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Slimming down a high-dimensional binary

datatable: relevant eigen-subspace and

substantial content

Alain Lelu

Université de Franche-Comté, LASELDI & LORIA
30 rue Mégevand, 25030 Besançon cedex, France, alain.lelu@univ-fcomte.fr

Abstract. Determining the number of relevant dimensions in the eigen-space of a
data matrix is a central issue in many data-mining applications. We tackle here the
sub-problem of finding the “right” dimensionality of a type of data matrices often
encountered in the domains of text or usage mining: large, sparse, high-dimensional
binary datatables. We present here the application of a randomization test to this
problem. We validate our approach first on artificial datasets, then on a real docu-
mentary data collection, i.e. 1900 documents described in a 3600 keywords datas-
pace, where the actual, intrinsic dimension appears to be 28 times less than the
number of keywords - an important information when preparing to cluster or dis-
criminate such data. We also present preliminary results on the problem of clearing
the datatable from non-essential information bits.

Keywords: randomization test, dimensionality reduction, data reconstitu-
tion, power-law distribution

1 Introduction

Determining the number of relevant dimensions in the eigen-space of a data
matrix is a central issue in many data-mining applications. We tackle here the
sub-problem of finding the “right” dimensionality of a type of data matrices
often encountered in the domains of text or usage mining, or in a number
of biological applications, generally displaying “Zipfian” power-law distribu-
tions (Newman (2005)): large, sparse, high-dimensional binary datatables,
for which the assumptions underlying the state-of-the-art techniques such
as the Catell’s scree-break heuristics (Cattell (1966)) or more recent model-
based parametric tests (Bouveyron et al. (2009)) do not hold. Resampling
tests, such as bootstrap (Efron (1981)) are akin to delineate the variability
of a feature of interest, e.g. the positions of projected datapoints in a cho-
sen factor plane (Lebart (2007)). Our problem is different, in that we try to
determine which eigen-subspace of a binary data matrix bears the relevant
information, and which extra eigen-dimension does not, due to the sole effect
of noise, or distributions of the marginal sums. In this prospect, the general
non-parametric solution we are interested in has to rest on comparing the
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successive major eigenvalues of the original matrix to their counterpart in
(at best) all the possible binary matrices endowed with the same row and
column marginal sums (i.e. generalizing the exact test of Fisher (1936)), or,
as it proves generally unfeasible, in a sample of these matrices (randomiza-

tion test, Manly (1997)). Cadot (2005, 2006) has set up such a solution for
any measure issued from a binary datatable, in her Tournebool randomiza-
tion test, e.g. extracting significant graph edges between variables or between
individuals (Lelu & Cadot (2010)).

In section 2 we will briefly recall the TourneBool process for generating
randomized versions of the original datatable, and apply it to test its suc-
cessive dominant eigenvalues against the null hypothesis - not being greater
than expected from randomness. In section 3 we will describe how to generate
artificial binary data endowed with two major characteristics of real-world bi-
nary data: Zipfian distribution of the variables, and intermingled clusters. We
will successfully apply our test to an instance of such datatables. In section
4 we will describe a set of real-life bibliographic data, and will test it, result-
ing in 125 significant eigenvalues in this 1920 documents and 3600 keywords
dataset, at the 99% significance threshold. In section 5 we will present an
early empirical insight into the problem of the optimal binary reconstruction
of a binary datatable, starting from its sole significant eigen-elements, which
suggests a filtering process for “denoising”, “slimming down” such table, or
strongly filtering the variables, while keeping the meaningful substance of the
table unaltered.

2 Randomization process and test

The comparison with full-scale random simulations is now feasible, and is an
alternative to the traditional comparisons with asymptotic theoretical statis-
tic distributions. Noise may be added to the original datatable (bootstrap
and Jacknife methods), or purely random tables may be generated, submit-
ted to the same structural constraints as the original one. In this way, one
may generate the random versions starting from the original database itself,
by a sequence of elementary transformations keeping the row and column
margins constant. This is the direction taken by the TourneBool method and
test: a method for generating random versions of a binary datatable with
prescribed margins, and the ensuing test for any measurement operated on
the original matrix against the null hypothesis.

Generating the Randomized Matrices. Cadot (2005) presented a permutation
algorithm based on rectangular flip-flops, incorporating a monitored conver-
gence of the algorithm. Its theoretical legitimation can be found in Cadot
(2006), based on the original notion of cascading flip-flops: the author has
shown that any Boolean matrix can be converted into any other one with
the same margins in a finite number of such cascades. These cascading flip-
flops are themselves compositions of elementary rectangular exchanges, or



Relevant eigen-subspace of a binary datatable 3

flip-flops. These flip-flops preserve the irreducible background structure of
the datatable, but break up the meaningful links specific to a real-life data
table. Getting rid of the background structure enables the method to process
any type of binary data, both (1) taking into account the marginal distri-
butions, (2) doing this without any need to specify the statistical models of
these distributions. The number of rectangular flip-flops is controlled by two
Hamming distance measures between matrices (i.e. number of cells with op-
posite values): 1) between the current random matrix and the one generated
at the previous step, 2) between the current random matrix and the original
one. The initial number of flip-flops is increased as long as these distances are
growing. The value of this parameter is deemed optimal when they stabilize
- in practice, about several times the number of ones in the original matrix.
No bias, i.e. residual remnant of the original matrix, can be attributed then
to the randomization process.

Establishing the sequence of significant eigenvalues. A nested test is needed,
the principles of which are the following:

• Generate a sufficient sample (X1, X2, ... Xp) of randomized versions of
the original matrix X0 (e.g. 200 matrices).

• Extract the full sequence of singular values of X0, in decreasing order.
• For each k-order eigen-space, starting from k = 1, compare the k − th

singular value of X0 to the set of corresponding k-th singular values in
the sample: if the current singular value λk(0) is greater than or equal to
the randomized one located at the significance threshold (e.g. than the
third one at the 99% threshold), it is deemed significantly diverging from
randomness, and the algorithm goes on with k = k + 1.

When the algorithm stops, the value k is the dimension of the relevant
eigenspace.

3 Validating on artificial data

Generating artificial datasets being a somehow unsubstantial and arbitrary
task, we will focus on trying to reproduce two characteristics that stand
out from our experience: 1) large-scale sparse datatables with binary fea-
tures tend to exhibit a power-law distribution of their feature counts, as has
been observed in many application domains, such as text mining ; 2) cluster
structures are by no way all-or-none phenomena: they rather amount to pro-
gressive, fuzzy memberships around dense data-cores. In other words, clusters
are generally intricated, entangled, and by no way orthogonal.

Data generation: We will first build such intermingled clusters in the sim-
plest case of two clusters, by generating a one-cluster table, e.g. appending
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Fig. 1. A plot of the 2-cluster artificial data. Horizontally: the 1500 “documents”
split into two clusters. Vertically: the 836 “keywords”.

Fig. 2. Characterizing the records in the 2-cluster artificial data. Vertically: the
frequency count of each “keyword”. Horizontally: their ranks. The coordinates are
log-log.

a full (750, 800) “ones” matrix and a full (750, 660) “zeros” one, then cre-
ating another (750, 1460) matrix by randomly permuting the columns, and
eventually stacking the two matrices into a (1500, 1466) one. The second step
consists in “morphing” this matrix so as to fit into prescribed relative column
and row sum profiles (e.g. a power-law distribution for the column sums, and
a binomial one for the row sums): the process of alterning a global stretching
or expanding for each column vector so as to fit to the corresponding pre-
scribed sum profile, with the same for the row vectors, lets the transformed
datatable converge to a real positive matrix embedding a (distorted) memory
of the initial structure.
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Fig. 3. Scree-plot of the singular values for the 2-cluster artificial data (in red). The
dashed lines delimit the confidence interval, the solid lines delimit the minimum to
maximum variation interval.

The last step consists in turning this table binary, first by normalizing
it (i.e. dividing by its maximum value), then by considering each value as
a probability for drawing a value “one”; the resulting (1500, 1460) table
comprises many empty columns, or columns summing to 1 or 2; in a final
cleansing process, we remove these columns for the sake of preventing side
effects, and we now yield a (1500, 836) binary matrix X0 (see figure 1) with
a visually convincing power-law distribution of the column sums (see figure
2).

Eigenspace test: Figure 3 shows the “scree-plot” of the 50 first eigenvalues of
X0, compared to the plot of the 99% confidence interval of its 200 random-
ized clones. As jumps out from the figure, the only two first singular values
dominate their confidence intervals, emphasizing the 2-cluster intertwined
structure.

4 Relevant eigen-subspace of a real-world binary

datatable

Origin and characteristics of the data: An excerpt of the Pascal bibliographic
database, edited by CNRS/INIST, and spanning one year of research activity
in the french Lorraine region, has been set up for diverse methodological
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Fig. 4. Scree-plot of the singular values for the Lorraine data (in red). The dashed
lines delimit the 99% confidence interval, the solid lines delimit the minimum to
maximum observed variation interval.

evaluation tasks (Ghribi et al. (2010)), and will soon be publicly available1.
We have chosen these data as a “not too large, but sufficient” sample of the
very common documentary or text type of data. It consists of 1920 records
manually indexed with 3557 keywords of frequency greater than one, resulting
in a mean value of 5.6 keywords per document. As could be expected, the
keywords’ occurrences follow a typical power-law distribution.

Intrinsic dimension of the datatable: Having generated 200 randomized ver-
sions of the original matrix with the Tournebool algorithm, we have applied
the above-described test for assessing the 250 first singular values. As can be
noticed in the scree-plot of Figure 4, it appears that, at the 99% threshold,
the 125 first singular values significantly depart from the confidence interval
due to randomness - thus establishing to 125 the dimension of the significant
eigen-subspace, and suggesting further operations in this reduced dataspace
without any loss of relevant information: e.g. similarity measures, as those
implied in Latent Semantic Analysis (Deerwester et al. (1990)), or cluster
axöıds seeking2 (Lelu(1994)), As a subsidiary observation, one may also no-

1 We are indebted to INIST and Pascal Cuxac for having put these data at our
disposal.

2 In this case, as no cluster axöıds can be colinear to another one by definition,
the number of clusters cannot be lesser than the intrinsic dimension of the data
matrix.
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tice in figure 4 that the visual “scree-break” criterion of Cattell (1966) seems
inoperative in such high-dimensional data, though effective in the case of our
artificial example in section 3.

On the computational side, the two most time-demanding phases, i.e.
the creation of the randomized matrices and the extraction of a significant
proportion of their singular values (250 chosen here), are not far from pro-
portional to their number and to the number of ones in each one. This is
no problem for our 200 matrices filled with 10,700 ones, as the total running
time of these modules has not exceeded ten minutes on a 2.7 GHz CPU, 4
Gb RAM, desktop computer.

5 Substantial content of a binary datatable: an

empirical approach

The SVD reconstitution of the data writes:

X0 = UDV ′

where U and V are the matrices gathering respectively the row and column
singular vectors, and D is the diagonal matrix of the singular values.

The rank-k reconstitution of the data writes:

Xk

0
= UkDkV ′

k

We have computed the X125

0
reconstitution of the data in the relevant eigenspace.

The distribution of the values in the cells is very assymetric, with more than
3 million values in the ]0; .1] interval, 2600 values in the ]0.9; 1] interval, and
a clear minimum in the ].5; .9] range; hence, the empirical idea of threshold-
ing these values for reconstructing a binary matrix. And for each value of the
threshold, a coefficient of fit between the real data and the reconstructed ones
can be computed. We have chosen the well-known f-score coefficient, i.e. the
harmonic mean between the precision and recall of the reconstitution: the
maximum value 0.803 corresponds to the .3 threshold. The resulting binary
table has lost 10, 754 − 10, 138 = 616 one values, compared to the original
matrix. We may conclude that these 616 values are pure noise and might be
discarded from any further analysis. The same thresholding process might
be applied for discarding more and more values, depending on the desired
sharpness of this analysis. A progressive filtering of the binary features may
also ensue.

6 Conclusions, perspectives

The use of the Tournebool randomization test appears to offer a satisfactory,
if not rigorous, solution for establishing the intrinsic dimension of a large,
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sparse, binary matrix, useful e.g. for fixing the relevant number of compo-
nents in a Latent Semantic Analysis, or a lower bound to the “real” number
of clusters to be pulled out. More has to be worked out on the subject of
reconstructing the “core bits” of the data matrix, on which subject we hope
to have brought a first contribution.

References
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