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Abstract—Recently introduced spot instances in the Amazon strategies significantly reduce the monetary cost, while im
Elastic Compute Cloud (EC2) offer lower resource costs in proving reliability.
exchange for reduced reliability; these instances can be veked The remainder of this paper is organized as follows. Sec-
abruptly due to price and demand fluctuations. Mechanisms .. S . . .
and tools that deal with the cost-reliability trade-offs under tion Il presents Ch_eckpomtlng strategies on spot.msisarme
this schema are of great value for users seeking to lessen the the Amazon Elastic Compute Cloud (EC2). Section Il eval-
costs while maintaining high reliability. We study how one sich uates performance of several checkpointing strategiesdbas
a mechanism, namely checkpointing, can be used to minimize gn the previous price history of the spot instances. Sedton

the cost and volatility of resource provisioning. Based ontte yagcrines related work. Finally, Section V presents caichs
real price history of EC2 spot instances, we compare several d ibl t . fth', K
adaptive checkpointing schemes in terms of monetary costsnd anad possible extensions of this work.

improvement of job completion times. Trace-based simulatins
show that our approach can reduce significantly both price ad ] i i ) .
the task completion times. In this section we describe the system model used in this

paper and introduce the considered checkpointing schemes.
o . . . A. System Model

The vision of computing as a utility has reached new heights
with the recent advent of Cloud Computing. Compute ar-
storage resources can be allocated and deallocated aln
instantaneously and transparently on an as-need basis.

Pricing of these resources also resembles a utility, a
resources prices can differ in at least two ways. First prazam oors
differ by vendor. The growing number of Cloud Computing Time (January 11~18,2010) - ew-west1 linux1.medium
vendors has created a diverse market with different pricit g *
models for cost-cutting, resource-hungry users.

Second, prices can differ dynamically (as frequently ¢
an hourly basis) based on current demand and supply.
December 2009, Amazon released spot instances, which :
the spare capacity of their data centers. Their dynamidngric
model is based on bids by users. If the users’ bid price pose
above the current spot instance price, their resource stqL § oos
is allocated. If at any time the current price is above the b & ... WMMWWMU—LHL
price, the request is terminated. Clearly, there is a taftle- s
between the cost of the instance and its reliability. Time (January 11~18,2010) - eu-west-1linux.m xlarge

The current middleware run on top of these infrastructures
cannot cope or leverage changes in pricing or reliability. Figure 1. Spot price fluctuations ef-west-1.linuxnstance types
Ideally, the middleware would have mechanisms to seek by
itself the cheapest source of computing power given theAmazon allows users to bid on unused EC2 capacity pro-
demands of the application and current pricing. vided as42 types ofspot instanceshat differ by computing

In this paper, we investigate one mechanism, namely che¢kmemory capacity, OS type and geographical location [1].
pointing, that can be used to achieve the goal of minimizintheir prices calledgspot priceschange dynamically based on
monetary costs while maximizing reliability. Using realqer supply and demand. Figure 1 shows examples of spot price
traces of Amazon’s spot instances, we study various dynarfliectuations for threeeu-west-1.linuxnstance types during
checkpointing strategies that can adapt to the currerdnicst days in January 2010. Customers whose bids meet or exceed
price and show their benefit compared to static, cost-igrtorahe current spot price gain access to the requested resource
strategies. Our key result is that the dynamic checkpantifrigure 2 shows how Amazon EC2 chargesr-hour price

II. SPOTINSTANCES ONAMAZON EC2

I. INTRODUCTION
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Figure 2. Examples of pricing for Amazon EC2’s spot instance

Table |
NOTATIONS AND SYMBOLS USED IN THIS PAPER

Notation [ Description

remaining work of task in time

C

time to take a checkpoint

ta

time to analyze price history for obtaininf(¢, u;)

Amazon provides a spot instance when a user’s bid is__ "

time to restart a task

user’s bid on a spot instance type

greater than the current price. f(;";b)
Amazon stops immediately without any notice when a”

probability density function of a failure occurrence
wheret is time, andu,, is the user’s given bid

user’s bid is less than or equal to the current price. Wee(t, us)
call this anout-of-bid event or afailure.

probability density function of a rising edge occurrence
wheret is time, andu,, is the user’s given bid

. Ne number of rising edges of spot price that arrived in the
o Amazon does not charge the latest partial hour when current availability interval
Amazon stops an instance. me(up) mean number of rising edges in an availability interval
o Amazon charges the last partial hour when a user termi- according tou, ____ : ___
T(t) expected execution time of a task without checkpointing

nates an instance.

when executing time units

The price of apartial-hour is considered the same as @ H; .. (1)
full-hour.

expected recovery time of a task wittour-boundary
checkpointing at time units after taking checkpoint

. Hpip (1) expected recovery time of a task withdubur-boundary
o Amazon charges ea}Ch hour by the .Iast Prlce' checkpointing at time units after taking checkpoint
o Amazon freely provides the spot price history. Eiane(t) || expected recovery time of a task witlsing edge-driven
o The price of Amazon’s storage service is neg||g|b|e checkpointing at time units after taking checkpoint
Eskip(t) expected recovery time of a task withaiging edge-

B. Definitions

driven checkpointing at time units after taking checkpoint

Let ¢, denote the remaining computing time of a task

to finish (for a fixed instance type), arifi(t) the expected gjven instance type has increased. Fkie ;) is a probability
execution time of a task without taking checkpoints.®Byve density function of rising edge occurrences wheigthe time
denote the time for taking a checkpoint. For a given bid pricgnce the last checkpoint.

up ON an instance type, we are interested in the probability of agy, , (¢) and H.ip(t) are the expected recovery time
failure (i.e. out-of-bid situation). For this purpose wérd@tuce of a task if we take a checkpoint or skip it at the hour-
a probability density functiony(¢, u;) of failure occurrences poundary time. Here is time since last checkpoinE; q . (t)

can be approximated from the history of price fluctuatioret. Lcheckpoint or skip it at a rising edge. Table | describes

t, be the time needed for analyzing this history in order fQotations and symbols used in this paper. From the price
approximatef (¢, us) (for a bidu,). Figure 3 shows an examplepjstory, we can calculate other metrics shown in Table | such

of f(t,us) for the eu-west-1.linux-c1.mediumstance type. It as the mean spot price, and the mean number of rising edges
shows that the probability density function is a function Gk, an available duration.

both the time and the user’s bid. With the terising edge,
we refer to the event (and its time) where the spot price forG Expected recovery time

In this section, we derive analytical formulas &, . (t),
Hkip(t), Erare(t) and Eg;p(¢) describing the expected re-
covery time in various situations. They are used in Section

1Amazon provides free storage service up to June 30th 20t0after July
1st, the price will be0.15 USD for 1 GB-month. This is much lower than
the price of computation [2].
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(b) When skipping to take a checkpoint at the current time By integrating above, we obtain Eq. (2). n

Theorem 3:The expected recovery time when taking an
hour-boundary checkpoint attime units after taking check-

Figure 4. Effects of skipping and taking a checkpoint on theovery time . . -
point, Hyqr.(t) is given by

[I-D3 for adaptive checkpointing schemes. To this aim, we tr—1
modify the determination functions and notations from [3], Hiope(t) = Z(k +7)f(k,up)
[4]2. This yields the following Theorem 1 on the expected k=0 3)
execution time of a process without checkpointing. te—1
Theorem 1:The expected execution tini&(t) of a process + Z T(t)f(k,up) + T(te).
k=0

without checkpointing when executingtime units is

_ Proof: When a failure occurs withify. time units, the task
_ b Yo (kA — 0 f (ks u) 0

T(t) — ) (1) should be re-executed from the last checkpoint, and when a
1= ko f(k,up) failure occurs int, < k < t, the task can be recovered from
Proof: The conditional expected execution time is writtethe new checkpoint. In additio/;qx.(t) has overhead'(t.)
as [3]: of taking a checkpoint, and thus,
if k>
() = {t if k>t _
k+r—+1T(t) otherwise. k+r+T@E) if k<t
By the law of total expectation Higre(t) =T(te) + Q k+ 7 else ift. <k < t,
oo t—1 0 otherwise.
() = kz:; Lf(kyw) + kZ:O (k 47+ T(8)f (k, up). By the law of total expectation
Rearranging with respect t6(¢), we obtain .
T(t) _ ZZO:O tf(k’ Ub) + ZZ_:{) (k +r— t)f(ka ub) Htake(t) - Z (k +r 4+ T(t))f(kv ub)
t—1 . =
1- Zkzo fk, up) k_t?_l
Since "2, tf(k,up) = t, we have + ) (k1) f (ke up) + Tte).
Ty P iz (47— 07 (k) o = ,
1— 22—210 £k, up) Simplifying above withk + r, we obtain Eq. (3). [ ]

To derive formulas fofE k. (t) and Esxip (t) we use the mean

rising edgem.(u;), the number of arrived rising edges in
' the current duratiom., and the probability density function

of rising edge occurrence(k, u;). We obtain Eg,, (t) and

In Eq. (1) f(k, up) significantly affects th€’(¢). For example
without failureszz;l0 f(k,up) goes to0, and thusT'(¢) = t.
Otherwise, T'(t) is larger becausgjfgjJ f(k,up) > 0. Based o nge(k,up) .
on Eq. (1) we can calculate the expected recovery time fdr b take (1) DY substituting me(up) for f(k,us) in Eq. (2) and

cases of skipping and taking a checkpoint, which is illustta a. (3), respectively. _ o
in Fig. 4. Eq.ip(t):  The expected recovery time when skipping a

rising edge-driven checkpoint is given by

Theorem 2:The expected recovery time when skipping

an hour-boundary checkpoint &t time units after taking (k4 T()nee(k, u
checkpoint,H, (t) is given by Baap(t) = > ( m((z}b) () (4)
k=0 €

°We modified Theorem 1 in [3] because we use discrete timessarid E - Th d . h Ki ..
the measured probability density function of failure ocence based on the take(t): The expected recovery time when taking a rising

real traces. For more information, please see Fig. 1 andr&hed in [3]. edge-driven checkpoint is given by



Table I

Pay per hour --- Pay per hour =--, Pay per hour =---,
v DESCRIPTION OF CHECKPOINTING POLICIES

v v vRecovery

Task
execution

Name [ Description

Task execution t Task execution t Task execution |t Failure

c c c T (without OPT the optimal base (takes checkpoints just prior to failures)
i paymend) NONE without checkpointing
0 60 120 180  Time (minute) H hour-boundary checkpointing
E rising edge-driven checkpointing
AH adaptive hour-boundary checkpointing
Figure 5. Hour-boundary checkpointing (decides every hour-boundary whether to take or skip)
AE adaptive rising edge-driven checkpointing
° Recovery (decides every rising-edge whether to take or skip)
el L usersbig__ .. ___ . _TTUCT [ H+E hour-boundary and rising edge-driven checkpointing
2 M I - checkpoint H+AE hour-boundary and adaptive rising edge-driven checkjpgjnt
5 £ Failure 4 rising edge AH+E adaptive hour-boundary and rising edge-driven checkjpgjnt
- AH+AE adaptive hour-boundary and adaptive rising edge-driven
8 JJ _I_*_ checkpointing
8 > AF(10) adaptive fine-grained checkpointing [3]
o Available duration Available duration Tim_g (decides every 10 minutes whether to take or Sklp)
AF(30) adaptive fine-grained checkpointing [3]
(decides every 30 minutes whether to take or skip)

Figure 6. Rising edge-driven checkpointing

= (k + r)nee(k,up) all rising edges does not guarantee checkpointing at hourly
Btake(t) = Z me(up) boundaries, and in some cases, rising edges may not occur
k:to . ‘ (5) during an availability period. Consequently, the risingyed
— T(t)nee(k ub) () driven checkpointing might fail to reduce the executiondim
pors me(up) ¢ if a sudden increase of the spot price occurs.

3) Checkpointing with Adaptive DecisiorEigure 4 com-

In Eqg. (4) and Eg. (5), the combined density faci@?(k—“f pares effects of taking or skipping a checkpoint at the eurre
denotes how the current point of time is close to (or %ar frontime. This decision significantly affects the recovery tiiha
the expected failure occurrence from the current time. Failure occurs, and thus the execution time of the runnisg.ta
example, when a system has a significantly large numberBy using the formulas derived in Section 1I-C we can compare
rising edges for each availability duration, and a few gsinwhether it is more useful to take or to skip a checkpoint. In
edges have arrived, then the density facyof:- o % more detail, our policy takes a checkpoint at an hour boyndar
goes to0. In this case Fip(t) goes to0, while Emk:(t) = if Hgpip(t) > Hiake(t) and skips it otherwise. Analogously,
T(t.). On the other hand, when the approaches ta.(u;), by comparingE;ai.(t) againstFs,(t), we learn whether to
the factor goes tce(k,u;). In this case,Ei,(t) may be take Eskip(t) > Erake(t)) OF 10 SKip Earip (t) < Erake(t)) @
greater thanE, . (). checkpoint at a rising edge. In those notationis a relative

L time since the last checkpoint (or, when the task does not

D. Checkpointing Schemes have checkpoint, it is the time since the starting time of its

In the following we describe the proposed checkpointingxecution.)
schemes in the considered scenario. 4) Checkpointing Combinationsthe above checkpointing

1) Hour-boundary CheckpointingFigure 5 illustrates the schemes arerthogonalto each other. We obtait2 different
hour-boundary checkpointing method. Here checkpoints agges of checkpointing policies by combining them. The
taken periodically at hour boundaries. It is the most ifntait detailed information is given in Table I1.
one for the spot instances, becauséaar is the lowest gran-
ularity of spot instance pricing. It also provides a guaﬂeantE Partial Improvement based on the Delayed Termination
of paying for the actual progress of computation Amazon EC2’s pricing rules allow the following method

A variation of this policy is the fine-grained checkpointingo reduce the computation costs. As shown in Fig. 1, Amazon
which evaluates whether to take a checkpoint periodicaljoes not charge the lagartial-hour when EC2 terminates the
every 10 or 30 minutes. See [3] for details. running instance (the last partial hour is charged if teation

2) Rising edge-driven Checkpointingigure 6 presents theis due to the user). Based on that fact, each user can delay
rising edge-driven checkpointing which is novel compare@rmination of the running instance up to the hour-boundary
to previous checkpoint methods. In the world of the speind Amazommayterminate the running task with probability
instances, rising (and falling) edges occur according ® th,, then the users may haye xprice_per_hour reduction
number of available resources, the bids from users, and fhem the total price.
number of bidders. A rising edge is likely to indicate that
the system has less available resources, more bidding, userd!!-
or higher bids from users, and so an out-of-bid event (for aln this section, we analyze the impact of checkpointing
constant bid) is more likely. However, taking checkpoints golicies on all42 spot instance types in Amazon EC2. We

E VALUATION OF THE CHECKPOINTING POLICIES



Table Il

VALUES OF PARAMETERS USED IN THIS PAPER 1900 —opr
Parameter I Value 1700 '''NONE
Starting date of past traces Jan. 11th, 2010 _v H
Ending date of past traces Feb. 5th, 2010 B 1500 E
Past traces (for calculating pdf) 14,400 mins 2 A AH
Minimum bidding granularity 0.001 USD g —AE
Parameter || t, [ % [ ta ] r 5 1800 H+E
= = = £ © H+AE
Value [| 500 mins [ 5mins | 3secs | 10 mins =
S 1100 & AH+E
S
o <~ AH+AE
5.00 g =*AF(10)
—oOPT g 900 o AF(0)
450 1INONE X
' VH F 700
4.00 “E
’ A AH
— e 500
350 0157 0159  0.161 0163  0.165  0.167  0.169
aQ 2, HE 0156  0.158  0.160  0.162  0.164  0.166  0.168
l > H4AE
E 3.00 & AHLE User's bid (on eu-west-1.linux.m1.large)
5 = AH+AE
TQ‘:- 230 "AF(+10)
k) pmmmmmTE ¢ """\‘ AR (30 Figure 8. Task completion time cgu-west-1.linux.m1.largéstance type
T 200 fmemmmTtaas " AR0)
A}
\Y
150 1 1) eu-west-1.linux.m1.large instance typafe have picked
100 the eu-west-1.linux.m1.largas a representative instance type
0153 0155 0157 0159 04161 04163 04165 04167 o469 1O evaluate the total price of a task, its completion timej an
0.152 0.154 0.156 0.158 0.160 0.162 0.164 0.166 0.168 a product of both as a combined metric.
User's bid (on eu-west-1.linux.m1.large) Total price. Figure 7 shows the total price for the investi-

gated instance type. Obviously the edge-driven checkpoint
ing policies perform poorly. Policy AF(30) has lower cost
compared with the other combinations of hour-boundary and
edge-driven checkpointing policies. This result shows tha

simulated the checkpointing schemes based on the real pdge-driven checkpointing is not effective in reducingeeri
traces in terms of the task completion time, total price, argpMmpPared with other checkpointing policies. Furthermare,

Figure 7. Total execution price cgu-west-1.linux.ml.larggstance type

the pricex time product. have al0 ~ 30 percent difference between OPT and the other
policies.
A. Simulation Setup Task completion timeFigure 8 shows the task completion

) ] ) ] time for theeu-west-1.linux.m1.largastance type. The adap-
Table Ill shows our simulation setup in detail. We assumge fine-grained checkpointing performs more poorly thaa t
that the checkpointing cost of running programs is Knowgther combinations. The adaptive hour-boundary checkpoin
We used the constant value for the but using a variable jng shows slightly lower task completion times than the ralrm
checkpointing cost is also possible in our system model. Wg,r-boundary policy. The difference between OPT and the
assume that the total work of each progrand@ minutes, siner policies is about0 ~ 15 percent.

a_nd we used the Iateép-days (_14’400 minutes) of F_Jr_ice Combined metricdrigure 9 shows the performance metrics
history to get the probability density function of the aadility combined, i.e., the product of total price and task compieti

duratiqns. _ i . time on our instance type. Policy AF(30) is better (lower
We implemented a simulator which reads the past histopy,qyct) than the others when the user's bid is less ¢hsD,
of spot price, calculates the probability density functioh |, ;¢ this metric is slightly higher for other bid ranges. Weaal

availability durations and rising edges, and simulatesithe 5 carve that the performance gap between OPT and the other
types of checkpointing policies (see Table Il) on tietypes cies is abouR0 ~ 30 percent.

. : . oli
of spot instances. For each data point, we simulated 1802) Evaluation on two us-east-1.windows instance typte:

experiments to ensure confidence of our results. have investigated twos-east-1.windowmistance types as an

alternative to the aboveu-west-1.linux.m1.largeudy. Figures

10 and 11 show the corresponding results. The rising edge-
In the following, the policy OPT serves as a comparisodriven checkpointing shows better performance than others

baseline and is optimal in the sense that checkpoints aemtakvhile AF(10) and AF(30) show worse results in most of the

immediately before failures known in advance. range of user’s bids. This can happen when the movement of

B. Simulation Results and Evaluation
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spot price has a weaker relationship with the previous pri
changes. In other words, the adaptive decision mechanigm n
not perform well when the probability density function ol **
failures significantly (and, unexpectedly) changes oveeti ] e

3) Mean price bidding: Table IV shows the normalized geers onus east Tuincons it smal peereB onus eastuindons mt ferge)
product of the total price and the task completion time when
a user bids the mean price based on the past price history. Ifigure 10. Total execution price ars-east-1.windowstance types
this result, we observe that checkpointing policies aftbet
real price significantly. In particular, using the hour-bdary
checkpointing can reduce significantly the cost compared wedge driven checkpointing perform well in a small fractidn o
the edge-driven policies or without checkpointing pokicn the spot instance types. The policy combinations usinggisi
this instance type. Also, the cost of the adaptive fine-gminedge-driven checkpointing (E, AE, and AH+AE) perform well
Checkpointing depends on its Samp]ing (decision) rateng_jsionly on Microsoft Windows-based spot instances while not
a higher rate provides more available places to checkpmint, Performing so well on the Linux-based spot instances.
it may not be efficient because the decision is not the optimal Summarizing, we observe that checkpointing can signif-
and the decision requires overhead. This result showslikat icantly affect both the task completion time and the total
checkpointing policies give result8) ~ 45 percent higher price. We found that using hour-boundary checkpointing can
than the optimal case. This means that finding a better gyratéeduce costs significantly in the presence of failures. Beat,
to take a checkpoint is still required to save more moneta@js0 found that the rising edge-driven checkpointing igevet
costs. The detailed explanation of possible future appremcfor some set of instance types. The results also show that
are discussed in Section V. delayed termination can reduce a small amount of monetary

4) Delayed terminationTable V shows the price reductionCOSts given our task’s size (which is 500 minutes), but this
when using delayed termination introduced in Section II-Scheme may reduce significantly costs when running relgtive
This technique does not affect the task completion time b¥ffort-term tasks. We also found that finding better placésnen
may reduce cost of théast partial-hour For the long-term ©f checkpoints is required to minimize the performance gap
tasks the savings may be trivial; however shorter tasks (ofgtWeen the optimal and the other checkpointing policies.
few hours or less) might benefit from it. The results shows
that we can save almost01 ~ 0.20 USD, depending on the IV. RELATED WORK

size of the instance types. We start with work related to Cloud Computing, including
5) Policy comparison and result summaryable VI shows economics, management services, and fault-tolerant eiddl
the best checkpointing policies for all2 types of spot ware. Several previous works focus on the economics of
instances. We observe that the hour-boundary checkpginti@loud Computing [5], [6], [7], [8], [9]. However, these wark
performs best for most cases, while AF(30) and the risingssume a static pricing model for EC2’s dedicated on-demand




Table IV
NORMALIZED PRICEX TIME PRODUCT FOR EXECUTION ON THE MEAN PRICE BIDDINGNORMALIZED BY OPT)

eu-west-Llinux type | NONE | H [ E | AH | AE | H+E [ H+AE [ AH+E [ AH+AE [ AF(10) [ AF(30)
cl.medium 2.659 1.298 3.841 1.296 2.660 1.307 1.300 1.307 1.300 2.865 1.405
cl.xlarge 19.34 1.454 18.11 1.450 32.77 1.460 1.456 1.460 1.456 3.444 1.558
m1.large 6.826 1.408 4.261 1.405 5.147 1.420 1.417 1.420 1.417 3.275 1.428
m1.small 16.18 1.505 15.11 1.508 16.18 1.543 1.543 1.543 1.543 2.848 1.496
m1.xlarge 13.75 1.445 11.50 1.449 16.86 1.448 1.447 1.448 1.447 2.655 1.456
m2.2xlarge 2.894 1.462 2.900 1.462 2.897 1.465 1.464 1.459 1.464 2.690 1.428
m2.4xlarge 3.458 1.354 2.758 1.355 2.972 1.360 1.358 1.360 1.358 2.843 1.411
Table V

THE AMOUNT OF PRICE REDUCTION(IN USD)WHEN USING DELAYED TERMINATION (ON THE MEAN PRICE BIDDING)

eu-west-1Llinux type[] OPT | H [ E | AH | AE | H+E [ H+AE [ AH+E [ AH+AE [ AF(10) [ AF(30)
cl.medium 0.021 0.006 0.001 0.006 0.014 0.007 0.006 0.007 0.006 0.003 0.002
cl.xlarge 0.101 0.109 0.067 0.109 0.067 0.105 0.109 0.105 0.109 0.074 0.015
ml.large 0.019 0.029 0.032 0.029 0.043 0.025 0.025 0.025 0.025 0.028 0.008
m1.small 0.004 0.015 0.000 0.015 0.000 0.012 0.012 0.012 0.012 0.008 0.004
m1l.xlarge 0.034 0.065 0.275 0.065 0.000 0.065 0.065 0.065 0.065 0.039 0.015
m2.2xlarge 0.033 0.093 0.006 0.093 0.006 0.093 0.093 0.093 0.093 0.049 0.049
m2.4xlarge 0.110 0.257 0.175 0.257 0.175 0.257 0.257 0.268 0.257 0.130 0.022
Table VI

BEST CHECKPOINTING POLICY FOR EACH SPOT INSTANCE TYPE IARMAZON EC2 (ON THE MEAN PRICE BIDDING, IN TERMS OF PRICEX TIME PRODUCT,
EXCEPT FOROPT)

Instance types [ cl.medium type| cl.xlarge type] ml.large type] ml.small type| ml.xlarge type| m2.2xlarge type| m2.4xlarge type

eu-west-1.linux AH AH AH AF(30) H AF(30) H
eu-west-1.windows AF(30) AF(30) AH AH H, AH H, AH AH+AE
us-east-1.linux H, AH H, AH AF(30) H H, AH H, AH AH
us-east-1.windows AE H, AH H, AH AF(30) H AE E, AE
us-west-1.linux H, AH H, AH AF(30) AH H, AH H, AH AH

us-west-1.windows H, AH AF(30) AH H, AH E E AH

instances. They evaluate the cost-benefit of Cloud ComgutiXi et al. proposed an adaptive checkpointing scheme which
compared to self-built, dedicated infrastructures suclras provides adaptive taking point decision function when tbstc
ditional Grids or ISP’s. The authors focus on different typeof checkpointing changes over time. Their results applyeund
of applications including task parallel, message passang, the assumption that failures occur according to Boésson
data-intensive applications. process. In contrast, we use the probability density foncti
Several services for monitoring and managing cloud ay-hiCh is calculated from the previous traces of spot in_ste_mc .
There are several challenges related to checkpointing in

plications exist [10], [11], [12], but these services cuthg . )
do not consider cloud costs that vary dynamically over tim pntext of unreliable resources such as spot instances. The

For instance, RightScale [12] is a third party cloud compgti irst one is finding the relationship between past and future

broker that provides management services for clouds SJ@Hures or _avgilability for proactive checkpointing. Mug/ork .
as EC2. They provide several software tools that reduce { Ists on finding correlations and dependence betweendailu

complexity of managing and monitoring cloud computin vents [17], [18], [19], [20]. Another challenge is using an

resources. However, they still do not have any service f Fficien_t chgckp(_)inting method for mini_mizing th? expected
efficiently utilizing the spot instances on the Amazon EC xecution time in the presence of failures. This also has

Instead, the users of spot instances have to manage Tn f‘he ZSZUbIECt of prewotu_s wo(;k d;esc(jr!becjthln .[16]’ t[S]%
instance costs and reliability manually and individually. ¥ ]’.[ ; J. A new aspect is un erstanding the impact o
checkpointing methods on the spot instances for reducitiy bo

Several middleware currently deployed over Clouds hayee monetary costs and the task’s total execution time. iBhis
fault-tolerance mechanisms [13], [14], [15], but these h@ec the focus of this work.
nisms currently are not cost-aware. For instance, Map-8adu
[13] and Condor [14] are intrinsically fault-tolerant, buow V. CONCLUSIONS ANDFUTURE WORK
to conduct fault-tolerance in a cost-effective way has retrb =~ We proposed an approach to reduce monetary costs of
addressed. In particular, checkpointing has been wetlistiy computations using Amazon EC2’s spot instances for regourc
but previous studies have not taken into account variakjeovisioning. Based on the price history given by Amazon,
resource costs. In [16], A. Duda studied the optimal placgmeve simulated and compared several checkpointing schemes in
of a checkpoint if the performance overhead is constanB]in [ terms of both price and task completion time. Our simulation
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results show that using an appropriate checkpointing sehem
can reduce significantly both the price and task completio

time.
Our future work will include identifying correlation betwa

[17]

past and current prices, between instance types, and betwee
rising edges. We are also interested in developing robwst pr
diction methods to minimize monetary costs and completié:l'?]
times under this schema. We will also investigate how togath
"hidden information" such as the amount of bids, the number
of available resources, and the number of bidders in order[ig]

improve predictions.
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