employing methods of “zeon-Berezin”
operator calculus. In particular, properties of the algebra are used to “sieve
out” the appropriate segments and sub-lattices. The work concludes with an
application to joint moments of quantum random variables.

1. Introduction

The current work builds on the combinatorial approaches to multiple stochastic
integrals developed by Rota and Wallstrom [8] and extended to free stochastic
processes by Anshelevich [1].

A precursor to the current work was the graph-theoretic approach to multiple
stochastic integrals developed by Staples [14]. In that paper, multiple stochastic
integrals of classical processes and processes defined within a Clifford algebra of
arbitrary signature were recovered from cycles contained in weighted graphs.

Another precursor was the joint paper by the current authors [10] in which
Clifford-algebraic methods were applied to partitions and non-overlapping parti-
tions to recover Bell numbers, Stirling numbers of the second kind, and Bessel
numbers.

The lattice of non-crossing partitions is essential to the combinatorics of free
probability theory, as computing moments of free random variables relies on sum-
ming multiplicative functionals on the lattice of non-crossing partitions. In the
current work, graph-theoretic perspectives of partitions are investigated in which
vertex independent sets in graphs correspond to non-crossing partitions. By asso-
ciating appropriate graphs with elements of “zeon” algebras (commutative subal-
gebras of fermion algebras), multiplicative functions can be summed over segments
of lattices of partitions by employing methods of “zeon-Berezin” operator calcu-
lus. In particular, properties of the algebra are used to “sieve out” the appropriate
segments and sub-lattices.
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For essential background on free probability and the necessary combinatorics,
the reader is referred to the works of Nica and Speicher [7], and Anshelevich [1].

The work of Franz Lehner on cumulants in non-commutative probability theory
is also of interest, as it provides another graph-theoretic perspective on stochastic
measures [6].

The rest of the paper is arranged as follows. In Section 2, zeon algebras are
defined and the properties of zeon operator calculus necessary for later sections are
revealed. Essential terminology from graph theory and the relationships among
set partitions, cycle covers, and independent sets are detailed in Section 3, where
some familiar counting numbers are recovered with the zeon operator methods.

In Section 4, zeon-algebraic methods are developed to perform computations
involving multiplicative functionals on lattices of partitions. These methods com-
bine properties of zeons with the graph-theoretic perspective to define an operator
calculus that naturally “sieves out” the appropriate lattice segments for computa-
tion.

The work concludes with Section 5, where the methods are applied to free
cumulants in a quantum probability space to recover moments of quantum random
variables.

The Mathematica examples generated throughout the paper illustrate the use-
fulness of zeon-Berezin operator calculus methods in performing symbolic com-
putations. The Mathematica procedures underlying the examples are available
through the second named author’s web page at http://www.siue.edu/~sstaple.

2. Zeon Algebras

Zeon algebras are commutative algebras whose generators square to zero. Their
combinatorial properties have been applied to the study of graphs in a number of
works by the current authors (cf. [11], [12], [9]), although the name “zeons” is
attributed to Feinsilver [4].

Definition 2.1. Let F be a field. For fixed n ≥ 0, the 2n-dimensional zeon algebra
Zn is defined as the associative algebra generated by the collection {ζi} along with
the scalar ζ∅ = 1 ∈ F, subject to the following multiplication rules:

[ζi, ζj ] := ζi ζj − ζj ζi = 0 for 1 ≤ i, j ≤ n and (2.1)

ζi
2 = 0 (2.2)

Note that the even subalgebra of the Grassmann algebra over a 2n-dimensional
vector space V contains Zn. In particular, if {ei} is an orthogonal basis for V , one
can define ζi := e2i−1 ∧ e2i for 1 ≤ i ≤ n, where ∧ denotes the exterior product.

Let [n] = {1, 2, . . . , n} and denote arbitrary, canonically ordered subsets of [n]
by capital Roman characters. Let 2[n] denote the power set of [n]. The basis
elements of Zn can then be indexed by these finite subsets by writing

ζI =
∏

k∈I

ζk. (2.3)
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Arbitrary elements of Zn have the form

u =
∑

I∈2[n]

uI ζI , (2.4)

where uI ∈ F for each I.
It will also be convenient to associate multi-indices with integers. To this end,

we adopt the notational convention of letting j denote the subset of [n] uniquely
associated with the integer 0 ≤ j < 2n by

j =
∑

k∈j

2k. (2.5)

Definition 2.2. Any nonzero product of k generators in Zn is referred to as a
blade of grade k, or a k-blade.

Definition 2.3. For 0 ≤ k ≤ n, the grade-k part of u ∈ Zn is defined as the sum
of grade-k monomials in the expansion of u. In other words,

〈u〉k =
∑

I∈2[n]
|I|=k

uI ζI . (2.6)

The vector space spanned by grade-k blades in Zn is denoted by 〈Zn〉k
Notation. The notation 〈〈u〉〉k is used to denote the sum of the coefficients in
the grade-k part of u. That is,

〈〈u〉〉k =
∑

I∈2[n]
|I|=k

uI . (2.7)

Definition 2.4. Given arbitrary u =
∑

I∈2[n]

uI ζI and v =
∑

I∈2[n]

vI ζI , the zeon

inner product of u and v is defined by

〈u, v〉 =
∑

I∈2[n]

uI vI . (2.8)

Consequently, the expansion of u ∈ Zn can be written

u =
∑

I∈2[n]

〈u, ζI〉 ζI . (2.9)

This inner-product defines a norm on Zn by

‖u‖ = 〈u, u〉 1
2 . (2.10)

This norm is referred to as the zeon inner-product norm.

2.1. Zeon operator calculus. The operator calculus here follows naturally from
Grassmann-Berezin calculus. Notationally, the work in this section draws largely
from [13].

Definition 2.5. In Zn, the jth lowering operator Lj is defined by linear extension
of

ζILj =

{
ζI\{j} if j ∈ I,

0 otherwise,
(2.11)
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while the jth raising operator Rj is similarly defined by linear extension of

ζIRj =

{
0 if j ∈ I,

ζI∪{j} otherwise
(2.12)

for each j = 1, . . . , n.

Note that the jth lowering operator is easily regarded as a derivation:

ζILj =
∂

∂ζj
ζI ,

although it is not a derivation in the technical sense.
The zeon canonical raising and lowering operators L and R are defined as the

sums of the raising and lowering operators, respectively. In particular,

L :=
n∑

j=1

Lj , and R :=
n∑

j=1

Rj .

Note that the action of L on basis blades of Zn has the following combinatorial
interpretation: L maps each blade indexed by set I to a sum of blades indexed by
proper subsets of I having cardinality |I| − 1. The canonical raising operator has
a similar interpretation. In particular,

ζIL =
∑
J(I

|J|=|I|−1

ζJ ,

ζIR =
∑
J)I

|J|=|I|+1

ζJ .

In light of the graded structure of Zn =
⊕n

k=0 〈Zn〉k, these operators induce
level-k lowering and raising operators L(k) : 〈Zn〉k → 〈Zn〉k−1 for 1 ≤ k ≤ n and
R(k) : 〈Zn〉k → 〈Zn〉k+1 for 0 ≤ k ≤ n− 1, respectively.

In this context, the zeon canonical raising and lowering operators are correctly
regarded as direct sums of level-k raising and lowering operators, i.e.,

L :=
n⊕

k=1

L(k), (2.13)

R :=
n−1∑

k=0

R(k). (2.14)

Following the formalism of Berezin [2], the following combinatorial integral is
defined on the zeons: for any {i1, . . . , ip} ⊆ [n], the composite map ∂

∂ζi1
◦ · · · ◦ ∂

∂ζip

is denoted by
∫

dζi1 · · · dζip .
Given u ∈ Zn and fixed multi-index I ∈ 2[n], the following shortened notation

is defined: ∫
u dζI :=

∫
u dζI1 · · · dζI|I| . (2.15)
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Note that for any permutation σ ∈ S|I|, commutativity of Zn gives
∫

u dζI =
∫

u dζIσ(1) · · · dζIσ(|I|) .

The next result is immediate from the properties of Zn and the preceding defi-
nitions.

Lemma 2.6. Given u ∈ Zn and fixed multi-index I ∈ 2[n],∫
u dζI =

∑

J∈2[n]
I⊆J

uJ ζJ\I . (2.16)

When I = [n], the following special case is obtained.

Definition 2.7. The Berezin integral is the linear map Zn → F defined by∫
u dζσ(1) · · · dζσ(n) = u[n], (2.17)

for any permutation σ ∈ Sn. In other words, the Berezin integral is the “top-form”
coefficient in the expansion of u.

Definition 2.8. Let b = {b1, . . . , bk} ⊆ [n]. The projective Berezin integral is the
linear map Zn → F defined by∮

u dζb1 · · · dζbk
= 〈u, ζb〉 . (2.18)

In particular,
∮

u dζb is the scalar part of
∫

u dζb.

Note that when b = [n], the projective Berezin integral coincides with the usual
Berezin integral.

3. Cycle Covers, Independent Sets, and Partitions

A graph G = (V, E) is a set of vertices V and a set E ⊆ V × V of ordered
pairs of vertices called edges. Two vertices vi, vj ∈ V are said to be adjacent if
(vi, vj) ∈ E. An edge of the form (v, v) ∈ E is referred to as a loop at vertex
v. When the relation on V defined by E is symmetric, the graph is said to be
undirected. A simple graph is an undirected graph with no loops.

An independent set in a graph G is a set of pairwise nonadjacent vertices. A
clique in a graph G is a set of pairwise adjacent vertices.

A walk of length k, or k-walk, in a graph is a sequence of vertices v0, v1, v2, . . . , vk

with the property that vi and vi+1 are adjacent for each i = 0, 1, . . . , k − 1. The
vertices v0 and vk are referred to as the initial vertex and terminal vertex of the
walk, respectively. A cycle of length k, or k-cycle, in a graph is a k-walk in which
the vertices are pairwise distinct except for the initial and terminal vertices, which
coincide.

Given a graph G = (V, E), a subgraph of G is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. Note that G′ must be a graph; i.e., vertices appearing within
ordered pairs in E′ must be elements of V ′. A cycle cover of a graph G is a set of
subgraphs {C1, . . . , Ck} of G such that (i) each subgraph is a cycle, and (ii) each
vertex of G is contained in exactly one of the subgraphs Cj , (1 ≤ j ≤ k).
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Figure 1. K◦
7 and a cycle cover.

When vertices are ordered and placed on a circle, one can define cycle cov-
ers associated with partitions. First, some notation and terminology regarding
partitions is recalled.

The partition notation here follows that of Rota and Wallstrom. Given a finite
set b, let Π(b) denote the set of all partitions of b. In particular, an element
σ ∈ Π(b) is a collection of nonempty disjoint subsets, called blocks, whose union is
b. Denote by |σ| the number of blocks contained in σ.

The set Π(b) is partially ordered by defining σ ≤ π if and only if every block of
σ is a subset of some block in π. Accordingly, two partitions of particular interest
are defined by

1̂b := b,

0̂b := {b1} ∪ · · · ∪ {b|b|}.
When the set being partitioned is clear, one writes simply 1̂ or 0̂.

The meet of two partitions σ ∧ π is defined as the partition whose blocks are
the nonempty pairwise intersections of some block of σ with some block of π. The
join of two partitions, denoted σ ∨ π, is the smallest partition containing both σ
and π. Note that Π(b) is a lattice.

A segment [σ, π] of the lattice Π(b) is defined by

[σ, π] := {ρ ∈ Π(b) : σ ≤ ρ ≤ π}. (3.1)

The following lemma follows immediately from the definition of a cycle cover.

Lemma 3.1. Let G be a graph on n vertices. Any cycle cover of G determines a
partition of the n-set.

Recalling the integer-subset correspondence defined in (2.5), define the graph
G = (V, E) whose vertices {v1, . . . , v2n−1} are in one-to-one correspondence with
the nonempty subsets of the n-set with adjacency determined by the following
condition:

(vi, vj) ∈ E ⇔ i ∩ j 6= ∅. (3.2)
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Figure 2. Partitions of {1, . . . , 4} among independent sets.

It becomes evident that partitions of the n-set are now associated with inde-
pendent sets of the graph G. For example, the partitions of {1, 2, 3, 4} are found
among the independent sets of the graph in Figure 2.

A partition π of the n-set is said to be crossing if for some pair of blocks γ, δ ∈ π
there exist i, k ∈ γ and j, ` ∈ δ such that i < j < k < `. For disjoint sets γ, δ ∈ 2[n],
the notation Cr(γ, δ) is defined to indicate that γ and δ form a crossing partition
of γ ∪ δ.

The partition π is said to be overlapping if there exist blocks γ, δ ∈ π such that
min γ < min δ < max γ < max δ. For disjoint sets γ, δ ∈ 2[n], the notation Ov(γ, δ)
is defined to indicate that γ and δ form an overlapping partition of γ ∪ δ.

Notation. Henceforth, the lattice of non-crossing partitions of the n-set will be
denoted by NC(n), while the lattice of non-overlapping partitions of the n-set will
be denoted by NO(n).

Defining the simple graph G = (V, E) whose vertices are in one-to-one corre-
spondence with the nonempty subsets of the n-set with adjacency determined by
the following condition:

Cr(i, j) ∨ [i ∩ j 6= ∅] ⇔ (vi, vj) ∈ E, (3.3)

where ∨ represents logical or, non-crossing partitions of the n-set are now associ-
ated with independent sets of the graph G.

Similarly, if one defines the simple graph H = (VH , EH) whose vertices are in
one-to-one correspondence with the nonempty subsets of the n-set with adjacency
determined by the following condition:

Ov(i, j) ∨ [i ∩ j 6= ∅] ⇔ (vi, vj) ∈ EH , (3.4)



8 RENÉ SCHOTT AND G. STACEY STAPLES

6

7

8

9

10
11

12
131415

81<

82<

81, 2<

83<

81, 3<

82, 3<
81, 2, 3<84<

81, 4<
82, 4<

81, 2, 4<

83, 4<

81, 3, 4<

82, 3, 4<

81, 2, 3, 4<

85<

81, 5<

82, 5<

81, 2, 5<

83, 5<

81, 3, 5<
82, 3, 5<

81, 2, 3, 5<84, 5<
81, 4, 5<

82, 4, 5<

81, 2, 4, 5<

83, 4, 5<

81, 3, 4, 5<

82, 3, 4, 5<

81, 2, 3, 4, 5<

Figure 3. Crossing blocks for n = 5.

non-overlapping partitions of [n] are associated with independent sets of the graph
H.

To these ends, define the simple graph Gcr = (Vcr, Ecr) whose vertices are in
one-to-one correspondence with the nonempty subsets of the n-set with adjacency
determined by the following condition:

Cr(i, j) ⇔ (vi, vj) ∈ Ecr. (3.5)

In other words, a pair of vertices are adjacent in Gcr if and only if their associated
sets form a crossing partition of their union.

Similarly, define the simple graph Gov = (Vov, Eov) whose vertices are in one-to-
one correspondence with the nonempty subsets of [n] with adjacency determined
by the following condition:

Ov(i, j) ⇔ (vi, vj) ∈ Eov. (3.6)

In other words, a pair of vertices are adjacent in Gov if and only if their associated
sets form an overlapping partition of their union.

Finally, define the empty graph G∅ = (V∅, E∅) whose vertices are in one-to-one
correspondence with the nonempty subsets of [n] with E∅ = ∅.
Example 3.2. Non-crossing partitions of the set {1, 2, 3, 4, 5} are represented
among the independent sets of the graph in Figure 3, while non-overlapping par-
titions are represented among the independent sets of the graph in Figure 4.

Definition 3.3. Let Π(n) denote the lattice of partitions of the n-set, and let E
denote a collection of pairs of disjoint subsets of [n]. The E-restricted lattice of
partitions, denoted ΠE(n) is defined by

π ∈ ΠE(n) ⇔ (γ, δ ∈ π ⇒ {γ, δ} /∈ E). (3.7)
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Figure 4. Overlapping blocks for n = 5.

A pair {γ, δ} ∈ E is called a forbidden pair of blocks.

The collection E is now used to define a graph.

Definition 3.4. Let G = (V,E) be a simple graph on 2n − 1 vertices associated
with the nonempty subsets of the n-set, and let adjacency in G be determined by

(vi, vj) ∈ E ⇔ {i, j} ∈ E . (3.8)

The graph G is called a partition constraint graph of the n-set. The G-restricted
lattice of partitions, whose blocks satisfy the constraints imposed by G, will be
denoted ΠG(n).

Let G = (V, E) be a simple graph on |V | vertices, and define a labeling g : E →
Z|V |+|E| of the edges of G with generators of Z|V |+|E| according to g(ej) = ζ|V |+j

for j = 1, 2, . . . , |E|.
Each vertex v of G is now associated uniquely within Z|V |+|E| by the product

of generators labeling the edges incident with v. That is, define κ : V → Z|V |+|E|
by

κ(vj) =
∏

edges ek
incident with vj

ζg(ek). (3.9)

By convention, set κ(vj) := 1 if vj is an isolated vertex.
Now define the zeon representative of G by

Γ :=
|V |∑

j=1

ζj κ(vj), (3.10)

where 1 ≤ j ≤ n and j denotes the subset representation of the integer j.
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Finally, define the projection ε[|V |] : Z|V |+|E| → Z|V | by linear extension of

ζI ε[|V |] := ζI∩[|V |]. (3.11)

Theorem 3.5. Let G be a simple graph whose vertices are in one-to-one cor-
respondence with the nonempty subsets of [n], in which each pair of vertices is
adjacent if and only if they are associated with a forbidden pair of blocks of a par-
tition of [n]. Let Γ denote the zeon representative of G, and let Xk denote the
number of k-block partitions of [n], constrained by the forbidden blocks. Then,

〈∫
exp (tΓ) ε[n] dζ1 · · · dζn, tk

〉
= Xk. (3.12)

Proof. It is clear that ε[n] (exp(t Γ)) is a polynomial in t with coefficients in Zn. By
definition of the exponential function, the coefficient of tk is Γk

k! . By construction,
Γk corresponds to a sum of k subsets of vertices in the graph. Each of these
subsets represents k blocks which may or may not correspond to a partition of the
n-set. By the null-square property of zeons, each of these subsets is pairwise non-
adjacent; i.e., each represents an independent set of size k in the graph. Applying
the Berezin integral reveals the top-form coefficient in the zeon expansion; i.e., the
union of the blocks is [n]. ¤

Example 3.6. A zeon representative of the graph appearing in Figure 3 is used
to count k-block non-crossing partitions of the 5-set. Note that the sum is the
fifth Catalan number: C5 = 1

6

(
10
5

)
= 42.

G = Ζ81< + Ζ82< + Ζ83< + Ζ84< + Ζ85< + Ζ81,2< + Ζ81,5< + Ζ82,3< + Ζ83,4< + Ζ84,5< + Ζ81,2,3< + Ζ81,2,5< + Ζ81,4,5< + Ζ82,3,4< +

Ζ83,4,5< + Ζ81,2,3,4< + Ζ81,2,3,5< + Ζ81,2,4,5< + Ζ81,2,4,14< + Ζ81,3,4,5< + Ζ81,3,4,15< + Ζ81,3,5,13< + Ζ82,3,4,5< +

Ζ82,3,5,11< + Ζ82,4,5,8< + Ζ81,2,3,4,5< + Ζ81,3,6,7,8< + Ζ81,4,9,10,11< + Ζ82,4,6,12,13< + Ζ82,5,7,9,15< + Ζ83,5,10,12,14<

When k = 1,
1

k!
ÙGkΕ@5DdΖ1...dΖ5 = 1

When k = 2,
1

k!
ÙGkΕ@5DdΖ1...dΖ5 = 10

When k = 3,
1

k!
ÙGkΕ@5DdΖ1...dΖ5 = 20

When k = 4,
1

k!
ÙGkΕ@5DdΖ1...dΖ5 = 10

When k = 5,
1

k!
ÙGkΕ@5DdΖ1...dΖ5 = 1

Corollary 3.7. Let G and Γ be defined as in the statement of Theorem 3.5, and let
X denote the number of partitions of [n] subject to the forbidden blocks constraint.
Then, ∫

exp (Γ) ε[n] dζ1 · · · dζn = X. (3.13)
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Proof. This follows immediately from Theorem 3.5 and the expansion

exp(Γ)ε[n] =
∞∑

k=0

Γk

k!
ε[n] =

n∑

k=0

Γk

k!
ε[n], (3.14)

from which ∫
exp(Γ)ε[n] dζ1 · · · dζn =

n∑

k=0

Xk. (3.15)

¤

Using this graph-theoretic approach, some familiar numbers can now be recov-
ered: Stirling numbers of the second kind, Bell numbers, Catalan numbers, and
Bessel numbers.

Let
{

n
k

}
denote the Stirling number of the second kind defined as the number of

partitions of the n-set into k nonempty blocks. Let Bn denote the nth Bell number,
defined as the total number of partitions of the n-set into nonempty blocks.

Let C(n, k) denote the number of non-crossing partitions of [n] into k blocks,
and let Cn denote the nth Catalan number. It is known that Cn gives the total
number of non-crossing partitions of the n-set.

Let B(n, k) denote the number of non-overlapping partitions of [n] into k blocks,
and let Bn denote the nth Bessel number. It is known that Bn gives the total
number of non-overlapping partitions of the n-set [5].

Considering the zeon representatives of the graphs G∅, Gcr, and Gov as defined
previously, the next result is an immediate consequence of the previous corollary.

Corollary 3.8. Let Γ∅ denote the zeon representative of G∅, let Γcr denote the
zeon representative of Gcr, and let Γov denote the zeon representative of Gov.
Then,

〈∫
exp (t Γ∅) ε[n] dζ1 · · · dζn, tk

〉
=

{
n

k

}
, (3.16)

∫
exp (Γ∅) ε[n] dζ1 · · · dζn = Bn, (3.17)

〈∫
exp (tΓcr) ε[n] dζ1 · · · dζn, tk

〉
= C(n, k), (3.18)

∫
exp (Γcr) ε[n] dζ1 · · · dζn = Cn, (3.19)

〈∫
exp (t Γov) ε[n] dζ1 · · · dζn, tk

〉
= B(n, k), (3.20)

∫
exp (Γov) ε[n] dζ1 · · · dζn = Bn. (3.21)
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4. Computations on Lattices of Partitions

In this section, functions are defined on Π([n]), the lattice of partitions of the
n-set. Given a partition π ∈ Π([n]), the notation |π| will be used to denote the
number of blocks (i.e., the number of pairwise disjoint subsets) in the partition π.
Blocks b ∈ π will also be allowed to serve as multi-indices in the zeon algebra.
Note that when b is a block; i.e., subset, |b| denotes the cardinality of b.

The general strategy is to first define a complex-valued function f : 2[n] → C
satisfying f(∅) := 1, and then to extend this to a complex-valued function h :
Π([n]) → C by taking products over the blocks of each partition.

Let f : 2[n] → C be a function on the power set of [n] with f(∅) = 1. Define
the function hf : Π([n]) → C by

hf (π) =
∏

b∈π

f(b) (4.1)

for each π ∈ Π([n]).
With f as defined above, let G = (V, E) be a partition constraint graph of the

n-set. Now define the weighted zeon representative of G by

Υ :=
|V |∑

j=1

f(j) ζj κ(vj), (4.2)

where κ is defined as in (3.9).
Note that Υ is a weighted sum over the vertices of the graph G, which are

in one-to-one correspondence with nonempty subsets of the n-set, i.e. blocks of
partitions. For 1 ≤ j ≤ 2n − 1, vertex vj is associated with block j having
corresponding weight f(j). Moreover, by construction each vertex vj is associated
with the blade ζjκ(vj) = ζj∪Ej , where Ej represents the set of edges incident with
vertex vj in G. Recalling that a pair of vertices in G is adjacent (incident with
a common edge) if and only if the vertices represent a forbidden pair of blocks in
the lattice of partitions, it is evident that products of terms of Υ will be zero when
their corresponding blocks are either not pairwise disjoint or contain forbidden
pairs of blocks.

Theorem 4.1. Let 0 < k ≤ n, and let Υ be the weighted zeon representative of a
partition constraint graph G. Then,∫

Υkε[n] dζ1 · · · dζn =
∑

π∈ΠG(n)
|π|=k

k!hf (π). (4.3)

Proof. By the null-square property of zeons, the multinomial theorem gives

Υk =
∑

`1+···+`|V |=k

(`1,...,`|V |)∈{0,1}|V |

(
k

`1, . . . , `|V |

) |V |∏
m=1

f(m)`mζm
`mκ(vm)`m

=
∑

{I⊆V :|I|=k}
k!

∏

v`∈I

f(`)ζ`κ(v`). (4.4)
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Note that by construction of κ(v`), the product
∏

v`∈I f(`)ζ`κ(v`) is zero if the
blocks represented by vertex subset I are either not pairwise disjoint or include
forbidden pairs. Hence, the sum is over vertex subsets representing blocks of
restricted partitions. In order to sieve out those subsets representing partitions of
the n-set, the zeon-Berezin integral is applied after projection onto Zn. That is,

∫
Υkε[n] dζ1 · · · dζn =

∑

{I:
S

v`∈I `=[n] and |I|=k}
k!

∏

v`∈I

f(`)

=
∑

π∈ΠG(n)
|π|=k

k!
∏

b∈π

f(b). (4.5)

¤

Example 4.2. In Figure 5, the weighted zeon representative Υ of Gcr is used to
compute ∑

π∈NC(5)
|π|=k

k! hf (π) =
∑

π∈NC(5)
|π|=k

k!
∏

b∈π

f(b)

for a given scalar-valued function f : 2[5] → F. Note that f(b) is written as fb for
convenience.

Corollary 4.3. ∫
eΥε[n] dζ1 · · · dζn =

∑

π∈ΠG(n)

hf (π). (4.6)

Proof. By definition of the exponential function and the null square property of
zeons,

eΥ =
∞∑

k=0

1
k!

Υk =
n∑

k=0

1
k!

Υk. (4.7)

Whence, applying Theorem 4.1,
∫

eΥε[n] dζ1 · · · dζn =
n∑

k=0

1
k!

∫
Υkε[n] dζ1 · · · dζn =

n∑

k=0

∑
π∈ΠG(n)
|π|=k

hf (π)

=
∑

π∈ΠG(n)

hf (π). (4.8)

¤

Remark 4.4. Note that exp(tΥ) is a polynomial in t with zeon coefficients. In
particular, the Berezin integral of the coefficient of tk represents a sum over k-
block partitions of the n-set. That is,

〈∫
et Υε[n] dζ1 · · · dζn, tk

〉
=

∑
π∈ΠG(n)
|π|=k

hf (π). (4.9)
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In[36]:= Print@"U = ", UD
ForAk = 1, k £ 5, k++,

PrintA"When k = ", k, ", ÙUkΕ@5DdΖ1...dΖ5 = ", ZeonBerezinAProjAExpandAUkE, 5E, Ζ81,2,3,4,5<EEE

U = f81< Ζ81< + f82< Ζ82< + f83< Ζ83< + f84< Ζ84< + f85< Ζ85< + f81,2< Ζ81,2< +
f81,5< Ζ81,5< + f82,3< Ζ82,3< + f83,4< Ζ83,4< + f84,5< Ζ84,5< + f81,2,3< Ζ81,2,3< + f81,2,5< Ζ81,2,5< +
f81,4,5< Ζ81,4,5< + f82,3,4< Ζ82,3,4< + f83,4,5< Ζ83,4,5< + f81,2,3,4< Ζ81,2,3,4< + f81,2,3,5< Ζ81,2,3,5< +
f81,2,4,5< Ζ81,2,4,5< + f81,2,4< Ζ81,2,4,14< + f81,3,4,5< Ζ81,3,4,5< + f81,3,4< Ζ81,3,4,15< + f81,3,5< Ζ81,3,5,13< +
f82,3,4,5< Ζ82,3,4,5< + f82,3,5< Ζ82,3,5,11< + f82,4,5< Ζ82,4,5,8< + f81,2,3,4,5< Ζ81,2,3,4,5< +
f81,3< Ζ81,3,6,7,8< + f81,4< Ζ81,4,9,10,11< + f82,4< Ζ82,4,6,12,13< + f82,5< Ζ82,5,7,9,15< + f83,5< Ζ83,5,10,12,14<

When k = 1, ÙUkΕ@5DdΖ1...dΖ5 = f81,2,3,4,5<

When k = 2, ÙUkΕ@5DdΖ1...dΖ5 = 2 f84,5< f81,2,3< + 2 f83,4< f81,2,5< + 2 f82,3< f81,4,5< + 2 f81,5< f82,3,4< +

2 f81,2< f83,4,5< + 2 f85< f81,2,3,4< + 2 f84< f81,2,3,5< + 2 f83< f81,2,4,5< + 2 f82< f81,3,4,5< + 2 f81< f82,3,4,5<

When k = 3, ÙUkΕ@5DdΖ1...dΖ5 =
6 f85< f81,4< f82,3< + 6 f84< f81,5< f82,3< + 6 f83< f81,5< f82,4< + 6 f85< f81,2< f83,4< + 6 f82< f81,5< f83,4< +
6 f81< f82,5< f83,4< + 6 f84< f81,2< f83,5< + 6 f83< f81,2< f84,5< + 6 f82< f81,3< f84,5< + 6 f81< f82,3< f84,5< +
6 f84< f85< f81,2,3< + 6 f83< f85< f81,2,4< + 6 f83< f84< f81,2,5< + 6 f82< f85< f81,3,4< + 6 f82< f84< f81,3,5< +
6 f82< f83< f81,4,5< + 6 f81< f85< f82,3,4< + 6 f81< f84< f82,3,5< + 6 f81< f83< f82,4,5< + 6 f81< f82< f83,4,5<

When k = 4, ÙUkΕ@5DdΖ1...dΖ5 = 24 f83< f84< f85< f81,2< + 24 f82< f84< f85< f81,3< +

24 f82< f83< f85< f81,4< + 24 f82< f83< f84< f81,5< + 24 f81< f84< f85< f82,3< + 24 f81< f83< f85< f82,4< +
24 f81< f83< f84< f82,5< + 24 f81< f82< f85< f83,4< + 24 f81< f82< f84< f83,5< + 24 f81< f82< f83< f84,5<

When k = 5, ÙUkΕ@5DdΖ1...dΖ5 = 120 f81< f82< f83< f84< f85<

Figure 5. Summing a function over NC(5).

Corollary 4.5. Let Υ∅, Υcr, and Υov be the weighted zeon representatives of
graphs G∅, Gcr, and Gov as used in Corollary 3.8. Then,

∫
Υ∅

kε[n] dζ1 · · · dζn =
∑

π∈Π([n])
|π|=k

k!hf (π), (4.10)

∫
Υcr

kε[n] dζ1 · · · dζn =
∑

π∈NC(n)
|π|=k

k!hf (π), and (4.11)

∫
Υov

kε[n] dζ1 · · · dζn =
∑

π∈NO(n)
|π|=k

k! hf (π). (4.12)

Proof. By construction of the graphs G∅, Gcr, and Gov, Theorem 4.1 results in
summing over k-block partitions with no restrictions, no crossing blocks, and no
overlapping blocks, respectively. ¤
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4.1. Computations on Lattice Segments. The graph-theoretic approach de-
tailed above does not easily lend itself to summing values over segments of a lattice
of partitions. In this section, methods are developed using zeon-Berezin operator
calculus to sum functions over lattice segments. The initial results are established
on the lattice of partitions Π([n]).

Let L denote the canonical lowering operator on Zn and define the operator Φ
on Zn by linear extension of

ζbΦ := f(b) ζb (4.13)
for each subset b ⊆ [n].

Let t denote a scalar variable. For each block b ⊆ [n], define the linear operator
Db by

Db :=
1
|b|!

|b|−1⊕

k=0

∂k

∂tk
. (4.14)

Theorem 4.6. For fixed partition π ∈ Π([n]) and nonzero scalar parameter t, the
following holds:

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

=
∑

σ≤π

hf (σ). (4.15)

Consequently,

D[n]




∮ 
t +

n−1∑

j=0

1
j!

ζ[n]LjΦ




n

dζ1 · · · dζn




t=0

−
∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

=
∑
σ>π

hf (σ). (4.16)

Proof. Begin by noting that for any block b, ζbL is a sum of blades representing
all proper subsets of b having cardinality |b| − 1.

Using the definition of L, the following is easily established:

ζbLj = j!
∑
b′⊆b

|b′|=|b|−j

ζb′ . (4.17)

This implies
|b|−1∑

j=0

(
1
j!

ζbLj)Φ =
∑

∅6=b′⊆b

f(b′) ζb′ . (4.18)

Whence, applying the multinomial theorem gives

t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

=
∑

k∅+···+kb=|b|

( |b|
k∅, . . . , kb

)
tk∅

∏

∅6=b′⊆b

(f(b′))kb′ ζ
kb′
b′ . (4.19)

By the null-square property of zeons, the only nonzero terms correspond to
the case kb′ = 0 or kb′ = 1 when b′ 6= ∅. Hence, nonzero terms correspond to
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products on pairwise disjoint subsets of the block b, with exponent k∅ remaining
to be determined. Considering the Berezin integral, only collections of sub-blocks
whose union is b remain; i.e., each of these terms represents a partition of b. It
follows that k∅ = |b| − |σ|, where |b| denotes the cardinality of the block b, and |σ|
denotes the number of blocks in the resulting partition σ of b. In summary,

∮ 
 ∑

k∅+···+kb=|b|

( |b|
k∅, . . . , kb

)
tk∅

∏

b′⊆b

(f(b′))kb′ ζ
kb′
b′


 dζb1 · · · dζb|b|

=
∑

σ∈Π(b)

t|b|−|σ||b|!
(|b| − |σ|)!

∏

b′∈σ

f(b′) =
∑

σ≤1̂b

t|b|−|σ||b|!
(|b| − |σ|)!hf (σ). (4.20)

An immediate consequence is that when 0 ≤ k < |b|,

∂k

∂tk




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

= |b|!
∑
σ≤1̂b

|σ|=|b|−k

hf (σ). (4.21)

Applying the operator Db := 1
|b|!

∑|b|−1
k=0

∂k

∂tk gives

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

=
∑

σ≤1̂b

hf (σ). (4.22)

Since the blocks of any partition are pairwise disjoint, taking the product over
all blocks b in the fixed partition π results in

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

=
∑

σ≤π

hf (σ). (4.23)

Letting π = 1̂[n], an immediate consequence of (4.23) is that

D[n]




∮ 
t +

n−1∑

j=0

1
j!

ζ[n]LjΦ




n

dζ1 · · · dζn




t=0

=
∑

σ≤1̂[n]

hf (σ). (4.24)

The proof is concluded by combining Equations (4.23) and (4.24) and observing
that for fixed partition π,

∑

0̂≤σ≤1̂

hf (σ) =
∑

σ≤π

hf (σ) +
∑
σ>π

hf (σ) (4.25)

¤

Zeon operator calculus methods also lead to some special case partition sum-
mations.
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Definition 4.7. Fix partitions π, σ ∈ Π([n]). We say π is a proper refinement of
σ and write π ≺ σ if and only if every block of π is a proper subset of some block
of σ. That is,

π ≺ σ ⇔ (∀γ ∈ π)(∃δ ∈ σ)[γ ( δ]. (4.26)

Note that by changing the limits of summation on the left-hand side of (4.15)
in Theorem 4.6, the following corollary is immediately obtained for partitions free
of singleton blocks.

Corollary 4.8. Let π ∈ Π([n]) contain no singleton blocks, and let t be a nonzero
scalar parameter t. Then,

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=1

1
j!

ζbLjΦ



|b|

dζb1 · · · dζb|b|




t=0

=
∑
σ≺π

hf (σ). (4.27)

Proof. For each block b ∈ π, letting the summation begin with j = 1 allows only
proper subsets of b to be considered. ¤

Turning now to the canonical raising operator, another special case partition
summation is possible.

Definition 4.9. Let b ⊆ [n] be nonempty. A partition π ∈ Π([n]) is said to be
b-admissible if ∃γ ∈ π with b ⊆ γ. That is, b is a block in π or b is a block in
some refinement of π. For fixed b, the collection of b-admissible partitions of [n] is
denoted by Πad(b)([n]).

Notation. For any subset b ⊆ [n], let b denote the complement of b; i.e, b := [n]\b.
Proposition 4.10. Let b ⊆ [n] be a fixed nonempty block, let b denote the com-
plement of b, and let t be a nonzero scalar parameter. Then,

Db




∮ 


n−|b|∑

j=0

1
j!

ζbRjΦ





t +

n−|b|−1∑

j=0

1
j!

ζbLjΦ




n−|b|

dζ1 · · · dζn




t=0

=
∑

σ∈Πad(b)([n])

hf (σ). (4.28)

Proof. First note that the definition of R implies

ζbRj = j!
∑
b′⊇b

|b′|=|b|+j

ζb′ , (4.29)

since there are j! “paths” by which ζb can be “raised” to ζb′ ; i.e., the additional j
index elements of ζb′ can be appended to the multi-index of ζb in any order.

Working in Zn, it is apparent that ζbRj = 0 for all j > n− |b|, so

n−|b|∑

j=0

(
1
j!

ζbRj)Φ =
∑

β⊇b

f(β) ζβ . (4.30)
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Using properties of canonical lowering as in the proof of Theorem 4.6,
n−|b|−1∑

j=0

1
j!

ζbLjΦ =
∑

∅6=b
′⊆b

f(b
′
) ζb

′ . (4.31)

Thus,



n−|b|∑

j=0

(
1
j!

ζbRj)Φ





t +

n−|b|−1∑

j=0

1
j!

ζbLjΦ




n−|b|

=


∑

β⊇b

f(β) ζβ





 ∑

k∅+···+kb=|b|

( |b|
k∅, . . . , kb

)
tk∅

∏

b
′⊆b

(f(b
′
))k

b′ ζb
′kb′




=


∑

β⊇b

f(β) ζβ





 ∑

k∅+···+kb=|b|

|b|!
k∅!

tk∅
∏

b
′⊆b

(f(b
′
))k

b′ ζb
′kb′


 , (4.32)

where kγ is either 0 or 1 for every nonempty block γ, and the number of nontrivial
blocks in the product is given by |b| − k∅.

Now expanding the product and applying the Berezin integral,

∮ 
∑

β⊇b

f(β) ζβ


 dζβ


 ∑

k∅+···+kb=|b|

|b|!
k∅!

tk∅
∏

b
′⊆b

(f(b
′
))k

b′ ζb
′kb′


 dζβ1

· · · dζβ|β|

=
∑
β⊇b

σ≤1̂
β

|b|!
(|b| − |σ|)! t

|b|−|σ|f(β)hf (σ), (4.33)

where |σ| = |b| − k∅. The proof is concluded by applying Db and evaluating at
t = 0. ¤

4.2. Computations on restricted lattice segments. In order to extend this
approach to non-crossing or non-overlapping partitions, the ideas underlying the
weighted zeon representative of a graph are used to define the restriction mapping
below.

Definition 4.11. Let G be a simple graph on 2n − 1 vertices associated with
nonempty subsets of the n-set. The G-restriction mapping Ψ : Zn → Zn+|E| is
defined by linear extension of

ζjΨ := ζjκ(vj). (4.34)

Theorem 4.12. For fixed G-restricted partition π, the following holds:

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLj ΦΨ



|b|

ε[n] dζb1 · · · dζb|b|




t=0

=
∑
σ≤π

σ∈ΠG(n)

hf (σ),

(4.35)



ZEONS, LATTICES OF PARTITIONS, AND FREE PROBABILITY 19

where Φ and Ψ are as defined in (4.13) and (4.34). Consequently,

D[n]




∮ 
t +

n−1∑

j=0

1
j!

ζ[n]Lj ΦΨ




n

ε[n] dζ1 · · · dζn




t=0

−
∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLj ΦΨ



|b|

ε[n] dζb1 · · · dζb|b|




t=0

=
∑
σ>π

σ∈ΠG(n)

hf (σ). (4.36)

Proof. Recall that for any block b and integer 0 ≤ j ≤ |b|,

ζb LjΦ = j!
∑
b′⊆b

|b′|=|b|−j

f(b′) ζb′ . (4.37)

Hence,

1
j!

ζb LjΦΨ =
∑
`⊆b

|`|=|b|−j

f(`) ζ`κ(v`). (4.38)

Whereby, substitution and application of the multinomial theorem gives


t +

|b|−1∑

j=0

1
j!

ζb LjΦΨ



|b|

=


t +

∑

∅6=`⊆b

f(`) ζ`κ(v`)



|b|

=
∑

k∅+···+kb=|b|

( |b|
k∅, . . . , kb

)
tk∅

∏

∅6=`⊆b

f(`)k`ζ`
k`κ(v`)k` . (4.39)

By the null-square property of zeons, all integers k` are either 0 or 1 when
` > 0. Construction of G guarantees that the only nonzero terms in the sum
correspond to disjoint tuples of subsets of b containing no forbidden pair of blocks.
Specifically, a nonzero term of the form

tk∅
∏

∅6=`⊆b

f(`)k`ζ`
k`κ(v`)k`

corresponds to a disjoint (|b| − k∅)-tuple of subsets of b with no forbidden pair of
blocks.

Note that the corresponding multinomial coefficient on the term above is
( |b|

k∅, . . . , kb

)
=
|b|!
k∅!

. (4.40)
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Projecting onto Zn and taking the projective Berezin integral, one now obtains

∮ 
t +

|b|−1∑

j=0

1
j!

ζb LjΦΨ



|b|

ε[n] dζb1 · · · dζb|b|

=
∮




∑
k∅,...,kb∈{0,1}
k∅+···+kb=|b|

|b|!
k∅!

tk∅
∏
∅6=`⊆b

no forbidden pairs

f(`)k`ζ`
k`


 dζb1 · · · dζb|b| . (4.41)

Applying Db and evaluating at t = 0 gives

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζb LjΦΨ



|b|

ε[n] dζb1 · · · dζb|b|




t=0

=
∑
σ≤b

σ∈ΠG(n)

hf (σ). (4.42)

Whence, taking the product over disjoint blocks of arbitrary partition π com-
pletes the first part of the proof.

Substitution in (4.42) gives

D[n]




∮ 
t +

n−1∑

j=0

1
j!

ζ[n] LjΦΨ




n

ε[n] dζ1 · · · dζn




t=0

=
∑

σ≤1̂[n]
σ∈ΠG(n)

hf (σ), (4.43)

from which (4.36) is deduced. ¤

Example 4.13. Given a scalar-valued function f : 2[5] → F as in Example 4.2,
the lowering operator and restriction mapping are used to sum over non-crossing
partitions of the 5-set with Mathematica.

In[59]:= SumADAZeonBerezinAExpandA

ProjAExpandAHt + Sum@Expand@H1 � j!L Ψ5@f@PwrL@Ζb, jDD, ADD, 8j, 0, Length@bD - 1<DL5 � 5!E �.
9t5 ® 0=, 5EE, ΖbE, 8t, k<E �. 8t ® 0<, 8k, 0, 4<E

Out[59]= f81< f82< f83< f84< f85< + f83< f84< f85< f81,2< + f82< f84< f85< f81,3< + f82< f83< f85< f81,4< + f82< f83< f84< f81,5< +
f81< f84< f85< f82,3< + f85< f81,4< f82,3< + f84< f81,5< f82,3< + f81< f83< f85< f82,4< + f83< f81,5< f82,4< +
f81< f83< f84< f82,5< + f81< f82< f85< f83,4< + f85< f81,2< f83,4< + f82< f81,5< f83,4< + f81< f82,5< f83,4< +
f81< f82< f84< f83,5< + f84< f81,2< f83,5< + f81< f82< f83< f84,5< + f83< f81,2< f84,5< + f82< f81,3< f84,5< +
f81< f82,3< f84,5< + f84< f85< f81,2,3< + f84,5< f81,2,3< + f83< f85< f81,2,4< + f83< f84< f81,2,5< + f83,4< f81,2,5< +
f82< f85< f81,3,4< + f82< f84< f81,3,5< + f82< f83< f81,4,5< + f82,3< f81,4,5< + f81< f85< f82,3,4< +
f81,5< f82,3,4< + f81< f84< f82,3,5< + f81< f83< f82,4,5< + f81< f82< f83,4,5< + f81,2< f83,4,5< +
f85< f81,2,3,4< + f84< f81,2,3,5< + f83< f81,2,4,5< + f82< f81,3,4,5< + f81< f82,3,4,5< + f81,2,3,4,5<

Recalling the definition of proper refinements from (4.26), note that by changing
the limits of summation in Theorem 4.12, the following corollary is immediately
obtained for partitions free of singleton blocks.
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Corollary 4.14. Let π ∈ ΠG([n]) contain no singleton blocks, and let t be a
nonzero scalar parameter t. Then,

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=1

1
j!

ζbLjΦΨ



|b|

dζb1 · · · dζb|b|




t=0

=
∑

σ∈ΠG([n])
σ≺π

hf (σ). (4.44)

5. Free Cumulants

As in Nica and Speicher [7], let A be a unital algebra and ϕ : A → C a
unital linear functional; i.e., (A, ϕ) is a quantum probability space. A sequence
of multilinear functionals (ϕn)n∈N is obtained on A by defining ϕn(a1, . . . , an) :=
ϕ(a1 · · · an).

These functionals are extended to the corresponding multiplicative functionals
on non-crossing partitions by

ϕπ[a1, . . . , an] :=
∏

b∈π

ϕ(b)[a1, . . . , an], (5.1)

where writing b = {i1, . . . , i|b|} with i1 < · · · < i|b|, ϕ(b)[a1, . . . , an] is defined by

ϕ(b)[a1, . . . , an] := ϕ|b|(ai1 , . . . , ai|b|). (5.2)

Let µ denote the Möbius function on the lattice of non-crossing partitions.
For each n ∈ N, the corresponding free cumulants (kπ)π∈NC(n) are multilinear
functionals kπ : An → C satisfying the moment-cumulant formulas:

κ1̂[n]
(a1, . . . , an) :=

∑

σ∈NC(n)

ϕσ[a1, . . . , an]µ(σ, 1̂[n]), (5.3)

ϕn(a1, · · · , an) =
∑

π∈NC(n)

κπ[a1, . . . , an]. (5.4)

Moreover, free cumulant functionals are multiplicative:

κπ[ai1 , . . . , ain ] :=
∏

b∈π

κ(b)[a1, . . . , an], (5.5)

where, similar to (5.1), writing b = {r1, . . . , r|b|} with r1 < · · · < r|b|,

κ(b)[ar1 , . . . , arn ] := κ1̂b
(ar1 , . . . , ar|b|). (5.6)

This is simplified by recursively defining the multidimensional R-transform by

ϕπ(ai1 , . . . , ain) =
∑

σ∈NC(n)
σ≤π

Rσ(ai1 , . . . , ain), (5.7)

where again writing b = {r1, . . . , r|b|} with r1 < · · · < r|b|,

Rσ(ai1 , . . . , ain) =
∏

b∈σ

R(air1
, . . . , air|b|

). (5.8)
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Definition 5.1. Let Gcr be the simple graph on 2n−1 vertices as defined in Corol-
lary 3.8. Let (ai)i∈I be random variables in quantum probability space (A, ϕ).
Define the moment zeon representative of Gcr by

Ξ =
|V |∑

j=1

R(aj
1
· · · aj|j|

) ζjκ(vj), (5.9)

where a` ∈ A for all indices ` and R(aj
1
· · · aj|j|

) is the R-transform of the block

j ⊆ [n].

Proposition 5.2 (Moments by independent sets).
∫

eΞε[n] dζ1 · · · dζn = ϕ(ai1 · · · ain). (5.10)

Proof. The result is a corollary of Theorem 4.1. In particular, expanding the
exponential function gives

eΞ =
∞∑

k=0

1
k!



|V |∑

j=1

R(aj
1
· · · aj|j|

) ζjκ(vj)




k

. (5.11)

Proceeding as in the proof of Theorem 4.1 and keeping in mind equations (5.7)
and (5.8), it follows that

∫
eΞε[n] dζ1 · · · dζn =

n∑

k=1

∑
σ∈NC(n)
|σ|=k

Rσ(ai1 , . . . , ain)

=
∑

σ∈NC(n)

Rσ(ai1 , . . . , ain) = ϕ1̂[n]
(ai1 , . . . , ain). (5.12)

¤

Finally, to recover the multiplicative functional ϕπ(ai1 , . . . , ain) using zeon-
Berezin methods, let the operator Θ be defined on Zn by linear extension of

ζb Θ := R(ab1 , . . . , ab|b|) ζb. (5.13)

Proposition 5.3 (Moments by lowering). Let G := Gcr, let Ψ be the G restriction
mapping defined in (4.34), and let Θ be defined as in (5.13). Applying the canonical
lowering operator yields the following:

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΘΨ



|b|

dζb1 · · · dζb|b|




t=0

= ϕπ(ai1 , . . . , ain). (5.14)
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Proof. Applying results from Theorem 4.12, and again considering equations (5.7)
and (5.8),

∏

b∈π

Db




∮ 
t +

|b|−1∑

j=0

1
j!

ζbLjΘΨ



|b|

dζb1 · · · dζb|b|




t=0

=
∑

σ∈NC(n)
σ≤π

Rσ(ai1 , . . . , ain
) = ϕπ(ai1 , . . . , ain

). (5.15)

¤

Corollary 5.4. Setting π = 1̂[n] in Proposition 5.3 gives

D[n]




∫ 
t +

n−1∑

j=0

1
j!

ζ[n]LjΘΨ




n

dζ1 · · · dζn




t=0

= ϕ(ai1 , . . . , ain). (5.16)

6. Conclusion

In earlier work, the authors showed that the operator-theoretic tools of quantum
probability can be used to reveal information about combinatorial structures such
as random graphs and partitions. The current work shows that this approach
can be extended to perform computations over combinatorial structures, notably
lattices of partitions.

While the lattice of non-crossing partitions is most important in free probability
theory, the zeon-Berezin calculus approach can be applied to lattices of partitions
satisfying any restriction criteria. The result is an operator-theoretic combinatorial
approach to integration of functions defined on arbitrary graphs and partitions.

Acknowledgment. The authors are grateful to the anonymous referee for a
number of helpful suggestions.
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