
HAL Id: inria-00464661
https://hal.inria.fr/inria-00464661

Submitted on 17 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of application- and middleware-layer
interaction protocols

Amel Bennaceur, Antonia Bertolino, Paul Grace, Paola Inverardi, Valérie
Issarny, Massimo Tivoli

To cite this version:
Amel Bennaceur, Antonia Bertolino, Paul Grace, Paola Inverardi, Valérie Issarny, et al.. Modeling of
application- and middleware-layer interaction protocols. [Technical Report] 2010. �inria-00464661�

https://hal.inria.fr/inria-00464661
https://hal.archives-ouvertes.fr

ICT FET IP Project

Deliverable D3.1

Modeling of application- and
middleware-layer interaction
protocols

http://www.connect-forever.eu

Project Number : 231167
Project Title : CONNECT – Emergent Connectors for Eternal Software

Intensive Networked Systems
Deliverable Type : Report

Deliverable Number : D3.1

Title of Deliverable : Modeling of application- and middleware-layer interaction
protocols

Nature of Deliverable : R
Dissemination Level : Public
Internal Version Number : 1.2
Contractual Delivery Date : 1 February 2010
Actual Delivery Date : 15 February 2010
Contributing WPs : WP3
Editor(s) : Massimo Tivoli (UNIVAQ)
Author(s) : Amel Bennaceur (INRIA), Antonia Bertolino (CNR), Paul Grace

(LANCS), Paola Inverardi (UNIVAQ), Valérie Issarny (INRIA),
Romina Spalazzese (UNIVAQ), Massimo Tivoli (UNIVAQ)

Reviewer(s) : Animesh Pathak (INRIA), Paul Grace (LANCS)

CONNECT 231167 3/79

Abstract
The CONNECT Integrated Project aims at enabling continuous composition of networked systems to
respond to the evolution of functionalities provided to and required from the networked environment.
CONNECT aims at dropping the interoperability barrier by adopting a revolutionary approach to the
seamless networking of digital systems, that is, synthesizing on-the-fly the connectors via which net-
worked systems communicate. The resulting emergent connectors are effectively synthesized accord-
ing to the behavioral semantics of application- down to middleware-layer protocols run by the interacting
parties. The role of work package WP3 is to devise automated and compositional approaches to con-
nector synthesis, which can be performed at run-time. Given the respective interaction behavior of
networked systems, we want to synthesize the behavior of the connector(s) needed for them to inter-
act. These connectors serve as mediators of the networked systems’ interaction at both application
and middleware layers. In this deliverable, we set the scene for a formal theory of the automated
synthesis of application- and middleware-layer protocol mediators. We formally characterize mediat-
ing connectors between mismatching application-layer protocols by rigorously defining the necessary
conditions that must hold for protocols to be mediated. The outcome of this formalization is the def-
inition of two relationships between heterogenous protocols: matching and mapping. The former is
concerned with checking whether a mediator letting two protocols interoperate exists or not. The latter
concerns the algorithm that should be executed to synthesize the required mediator. Furthermore, we
analyze the different dimensions of interoperability at the middleware layer and exploit this analysis
to formalize existing solutions to middleware-layer interoperability. Since the work on application-layer
mediator synthesis is based on the assumption that a model of the interaction protocol for a networked
system is dynamically discovered, we finally present an approach, based on data-flow analysis and
testing, for the automated elicitation of application-layer protocols from software implementations. This
approach presents similarities, but also several differences, with the work of work package WP4 (pro-
tocol learning). Furthermore, it allowed us to proceed in parallel with the work of WP4 and to state
the requirements that the learning approaches have to satisfy to enable mediator synthesis. For this
reason, we keep this work separate from the work on protocol learning and discuss it in this deliverable.
All the approaches mentioned above are applied to several examples and scenarios.

Keyword List
Connectors, Protocol Mediators, Protocol Specification, Protocol Synthesis, Protocol Elicitation,
Application-Layer Interoperability, Middleware-Layer Interoperability, Data-Flow Analysis, Testing.

CONNECT 231167 4/79

Document History

Version Type of Change Author(s)

0.1 Outline and planning Massimo Tivoli (UNIVAQ)

0.2 First version of Chapter 5 Massimo Tivoli (UNIVAQ)

0.3 First version of Chapters 2, 3,
and 4

Amel Bennaceur (INRIA), Valérie Is-
sarny (INRIA), Romina Spalazzese
(UNIVAQ), and Paola Inverardi (UNI-
VAQ)

0.4 Second version of Chapters 3
and 4

Amel Bennaceur (INRIA), Romina
Spalazzese (UNIVAQ)

0.5 Second version of Chapters 2
and 5

Massimo Tivoli (UNIVAQ)

0.6 Revision of Chapters 2,3, and
4; editing of Abstract, Key-
words, Chapter 1, and Chap-
ter 6

Amel Bennaceur (INRIA), Paola Inver-
ardi (UNIVAQ), Romina Spalazzese
(UNIVAQ), Massimo Tivoli (UNIVAQ)

0.7 Complete revision of the con-
tent of v0.6

Amel Bennaceur (INRIA)

0.8-1.2 Internal Reviews Amel Bennaceur (INRIA), Anto-
nia Bertolino (CNR), Paul Grace
(LANCS), Paola Inverardi (UNIVAQ),
Valérie Issarny (INRIA), Animesh
Pathak (INRIA), Romina Spalazzese
(UNIVAQ), and Massimo Tivoli (UNI-
VAQ)

CONNECT 231167 5/79

Table of Contents

LIST OF FIGURES . 9

LIST OF TABLES. 11

1 INTRODUCTION . 13

2 FOUNDATIONS FOR CONNECTOR SYNTHESIS. 15
2.1 From Mediation to Connectors . 15

2.2 Formal Foundations for Connectors . 17

2.3 Connect Matching and Mapping Concepts. 20

2.4 Summary . 21

3 APPLICATION-LAYER CONNECTOR SYNTHESIS: TOWARDS A SUPPORT-
ING THEORY OF MEDIATORS . 23
3.1 The Instant Messaging Example . 23

3.2 A Formalization of Protocols for Ubiquitous Connection . 23

3.2.1 Protocols as LTS. 25
3.2.2 Abstracting protocols to reason about functional matching . 26
3.2.3 Functional matching of protocols . 28

3.3 Towards Automated Matching and Synthesis . 29

3.3.1 Mediated matching . 29
3.3.2 Ontology-based functional matching . 29
3.3.3 Abstract mediator synthesis . 30

3.4 Application of the Mediator Theory to the Popcorn Scenario. 30

3.4.1 Heterogeneous merchant and consumer. 30
3.4.2 Applying mediated matching and mapping . 34

3.5 Preliminary Assessment . 34

3.6 Summary . 35

4 MIDDLEWARE-LAYER CONNECTOR SYNTHESIS: BEYOND STATE OF THE
ART IN MIDDLEWARE INTEROPERABILITY . 37
4.1 Middleware Interoperability . 37

4.2 Middleware-layer Connectors. 38

4.2.1 Connector definition . 38
4.2.2 Connectors classification . 38
4.2.3 Convergence of middleware and connector . 39

4.3 Formalizing Existing Approaches to Middleware Interoperability . 40

4.3.1 FSP-based formalization . 40
4.3.2 Bridging . 41
4.3.3 Interoperability platforms . 43
4.3.4 Transparent interoperability . 43

4.4 Assessing the Transparent Interoperability Approach. 44

4.4.1 Example 1: Interoperability within the same connector type . 44
4.4.2 Example 2: Interoperability among different connector types. 47

CONNECT 231167 7/79

4.5 Middleware-layer Interoperability versus Application-layer Interoperability 51

4.5.1 Example 1: Interoperability within the same connector type . 52
4.5.2 Example 2: Interoperability among different connector types. 52

4.6 Summary . 53

5 APPLICATION-LAYER PROTOCOL ELICITATION: TOWARDS AN AUTOMATED
MODEL-BASED APPROACH . 55
5.1 Setting the Context . 56

5.2 Method Description. 56

5.2.1 Overview. 56
5.2.2 Explanatory example . 57
5.2.3 Stepwise description . 58

5.3 Method Formalization . 64

5.4 The Amazon E-Commerce Service Case Study . 67

5.5 Related Work . 69

5.6 Summary . 70

6 CONCLUSION AND FUTURE WORK . 73

BIBLIOGRAPHY . 75

CONNECT 231167 8/79

List of Figures

Figure 3.1: LTS-based behavioral model of WM and JM protocols . 24

Figure 3.2: An overview of the Connect approach to automated mediator synthesis 24

Figure 3.3: Structures of the WM and JM protocols . 28

Figure 3.4: Induced LTSs of the WM and JM protocols . 28

Figure 3.5: Synthesis algorithm . 30

Figure 3.6: Popcorn scenario: German consumer - French merchant. 31

Figure 3.7: Tuple space consumer . 31

Figure 3.8: UPnP merchant . 32

Figure 3.9: Tuple space implementation of the Popcorn scenario. 33

Figure 3.10: Ontology mapping between tuple space consumer and UPnP Merchant 33

Figure 3.11: Mediating connector between tuple space consumer and UPnP merchant 34

Figure 4.1: Component - Connector configuration . 38

Figure 4.2: Connector specification . 40

Figure 4.3: SOAP connector specification. 41

Figure 4.4: Direct bridging specification . 41

Figure 4.5: Indirect bridging specification . 42

Figure 4.6: Interoperability platforms specification. 43

Figure 4.7: Transparent interoperability specification . 45

Figure 4.8: SSDP specification . 46

Figure 4.9: SLP specification . 47

Figure 4.10: Application of the transparent interoperability approach to SLP-SSDP. 48

Figure 4.11: Projection function. 49

Figure 4.12: UPnP specification . 49

Figure 4.13: Lime specification . 50

Figure 4.14: LTS of the SSDP glue . 51

Figure 4.15: LTS of the SLP glue. 51

CONNECT 231167 9/79

Figure 4.16: SLP/SSDP ontology mapping . 52

Figure 4.17: LTS of the SLP/SSDP mediator . 52

Figure 4.18: LTS of the UPnP glue . 53

Figure 4.19: LTS of the Lime glue . 53

Figure 5.1: Overview of the StrawBerry method . 57

Figure 5.2: Generated nodes . 60

Figure 5.3: Saturated dependencies automaton . 60

Figure 5.4: Dependencies automaton after Step 4.1 . 62

Figure 5.5: Operation invocation dependencies . 63

Figure 5.6: Behavior protocol automaton . 64

Figure 5.7: An excerpt from the behavior protocol of AECS . 68

CONNECT 231167 10/79

List of Tables

Table 2.1: An overview of FSP operators . 19

Table 5.1: Instance pools . 61

Table 5.2: Summary of the AECS case study results . 68

CONNECT 231167 11/79

1 Introduction
The CONNECT Integrated Project aims at enabling continuous composition of networked systems to

respond to the evolution of functionalities provided to and required from the networked environment. At
present, the efficacy of integrating and composing networked systems depends on the level of interoper-
ability of the systems’s underlying technologies and in particular embedded middleware. Still, middleware-
based interoperability cannot cover the ever growing heterogeneity dimensions of the networked environ-
ment. CONNECT then aims at dropping the interoperability barrier by adopting a revolutionary approach
to the seamless networking of digital systems, that is, synthesizing on-the-fly the connectors via which
networked systems communicate. The resulting emergent connectors (or CONNECTors) are effectively
synthesized according to the behavioral semantics of application- down to middleware-layer protocols run
by the interacting parties.

As described in [1], the role of work package WP3 is to “devise automated and compositional ap-
proaches to connector synthesis, which can be performed at run-time. Given the respective interaction
behavior of networked systems, we want to synthesize the behavior of the wrapper(s) needed for them
to interact. These wrappers have to serve as mediators of the networked applications’ interaction at both
the application- and middleware-layer”. More specifically, WP3 has three main objectives that can be
summarized as follows:

• Synthesis of application-layer conversation protocols. The goal here is to identify connectors
patterns that allow the definition of methodologies to automatically synthesize, in a compositional
way and at run-time, application-layer CONNECTors.

• Synthesis of middleware-layer protocols. Our objective here is to generate adequate proto-
col translators (mappings) that enable heterogeneous middleware to interoperate, and realize the
required non-functional properties, thus successfully interCONNECTing networked systems at the
middleware level.

• Model-driven synthesis tools. In this subtask, we exploit model-to-model and model-to-code
transformation techniques to automatically derive, at run-time, a CONNECTor’s actual code from its
synthesized model. This step should guarantee the correctness-by-construction of the CONNECTors’
implementations with respect to the functional and non-functional requirements of the networked ap-
plications that are made interoperable through the CONNECTors.

Emergent connectors, mentioned above, act as mediators for today’s and future systems that increas-
ingly need to be connected. The mediator concept has been introduced to deal with different heterogeneity
dimensions spanning: (i) terminology (data level mediation), (ii) representation format and transfer proto-
cols (combination of data level and protocol mediations), (iii) functionality (behavioral type mediation) and
(iv) application-layer protocols (mediation of behavioral mismatches occurring during interactions) [72]. A
key challenge for today’s system architectures is to embed the necessary support for automated medi-
ation, i.e., the connector concept needs to evolve towards the one of mediating connector. Automated
mediation has deserved a great deal of attention in all the aforementioned heterogeneity dimensions.
Considering today’s state of the art, ontologies appear as the core concept to deal with data hetero-
geneity, logic-based formalisms stand as the natural paradigm for overcoming functional heterogeneity,
and process algebras are obvious candidates for reasoning about protocol mediation. Still, enabling rea-
soning and further solving of semantic mismatches at run-time, while not over-constraining the ability to
communicate, remain open research questions.

The work described in this deliverable represents a first step towards the achievement of the above
objectives. In this deliverable, we more specifically concentrate on the issue of enabling automated pro-
tocol mediation. In that context, we will interchangeably use the terms mediating connector, mediator
and CONNECTor in the following. Our work over the reporting period has in particular lead to the def-
inition and formalization of complex protocol matching and mapping relationships over application-layer
protocols. This contribution is described in Chapter 3 and is illustrated at work on two examples: one con-
cerns interoperability between two heterogeneous instant messaging systems, while the other concerns
the application of the approach to the Popcorn scenario provided by WP1 and described in Deliverable

CONNECT 231167 13/79

D1.1 [2]. The defined relationships represent two essential operations for the dynamic synthesis of me-
diating connectors to enable eternal networked systems. In fact, the matching relationship allows the
rigorous characterization of the conditions that must hold in order for two heterogeneous protocols to be
able to interoperate through a mediator. Thus it allows one to state/check the existence of a mediator
for two heterogeneous protocols. The mapping relationship introduces the formal specification of the
algorithm that should be performed in order to automatically synthesize the required mediator.

Concerning middleware-layer protocols, in Chapter 4, we first analyze the different dimensions of
middleware-layer interoperability. This analysis allows us to formalize existing solutions to middleware-
layer interoperability, presented in [2] and assess the one based on dynamic protocol synthesis as aimed
by CONNECT through two examples taken from the Popcorn scenario. This leads us to conclude that
existing solutions to the dynamic synthesis of interoperable middleware protocols do not address overall
CONNECT requirements, especially missing interoperability among middleware of different types. Then,
we evaluate the applicability of the aforementioned approach to application-layer interoperability at the
middleware-layer concluding that the approach devised so far still needs some adjustments to be effective
for both application- and middleware-layer interoperability.

Furthermore, since the work on application-layer mediator synthesis is based on the assumption
that a model of the interaction protocol for a networked system is dynamically discovered, we finally
present a model-driven approach, based on data-flow analysis and testing, to the automated elicitation of
application-layer protocols from software implementations. So far, the defined approach has been applied
to the context of Web services. This approach is described in Chapter 5 and is applied to an existing Web
service, which is the Amazon E-Commerce Service. Together with the above mentioned protocol match-
ing and mapping relationships, this approach represents another step towards the dynamic synthesis of
mediating connectors. This approach presents similarities, but also several differences, with the work of
work package WP4 (protocol learning). Furthermore, it allowed us to proceed in parallel with the work
of WP4 and to state the requirements that the learning approaches have to satisfy to enable mediator
synthesis. For this reason, we keep this work separate from the work on protocol learning and discuss it
in this deliverable.

As detailed in the rest of this deliverable, the progress made with respect to WP3’s objectives reported
above can be summarized as follows:

• Formalization of matching and mapping relationships for application-layer interaction protocols, and
of the corresponding CONNECTor generation algorithm.

• Identification of the application-layer protocol mismatches that can occur/be solved.

• Characterization of the different dimensions of middleware-layer interoperability.

• Formalization of existing solutions to middleware-layer interoperability.

• Characterization of the pros and cons concerning the applicability, at the middleware-layer, of the
mediator synthesis for application-layer interoperability.

• Algorithm for the automated elicitation of application-layer protocols.

This deliverable is organized as follows. Chapter 2 sketches the background for our work, studying the
paradigm of protocol mediation and further analyzing formal foundations to reason upon such mediation.
In Chapter 3, we formalize the theory underlying the automated mediation of application-layer protocols,
and apply it to two scenarios: instant messaging protocols and the Popcorn scenario. Mediator synthesis
for middleware-layer protocols is discussed in Chapter 4. Chapter 5 presents an automated approach to
protocol elicitation and applies it to an existing Web service. Chapter 6 concludes and discusses future
work.

CONNECT 231167 14/79

2 Foundations for CONNECTor Synthesis
In Sections 2.1 we discuss the mediation paradigm and the concept of mediating connector providing

background notions for it and for the process of automated mediation. In Section 2.2, we introduce the
relevant formal foundations for connector synthesis. Finally, in Section 2.3, we conceptually characterize
two aspects that are crucial for enabling effective automated mediator synthesis, i.e., the matching and
mapping of functionalities of heterogeneous networked systems.

All these notions serve as background for the full understanding of the theory of mediators introduced
in Chapter 3, for the middleware-layer protocol formalization presented in Chapter 4, and for the protocol
elicitation method described in Chapter 5.

2.1 From Mediation to CONNECTors

The mediation paradigm, underlying the definition of CONNECTors and their automated synthesis, en-
compasses a number of architectural paradigms like adapter, bridge and wrapper. This section provides a
brief definition of the concept as used in this document. We then survey protocol mediation patterns that
have been elicited in the literature together with approaches to automated mediation.

The mediator concept was initially introduced to cope with the integration of heterogeneous data
sources [85, 84] and as a design pattern [28]. However, with the significant development of Web technolo-
gies and given the ability to communicate openly for networked systems, many heterogeneity dimensions
arise and need be mediated [26]:

• Mediation of data structures allows for data to be exchanged according to semantic matching, as
opposed to requiring syntactic matching and further usage of identical data formats;

• Mediation of functionalities enables one to discover the location of networked resources that provide
a required functionality (in isolation and/or in combination) based on semantic matching and possible
adaptation;

• Mediation of business logics enables networked resources that provide complementary functional-
ities to be connected together although they may execute interaction protocols whose respective
behaviors do not match;

• Mediation of message exchange protocols supports the actual interaction among networked re-
sources although they may use different middleware protocols for communication. Middleware het-
erogeneity ranges from heterogeneity of implementations to that of distributed computing models
and related coordination models and extra-functional properties.

Facing this heterogeneity, mediation architectures embed a number of enablers [72]:

• Data level mediation primarily relies on techniques for ontology integration [59], dealing with the
mapping, alignment, and merging of ontologies;

• Functional mediation may be based on logical relationships between functional descriptions of net-
worked resources that are expressed in terms of pre- and post-conditions over the resources’ states
[71];

• Business logic and protocol mediation is concerned with the mediation of protocols from the appli-
cation (possibly) down to the middleware layers. It strives to build techniques to solve behavioral
mismatches among protocols run by interacting parties. As discussed below, proposed solutions
introduce algorithms that establish a valid process for interaction given the respective processes
run by the interacting parties. The challenge is then to promote flexibility by dynamically solving
behavioral mismatches as far as the connected resources functionally match.

Automated mediation has deserved attention in all the aforementioned heterogeneity dimensions. This
especially holds in the context of Web services technologies that is certainly one of today’s most popular
and enabling architectures for networked resources. Still, enabling reasoning and further solving the
semantic mismatches at runtime, while not over-constraining the ability to communicate, remains an open
research question. Focusing on automated protocol mediation, solutions rely on:

CONNECT 231167 15/79

• The adequate modeling of processes abstracting the behavior of the protocols to be bridged, where
finite state machines is the modeling formalism of choice in most work in light of their flexibility and
applicability;

• The definition of a matching relationship between the process models that sets the conditions under
which protocol interoperability is supported; and

• The elicitation of an algorithm that computes an appropriate mapping between matching process
models.

A base approach towards automated protocol mediation is to categorize the various types of proto-
col mismatches that may occur and that must be solved, according to the structure of the associated
processes, and then to define corresponding mediation patterns. Five basic patterns have been intro-
duced in the literature in the context of Web services [23, 12]. These concern: (i) stopping an unexpected
message, (ii) inverting the order of messages, (iii) splitting a message, (iv) combining messages, and (v)
sending a dummy acknowledgment. Given the mediation patterns, custom mediators may be designed
through the assembly of relevant patterns according to the behavioral mismatches identified among the
protocols to be made interoperable. Such an issue is in particular addressed in [42], which provides tools
to developers to assist them to identify protocol mismatches and to compose mediators. However, this
remains quite limited with respect to enabling interoperability in today’s networking environments that are
highly dynamic. Indeed, mediators need to be synthesized on-the-fly so as to allow interactions with net-
worked systems that are not known in advance. Such a concern is in particular recognized by the Web
service research community that has been studying solutions to the automated mediation of business
processes in the recent years.

A number of solutions to automated protocol mediation have recently emerged, leveraging the rich
capabilities of Web services and Semantic Web technologies [80, 79, 55, 86]. They differ with respect to:

• A priori exposure of the process models associated with the protocols that are executed by net-
worked resources, thus possibly requiring to learn model on-the-fly, if not part of the networked
systems’ interfaces;

• A priori knowledge about the protocols run by the interacting parties, thus possibly enabling to
synthesize part of the mediator off-line; and

• The matching relationship that is enforced, possibly weakening flexibility to alleviate the complexity
of mediation.

However, most solutions are discussed informally, making it difficult to assess their respective ad-
vantages and drawbacks. They further remain rather vague on the definition of the enforced matching
relationship. Hence, what is needed is a formal foundation for mediating connectors from which:

• Protocol matching and associated mapping relationships may be rigorously defined and assessed;
and

• The above relationships may be automatically reasoned upon, thus paving the way for on-the-fly
synthesis of mediating connectors.

In that direction, [87] proposes a theory to characterize and solve the interoperability problem of aug-
mented interfaces of applications. The authors formally define the checks of applications compatibility
and the concept of adaptors. The latter can be used to bridge the differences discovered while checking
the applications that have functional matching but are protocol incompatible. Furthermore they provide
a theory for the automated generation of adaptors based on interface mapping constraints. One main
disadvantage of this work is that the approach is semi-automated because the interface mapping must be
specified manually by the architect of the adaptor. Additionally, applications are assumed to agree on the
ordering of messages, thus not solving ordering mismatches.

A recent work [24] addresses the interoperability problem between services and provides experimen-
tation on real Web 2.0 social applications. The paper deals with the integration of a new service instance
with the same functionality as the instance it substitutes, but having a different implementation that does

CONNECT 231167 16/79

not still guarantee behavioral compatibility despite complying with the same API of the previous one. They
hence propose a technique to dynamically detect and fix interoperability problems based on a catalogue of
inconsistencies and their respective adaptors. Still, the approach is not fully automated since although the
mismatches are discovered and the corresponding adaptors are selected dynamically, the identification of
mismatches and of the opportune adaptors is made by the engineer.

Our work then contributes to the issue of automated protocol mediation by targeting the fully automated
synthesis of mediating connectors. Towards that objective, we introduce a formal theory of CONNECTors
that enables reasoning upon protocol matching and mapping.

2.2 Formal Foundations for CONNECTors

One of the issues and challenges of CONNECT is to elicit an adequate modeling of the processes abstract-
ing both the behavior of the protocols to be bridged and of CONNECTors. Moreover, such models have
to underpin the automated reasoning about the interacting protocols run by networked systems to enable
them to interoperate, and CONNECTor behaviors. Towards this direction, in the following, we analyze the
formal foundations of interaction protocol specification.

In the context of CONNECT, we call “interaction protocol” the behavior of a networked system in terms
of the messages it exchanges with its environment (i.e., the other networked systems). Concerning the
specification of interaction protocols, a natural way of describing them is using Labelled Transition Systems
(LTSs) [39]. LTSs constitute a fundamental model of concurrent computation that is widely used in light of
its flexibility and applicability. LTSs are often used as a semantic model for many expressive and formal
behavioral languages such as process algebras (also called process calculus).

Process algebras are used to model concurrent systems. Example of these languages are CCS [51],
CSP [63], FSP [45] π-Calculus [52, 53], and Kell Calculus [15, 16, 65, 70], just to mention a few of
them. Process algebras provide a tool for the high-level description of interactions, communications, and
synchronizations between a collection of independent agents or processes. They also provide algebraic
laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about
equivalences between processes (e.g., using bisimulation [51]). As mentioned above, often these calculi
are formalized operationally by using an LTS-based semantics [81]. However, process algebras can be
used to define interaction protocols in a more concise way.

To explain the correspondence, as a semantic model, between LTSs and process algebras, let us
briefly recall the key characteristics of a specific process calculi, i.e., CCS (Calculus of Communicating
Systems). We refer to [51] for more details. It is worthwhile noticing that the semantic correspondence
that we explain in the following can be analogously defined between LTSs and another process algebra
different from CCS, e.g., FSP.
The CCS syntax is the following:

p ::= nil | µ.p | p+ p | p|p | p\A | x | p[f]

Terms (Terms) generated by p are called process terms (or simply processes, or terms); x ranges
over a set {X,Y, . . .}, of process variables. A process variable is defined by a process definition x def= p,

(p is called the expansion of x). As usual, there is a finite set of visible actions V is = {a, a, b, b, . . .} over
which α ranges, while µ, ν range over Act = V is∪ {τ}, where τ denotes the so-called internal action. We
denote by α the action complement: if α = a, then α = a, while if α = a, then α = a. By nil we denote
the empty process. The operators to build process terms are prefixing (µ.p), summation (p + p), parallel
composition (p|p), restriction (p\A) and relabelling (p[f]), where A ⊆ V is and f : V is→ V is.

An operational semantics OP is a set of inference rules defining a relation D ⊆ Terms×Act×Terms.
The relation is the least relation satisfying the rules. If (p, µ, q) ∈ D, we write p µ−→OP q. The rules defining
the semantics of CCS [51], from now on referred to as Structural Operational Semantics (SOS), are here
recalled:

CONNECT 231167 17/79

Act
α.P

α→P
Synch P

α→P ′,Q α→Q′

P |Q τ→P ′|Q′

Sum P
α→P ′

P+Q
α→P ′

Rel P
α→P ′

P [f]
f(α)→ P ′[f]

Comp P
α→P ′

P |Q α→P ′|Q
Res P

α→P ′,α6∈L∪L
P\L α→P ′\L

Con P
α→P ′,Adef= P

A
α→P ′

The rules Sum and Comp have a symmetric version which is omitted.
An LTS L is a quadruple (S, T,D, s0), where S is a set of states, T is a set of transition labels, s0 ∈ S

is the initial state, and D ⊆ S × T × S is a transition relation. A transition system is finite if D is finite.
A finite computation of a transition system is a sequence µ1µ2 . . . µn of labels such that:

s0
µ1−→OP . . .

µn−→OP sn.
Given a term p (and a set of process variable definitions), and an operational semantics OP , OP (p)

is the transition system (Terms,Act,D, p), where D is the relation defined by OP . For example, SOS(p)
is the transition system defined by the SOS semantics for the term p. CCS can be used to define a
wide class of systems that ranges from Turing machines to finite systems [74]; therefore, in general, CCS
terms cannot be represented as finite state systems. For our purposes, in the following, we will assume
that all the systems we deal with are finite state. Note that for CONNECT, this is not a restriction. We
are dealing with networked systems that support a finite number of operations (e.g., (i) for a Web service
relying on SOAP, its WSDL interface is defined in terms of a finite number of WSDL operations; (ii) for a
COM/DCOM component, its IDL interface is defined in terms of a finite number of IDL methods). In our
model, each operation of a networked system can be seen as a point of interaction of the system with its
expected environment (e.g., an observable action of an automaton). If we would model all the possible
externally observable system interactions with an automaton, what matters about a particular interaction is
not whether it drives the automaton into an accepting state (since we cannot detect this due to the black-
box nature of the system) but whether the automaton is able to perform the corresponding sequence
of actions interactively. Thus, we should consider an automaton in which every state is an accepting
state [51, 33], i.e., an LTS. A consequence is that if an automaton accepts a particular interaction seen as
a sequence of system operation invocations, then it also accepts any initial part of that interaction. In other
words, due to the finiteness of the set of system operations, although all the possible system interactions
can be infinite, we can always finitely represent them since the language built over the system operations
(i.e., the model of the system’s interaction protocol) is prefix-closed [33]. Prefix-closed languages are
generated by prefix-grammars that describe exactly all regular languages. It is well-known that regular
languages are always accepted by finite-state automata. Thus, for us, it is sufficient to consider finite
state systems for dealing with all the systems we are interested in.

If we assume to deal with finite state systems, then a correspondence between CCS terms and LTSs
can be always defined. A CCS term may be encoded in LTS as follows:

• LTS states are CCS terms;

• transitions are given by −→OP , i. e. by operational semantics;

• the LTS start state is the one corresponding to the encoded CCS term;

and any finite-state LTS can be encoded in CCS as follows:

• associate a process Si to each LTS state si;

• in the declaration of Si, sum (summation operator +) together terms of form α.Sj for each transition
si

α→ sj in LTS;

• the CCS term is the one corresponding to the encoded LTS start state.

CONNECT 231167 18/79

The work discussed in Chapter 3 considers LTSs as the formal tool for modeling application-layer
protocols. Although from the previous discussion it is clear that we could equivalently choose a process
algebra, e.g., CCS or FSP, we prefer using LTSs since, in any case, the CONNECTor synthesis algorithm
deals with data structures that encode LTSs.

On the other hand, specifications for middleware-layer protocols are often described using process
algebra, and in particular FSP [69]. Thus, the work described in Chapter 4 considers also FSP as the for-
mal tool for formalizing middleware-layer protocols. Furthermore, for the purposes of the work described
in Chapter 4, there is the need to check the correctness of the provided formalization. Using FSP allows
us to exploit the LTSA tool [45] in order to automatically perform this correctness check.

However, note that the semantics of FSP can be expressed using LTSs [45] in a way analogous to
what has been discussed above. Thus note that, despite the different process algebra notations that
one could choose depending on, e.g., his own expertise and the purposes of the work, the underlying
semantic model can be always expressed by using the same formal tool, i.e., LTSs.

FSP syntax Description
a→P action prefix
a→P | b→Q choice
P‖Q parallel composition
label:P process labelling
P/{new/old} relabelling
P\{hidden} hiding
when(n<T) a→P guarded action
P+{a,b,c} alphabet extesion
STOP,ERROR predefined processes
set S={a,b,c} defines a set S
range R=0..5 defines a range R
[v:S] binds variable v to a value chosen from S

Table 2.1: An overview of FSP operators

A quick reference for some FSP operators is shown in Table 2.1, for further information see [45].
Processes describe actions (events) that occur in sequence, and choices between event sequences.
Each process has an alphabet of the events that it is aware of (and either engages in or refuses to engage
in). When composed in parallel, processes synchronize on shared events: if processes P and Q are
composed in parallel as P ||Q, events that are in the alphabet of only one of the two processes can occur
independently of the other process, but an event that is in both processes’ alphabets cannot occur until
both processes are willing to engage in it.

All the other process algebras that we have mentioned above present some differences and similarities
with respect to CCS or FSP. For instance, the work on π-Calculus began with the need of enhancing CCS
in order to achieve an algebraic formulation of the different forms of process mobility (e.g., logical and
physical mobility) in distributed systems. The main idea consisted in adding a new syntactical construct,
the channel, and new semantic reduction rules for the handling of channels. This led to a first version of
the π-Calculus. Later, this initial version has been extended by following a high-order approach. That is,
mobility can also be achieved by the powerful means of transmitting processes (and not only channels)
as messages.

The Kell calculus has further been introduced, as an extension of the π-Calculus, to study programming
models for wide area distributed systems. It is a family of process calculi intended as a basis for studying
distributed and ubiquitous component-based programming. Its aim is to support the modeling of different
forms of process mobility (e.g., logical and physical mobility). This is done by considering, as it is in the
π-calculus, the possibility to directly transmit processes as messages (and not only channels) plus the
possibility to directly transmit cells that represent process locations (e.g., the IP address of a computer
machine, the address of a sub-network, the ID of a local process, etc.).

CONNECT 231167 19/79

2.3 CONNECT Matching and Mapping Concepts

Before embarking on the formal definition of the matching and mapping relationships among interac-
tion protocols, which enable synthesizing CONNECTors, we explain them conceptually by referring to a
particular case of matching and mapping relationships exploited by state-of-the-art work, from UNIVAQ,
described in [77]. In particular, we will show that in CONNECT the concepts of matching and mapping has
to go beyond the specific matching and mapping concepts the work described in [77] relies on.

A part of the problem treated in [77] can be phrased as follows: given a set of interacting software
components C, if possible, automatically derive a deadlock-free assembly A of these components. The
assembly A is realized by automatically synthesizing an additional component that is a software coordi-
nator and by letting the components in C communicate only through this coordinator. The coordinator
can be seen as an application-layer connector that preempts all the component interactions in order to
not perform the “execution traces” always leading to deadlocks, hence restricting the set of all possible
composed system’s behaviors to only the behaviors that are deadlock-free. The interaction protocol per-
formed by each of the components in C is modeled as a CCS process. As explained in Section 2.2, this
means that for each component in C there is an LTS modeling the observable (from outside) behavior of
the component when it interacts with its environment (i.e., all the other components of C in parallel), that
is its interaction protocol.

The work described in [77] is applicable to layered software architectures (e.g., three-tier architec-
tures). The synthesis method can be applied layer-by-layer hence reducing, without loss of generality, the
application of the method to client-server architectures. One of the assumptions made by the work is that
the client and the server components are already able to directly interact, although letting them interact
in an uncontrolled way (i.e., without preempting their interactions by means of a suitable application-layer
connector), can lead the system to deadlock. In other words they have to share at least one “complex” in-
teraction. More precisely, at the level of their interaction protocol models, this means that the synchronous
product [39] of their LTSs is not empty (i.e., the parallel composition of their CCS processes is different
from the nil process).

Thus, in [77], there is the assumption that some of the functionalities of a client (resp., server) already
match some of the functionalities of a server (resp., client). The matching is defined by the synchronous
product of their LTSs. Thus a client (resp., server) is assumed to perform, among all the possible inter-
actions, at least one complementary interaction with respect to an interaction of a server (resp., client).
An interaction is seen as a sequence, in the component LTS, of input/output actions. Two interactions are
complementary when they are the same sequence of actions and, for all the actions, the input/output type
of an action in a sequence is the complement [51] of the input/output type of the corresponding action
in the other sequence. An action corresponds to another action if they have the same label, thus the
matching relationship, relatively to single actions, is simply a syntactical match between action labels.

Summing up, for the work described in [77], a simple matching relationship is implicitly defined and it is
assumed to be already satisfied by the components given as input to the synthesis method. The relation is
simple since, for single actions, it is just a syntactical matching relationship and, for sequences of actions,
it is based on the existence of a non-empty synchronous product for those sequences. The matching
relationship ensures the existence of a connector. Due to the characteristics of the considered matching
relationship, the connector is synthesized in order to have a strictly sequential input-output behavior. That
is, it simply routes messages (sent or received by other components) and each input action it receives is
strictly followed by a corresponding output action. In other words, the matching relationship considered
induces a simple input-output, one-to-one, and syntactical mapping relationship realized as an application-
layer software connector.

These aspects highlight some differences between the simpler scenario assumed by the work de-
scribed in [77] and CONNECT scenarios. First of all, CONNECT has to deal with both client/server and
peer-to-peer architectures. Second, in CONNECT, it would be unreasonable to assume that the function-
alities of the networked systems to be connected would directly match. Thus the matching relationship
cannot be assumed already satisfied and, hence, it has to be efficiently checked. Third, in CONNECT the
concept of functionality should not be limited to only sequences of actions in an LTS. It should be related
to “complex portions” of a networked system’s LTS. Furthermore, by exploiting ontological information,
the action matching should not be simply defined as a one-to-one syntactical mapping but it should be

CONNECT 231167 20/79

a many-to-many ontological mapping. Thus, for CONNECT, more accurate (and less trivial) notions of
matching and mapping need to be defined.

CONNECT Matching Relationship: defines necessary conditions that must hold in order for a set of
networked systems to interoperate through a mediating connector (or CONNECTor). In our case, till now,
the set is made by two networked systems and the matching condition is that they have complementary
behavior. We have the assumption that the remaining functionalities are exchanged with third parties (as
future work we will further investigate how to deal with third party message exchange). Moreover, two
functionalities are complementary if they can be abstracted by the same model under a suitable notion of
behavioral equivalence that is driven by ontological information.

Analogously to what is done in [77], if the functionalities of two networked systems match and, hence,
the two networked systems perform complementary functionalities, then they can interoperate via a suit-
able mediating connector. In other words, if the matching relationship is satisfied, then there exists a
mediating connector making the two networked systems interoperate. This mediating connector is ab-
stracted by a mapping relationship.

CONNECT Mapping Relationship: having checked the CONNECT matching relationship, i.e., that
the matching conditions hold, the mapping relationship lies in an algorithm that equates/pairs/links/maps
those complementary functionalities that have behavioral discrepancies.

The formal definition of CONNECT matching and mapping relationships over interaction protocols is
introduced in the next chapter (Chapter 3).

2.4 Summary

Summarizing the chapter, the concepts underlying CONNECTor synthesis are the following:

• The CONNECT project aims at solving interoperability issues concerning interaction protocols het-
erogeneity;

• LTSs can be considered as the formal foundation for modeling, and reasoning about, application-
and middleware-layer protocols in light of its flexibility and applicability;

• The classical connector concept needs to evolve towards the one of mediating connector that not
only coordinates the interaction behaviors of CONNECTed systems but also mediates those behav-
iors to enable actual interactions;

• Enabling automated mediation needs to rigorously define matching and mapping relationships be-
tween interaction protocols. The former establishes the conditions that must hold in order to state
the existence of a mediating connector between heterogeneous protocols. The latter dictates how
to synthesize the connector.

CONNECT 231167 21/79

3 Application-layer CONNECTor Synthesis: Towards
a Supporting Theory of Mediators

As discussed in the previous chapter, the automated mediation among heterogeneous protocols basi-
cally relies on: (i) the adequate modeling of the processes abstracting the behavior of the protocols to be
bridged, (ii) the definition of a matching relationship between the process models that sets the conditions
under which protocol interoperability is supported, and (iii) the elicitation of an algorithm that computes an
appropriate mapping between matching process models synthesizing the mediator.

In this chapter, we concentrate on the automated synthesis of mediators. The mediators that we want
to synthesize conform to the CONNECTor model discussed in Section 4.2 of Deliverable D1.1 [2]. We focus
on the theory underlying the automated mediation of application-layer protocols, while mediation among
middleware-layer protocols is discussed in Chapter 4. Thus, in this chapter, when we write “protocol” we
mean “application-layer protocol”.

3.1 The Instant Messaging Example

To illustrate protocol mediation as studied within CONNECT, to give an example of what kind of protocols
we deal with, and to make the theory more concrete, paving the way for automated CONNECTor synthesis,
we consider the simple yet challenging example of two instant messaging systems [67].

Various instant messaging systems are now in use, facilitating communications among people. How-
ever, although those systems implement similar functionalities, end-users need to use the very same
system to communicate due to behavioral mismatches of the respective protocols.

In more detail, consider Windows Messenger (WM), now called Windows Live Messenger [5], and
Jabber Messenger (JM) [4]. Figure 3.1 models the respective behaviors of the associated protocols using
LTSs (see Section 2.2). We use the usual convention that overlined actions denote output actions while
non-overlined ones denote input actions. It is apparent that these systems should be able to interoperate
since they both amount to supporting authentication of peers with their servers and then message ex-
changes among peers. However mediating their respective protocols to achieve interoperability is far from
trivial, especially if one wants to achieve this automatically. An effort has been done in [42] to mediate
instant messaging protocol mismatches allowing communication between any two clients. Unfortunately,
the proposed solution requires the implementation of the translation from any client protocol (to be sup-
ported) to a reference exchange protocol to be given, and vice versa. This obviously affects the generality
of the approach.

A base activity for protocol mediation is to categorize the various types of protocol mismatches that
may occur and that must be solved, according to the structure of the associated processes, and then to
introduce corresponding mediation patterns. As already discussed in Section 2.1, five basic patterns exist
in the context of Web services that allows the resolution of several behavioral mismatches. However, the
use of these patterns and their combination to achieve interoperability remains quite limited with respect
to enabling interoperability in today’s networking environments that are highly dynamic.

This chapter contributes to the above by introducing the supporting formal foundation for the automated
reasoning about application-layer protocol matching and mapping.

3.2 A Formalization of Protocols for Ubiquitous Connection

Starting from two protocols, we want to check if their functionalities match, i.e., if the interacting parties
may coordinate and achieve their respective goals. If this is the case, then we synthesize a mediator,
otherwise they cannot communicate, at least based on our methodology. The first results of our approach
are in [68], which are revised and extended in this chapter.

Figure 3.2 depicts the overall idea. The basic ingredients are: (i) the behavior of two protocols repre-
sented by LTSs P and Q, (ii) two ontologies OP and OQ describing the meaning of P and Q actions, and
(iii) a mapping OPQ between the two ontologies. Note that when referring to protocol behavior, we mean
the actions of a networked system that are observable at the interface level, i.e., its input/output actions.

CONNECT 231167 23/79

(a) Windows Messenger protocol (b) Jabber Messenger protocol

Figure 3.1: LTS-based behavioral model of WM and JM protocols

Figure 3.2: An overview of the CONNECT approach to automated mediator synthesis

CONNECT 231167 24/79

We further consider protocols P and Q that are minimal where we recall that every finite LTS has a unique
minimal representative; for the details of the kind of minimization that we use, the interested reader may
refer to [34]. Based on the structural characteristics of the two protocols, we build an abstraction for each
of them, which we call structure; for P and Q, it is identified in the figure by SP and SQ respectively.
Then, using the ontology mapping function, we find the common language for the two protocols (pairs of
words with the same meaning). This leads us to highlight the induced LTSs for both protocols (see IP and
IQ), i.e., the structures where only the words belonging to the common language are highlighted. Finally,
we check if the induced LTSs have a functional matching relation. In other words, we check if part of
the provided/required functionalities of the two protocols are similar, i.e., are equivalent according to the
functional matching relation we define in the following. If this is the case, then we synthesize a mediator,
otherwise we cannot provide a mediator to let them communicate.

Given two protocols P and Q and a context C, the mediator M that we synthesize is such that when
building the parallel composition P ||M ||Q||C, the protocols P,Q are able to communicate to evolve to their
final states. This is achievable by checking that the observable behavior of P,Q is equivalent through a
suitable notion of bisimilarity. The following details our formalization of interaction protocols and related
matching.

3.2.1 Protocols as LTS
We use LTSs [39] to formally describe interaction protocols and mediators. Let Act be the universal set of
observable actions (input/output actions). We get the following definition for LTS:

Definition 1 (LTS) A LTS P is a quadruple (S,L,D, s0) where:
- S is a finite set of states;
- L ⊆ Act

⋃
{τ} is a finite set of labels (that denote observable actions) called the alphabet of P. τ is the

silent action. Overlined labels in L denote output actions while non-overlined ones denote input actions.
We also use the usual convention that for all l ∈ L, l = l.
- D ⊆ S × L× S is a transition relation;
- s0 ∈ S is the initial state.

We then denote with {L
⋃
{τ}}∗ the set containing all words on the alphabet L. We also make use of

the usual following notation to denote transitions:

si
l−→ sj ⇔ (si, l, sj) ∈ D

We consider an extended version of LTS, which highlights the set F of the LTS’ final states. For
simplicity of presentation we consider that final states are states with no outgoing transitions although it is
possible that final states have transitions cycling infinitely often.

An extended LTS is a quintuple (S,L,D, F, s0) where the quadruple (S,L,D, s0) is an LTS and F ⊆ S
and F = {sf ∈ S : @ sf

l−→ si ∈ D}.
From now on we use the terms LTS and extended LTS interchangeably to denote the latter one.
The next concept that we need to describe is that of trace. Informally a trace is a sequence of actions

of a given LTS.

Definition 2 (Trace) Let P = (S,L,D, F, s0). A trace t = l1, l2, . . . , lm ∈ L∗ such that ∃(s1
l1−→ s2

l2−→
s3 . . . sm

lm−→ sn) where {s1, s2, s3, . . . , sm, sn} ∈ S ∧ ∀ 1 ≤ i ≤ m : (si, li, si+1) ∈ D.
We also use the usual compact notation s1

t⇒ sn to denote a trace, where s1, sn, and t are starting state,
target state, and concatenation of actions of the trace, respectively.

The next definition illustrates the parallel composition between the protocols. Since there is a one-to-
one mapping between a process P and its LTS, we use the term process and LTS interchangeably.

Given an LTS P = (S,L,D, F, s0) and s ∈ S, we identify the configuration C = (S,L,D, F, s), in which
the LTS is in s. Given s′ ∈ S and a ∈ L, we say that P changes configuration by transiting with the
action a from a configuration C into another configuration C ′ if (s, a, s′) ∈ D. Formally: (S,L,D, F, s) a→
(S,L,D, F, s′) if (s, a, s′) ∈ D

CONNECT 231167 25/79

Definition 3 (Parallel composition of protocols) Let P = (SP , LP , DP , FP , s0P) andQ = (SQ, LQ, DQ, FQ,
s0Q). Let C = LP

⋂
LQ. The parallel composition between P and Q is defined as the LTS P ||Q =

(SP × SQ, LP ∪ LQ, D, FP ∪ FQ, (s0P , s0Q)) where the transition relation D is defined as follows:

P
m−→ P ′

P ||Q m−→ P ′||Q
m 6∈ LQ

Q
m−→ Q′

P ||Q m−→ P ||Q′
m 6∈ LP

P
m−→ P ′;Q m−→ Q′

P ||Q τ−→ P ′||Q′
m ∈ LP

⋃
LQ

3.2.2 Abstracting protocols to reason about functional matching

Given the definition of an extended LTS associated with the interaction protocols run by networked sys-
tems, we want to identify whether two protocols functionally match and, if so, to synthesize the mediator
that enables them to interoperate, despite protocol-level mismatches.

With functional matching we mean that given two systems with respective interaction protocols P and
Q, and ontologies OP , OQ describing their actions, part of the behavior of P and Q can synchronize. That
is, a portion of the provided (required) functionalities of one protocol can synchronize with some required
(provided) functionalities in the other, modulo an ontology mapping and a protocols’ abstraction. Thus, we
expect to find, at a given level of abstraction, similarities in the structure of the protocol representation of
P and Q. This leads us to formally analyze such alike protocols to find, if it exists, a suitable mediator that
allows the interoperability that otherwise would not be possible.

The definitions that follow allow reasoning about the appropriate structures of protocols. The first
definition concerns states of the extended LTS from which at least two transitions start.

Definition 4 (Branch state) Let P = (S,L,D, F, s0) and s ∈ S. s is a branch state, also written branch(s),
if ∃B = {d : d ∈ D and d = (s, l, s′)} and |B| ≥ 2.

The second definition refers to states that identify the entry point of some cycles. That is: (i) there
exists a trace that starts from and ends into a state s and (ii) there exists a transition (si, l, s), where l is
not included in any cycling trace. Then s is called entry cycle state. An example of entry cycle state is in
Figure 3.1(a).

Definition 5 (Entry cycle state) Let P = (S,L,D, F, s0) and s ∈ S. s is an entry cycle state, also written
entry cycle(s), if ∃ (si, l, s) ∈ D for some si ∈ S and for any s t⇒ s it holds that l 6∈ t .

Note that the length of a trace can also be 1, thus having a single transition in D having s as both
starting and target state, that is d = (s, l, s) ∈ D.

The third definition identifies states of the extended LTS in which two or more transitions converge. An
example of join state is in Figure 3.1(a).

Definition 6 (Join state) Let P = (S,L, D, F, s0) and s ∈ S. s is a join state, also written join(s), if
∃ J = {d : d ∈ D and d = (si, l, s)} and |J | ≥ 2 for some si ∈ S.

The fourth definition generically defines as rich state any of the above defined states or an initial or
final state. Examples of rich states are shown in Figure 3.1(a).

Definition 7 (Rich state) Let P = (S,L, D, F, s0) and s ∈ S. s is a rich state, also written rich(s), if it is
either branch(s) or entry cycle(s), or join(s), or s = s0, or s ∈ F .

CONNECT 231167 26/79

Related to the previous definition is the notion of successive rich state. Given a rich state, the definition
identifies the next immediately reachable rich state such that there is not any other rich state between
them. An example is depicted in Figure 3.1(b).

Definition 8 (Successive rich state) Let P = (S, L,D, F, s0) and rich(r)∈ S. Successive rich state of r,
also written succ rich(s, r), is each s ∈ S such that for any trace r t⇒ s and rich(s) it does not exist any
other rich(s′) between r and s.

The structure of an extended LTS P follows from the previous definitions that introduce its building
blocks. The set of states of the structure is the set of P ’s rich states. If there exists a trace r t⇒ sr in P ,
then we say that a transition exists in the structure and it is labelled with t. Figure 3.3 shows two example
of structures: one is that of the WM protocol of Figure 3.1(a) and the other is that of the JM protocol of
Figure 3.1(b).

Definition 9 (Structure) Let P = (S,L,D, F, s0). P ′, the structure of P also written structure(P ′, P), is
the LTS P ′ = (S′, L′, D′, F ′, s′0) where F ′ = F and s′0 = s0, S′ = {s ∈ S : rich(s)}, L′ = {t ∈ L∗ : s t⇒ r
and succ rich(r, s)}, and D′ = {(si, t, sj) : si, sj ∈ S′ and t ∈ L′}.

The following definitions allow reasoning about protocols to establish their functional matching. Given
two LTS P,Q, and two ontologies OP , OQ describing their respective labels, the common language be-
tween P and Q identifies the actions of the protocols that have the same meaning and that form the basis
for an interaction. The common language identification is based on the protocols’ ontology mapping and
on the correspondences between (one or sequences of) actions. It is made by a set of pairs of labels of
OP , OQ such that the labels of OP (OQ) are mapped [38] onto labels of OQ(OP). We specialize the map-
ping definition by considering also pairs in which the elements are made by more than one label. More
formally:
Let P = (SP , LP , DP , FP , s0P), Q = (SQ, LQ, DQ, FQ, s0Q). Let OP = (VP , AP), OQ = (VQ, AQ) be
ontologies with vocabularies VP = L∗P and VQ = L∗Q, and such that their respective interpretations are
specified by the sets of axioms AP , AQ. Let maps : L∗P → L∗Q be an ontology mapping function. Let
α ∈ L∗P , β ∈ L∗Q. We say that α(β) corresponds to β(α), also written corresp(α, β), if and only if it exists,
through the ontology mapping, a splitting α = α1, α2, . . . , αn, β = β1, β2, . . . , βn such that ∀ 1 ≤ i ≤ n ∃j
such that βi = maps(αj). We note that α and β can be of different size.

Definition 10 (Common Language) Let P = (SP , LP , DP , FP , s0P), Q = (SQ, LQ, DQ, FQ, s0Q). Let
OP = (LP , AP), OQ = (LQ, AQ) be the ontologies of P,Q respectively. Let maps : L∗P → L∗Q be the
ontology mapping function of P,Q respectively.

The common language between P and Q, also written common lang(P , Q), is the set C = {(α, β) :
corresp(α, β)}.

In the messengers example, we have C = {((message, ack),msg), ((message, ack),msg)}.

Definition 11 (Common Language Projected) Let P = (SP , LP , DP , FP , s0P), Q = (SQ, LQ, DQ, FQ, s0Q).
The common language projected on P (Q) is the setCP (CQ) = {α (β) : ∃ (α, β) ∈ common lang(P,Q) and α ∈
L∗P and β ∈ L∗Q}.

For example, the common language projected on WM protocol is the setCP = {(message, ack), (message, ack)}.

Definition 12 (Third Parties Language) Let P = (SP , LP , DP , FP , s0P), Q = (SQ, LQ, DQ, FQ, s0Q). Let
CP , CQ be the common language projected on P,Q respectively. The third parties language of P (Q) is
the set of words TP (TQ) such that TP (TQ) = {α ∈ L∗P (L∗Q) and α 6∈ CP (CQ)}.

Still considering the messengers example, let S(S′) be the protocol of the WM server(JM server). The
third parties language of WM (JM), is the set TP = { (handshake), (handshake ok), (auth), (auth ok), (close),
(close ok)} (TQ = {(authentication), (authentication ok), (out), (out ok)}) that can synchronize with S
protocol.

The following definition, starting from a LTS, builds its structure so that only labels belonging to the
common language are preserved while the other labels are replaced by τ .

CONNECT 231167 27/79

(a) Windows Messenger structure (b) Jabber Messenger structure

Figure 3.3: Structures of the WM and JM protocols

Definition 13 (Induced LTS) Let P = (S,L,D, F, s0). Let L′∗ ⊆ L∗. The induced LTS of P by L′∗

is the structure of P whose labels belonging to L′∗ are observable while the others are replaced by τ .
Sequences of τ within single transitions are replaced by only one τ .

Examples of induced LTSs are shown in Figure 3.4.

(a) Induced LTS of WM protocol by the common language between
WM and JM protocols projected on WM protocol

(b) Induced LTS of JM protocol by the
common language between WM and
JM protocols projected on JM protocol

Figure 3.4: Induced LTSs of the WM and JM protocols

3.2.3 Functional matching of protocols
The formalization described so far is needed to: (1) structurally characterize and (2) identify (if they exist)
portions of protocols that can potentially interoperate. In order to establish if two protocols P,Q implement
complementary functionalities and then to establish if there exists the possibility for them to interoperate,
we use a suitable equivalence relation, the functional matching relation. Informally, this relation succeeds
if for the part concerning the common language between P,Q, their control flow is bisimilar and there is a
correspondence through an ontology mapping between their labels.

Definition 14 (Functional matching) Let P = (SP , LP , DP , FP , s0P), Q = (SQ, LQ, DQ, FQ, s0Q) and
let sp, s′p ∈ SP , sq, s′q ∈ SQ. Let OP = (LP , AP), OQ = (LQ, AQ) be their respective ontologies. Let
maps : L∗P → L∗Q be their ontology mapping function. Let CP , CQ be the common language projected on

CONNECT 231167 28/79

P,Q respectively. Let τ∗ denote zero or more τ . Let α(β) ∈ L∗P (L∗Q), such that τ 6= α(β). Let P ′ (Q′) be P
(Q) where for each α ∈ CP (β ∈ CQ), each label τ∗.α.τ∗ in P (τ∗.β.τ∗ in Q) is replaced by α (β).
P ′ has a functional matching to Q′, also written P ′ ' Q′, iff the following conditions hold:

i) s0P ' s0Q holds by definition;

ii) if sp ' sq and ∀sp
τ∗.α.τ∗=⇒ s′p then ∃sq

τ∗.β.τ∗

=⇒ s′q such that corresp(α, β) and s′p ' s′q;

iii) if sp ' sq and ∀sq
τ∗.β.τ∗

=⇒ s′q then ∃sp
τ∗.α.τ∗=⇒ s′p such that corresp(α, β) and s′p ' s′q.

3.3 Towards Automated Matching and Synthesis

Building on the formalization of the previous section, we present the notions to establish if two protocols P
and Q, inserted in a context C, are compatible. If so, we show how it is possible to synthesize a supporting
mediator.

3.3.1 Mediated matching

The functional matching relation has a central role while looking for a mediated matching (i.e, protocols
can interoperate through a CONNECTor) between two protocols P,Q. Indeed, it is based on the functional
matching of the induced protocols of P,Q by their common language. That is, a mediated matching be-
tween P,Q exists if and only if an abstract portion of them has the same flow structure and corresponding
actions. More formally:

Definition 15 (Mediated matching) Let P and Q be two LTSs. Let OP = (LP , AP), OQ = (LQ, AQ) be
their respective ontologies. Let CP and CQ be the common language projected on P and Q respectively.
Let IP , IQ be the induced LTSs by CP and CQ respectively. A mediated matching between P and Q exists
iff IP has a functional matching with IQ.

This definition expresses a necessary and sufficient condition that characterizes the existence of our
mediator between two protocols.

3.3.2 Ontology-based functional matching

In order to check if a mediator between two behaviorally mismatched protocols P andQ exists, a mediated
matching between them has to exist. Our framework checks this condition basing on an ontology mapping.

Let us consider that a mediated matching between P and Q exists. If a mediated matching exists,
then a functional matching between the induced LTS of P (IP) and of Q (IQ) (abstractions of P and of
Q respectively) has to exist. In order for a functional matching between IP and IQ to exist, the protocols
P and Q needs to share a common language. To share a common language means that there exists
an ontology mapping, between the languages of P and of Q, such that it equates at least a subset of
the languages. It has to be noticed that for the portion of protocols labelled with labels belonging to
the common language, a structural matching is implied by the functional matching relationship. For the
remaining part (the one labelled with labels belonging to the third parties language) we assume that
protocols synchronize with the context (e.g. servers in our messengers example). We are assuming that
the unique mechanism to communicate is synchronization. That is a full synchronization between P and
Q is achieved through the parallel composition P ||Q||C where the result of the parallel composition is that
all actions belonging to the common language of P and Q are paired (send-receive) and all actions of the
third parties language of P,Q are paired (send-receive) with some actions of the context. We recall that
the portion of protocols labelled by the common language between P and Q are functionally similar and
complementary. In other words every time that P performs an output action (belonging to the common
language), there has to exists in Q (in its common language) the respective input action, and this implies
the structural matching.

CONNECT 231167 29/79

3.3.3 Abstract mediator synthesis

Let us recall that given two protocols P,Q such that there is a mediated matching between P and Q and
a context C, we want to synthesize a mediator M such that the parallel composition P ||M ||Q||C, allows
P,Q to evolve to their final states if any.

The actions of P,Q can belong to two sets: the common language and the third parties language.
Based on this observation, we build the mediator as two separate components: COM and TH, if it exists.
COM is an LTS built starting from the common language between P and Q, which aim is to solve the
protocol-level mismatches occurring among complementary interactions (corresponding words). TH can
be made by the parallel composition of two LTSs, if they exist, derived from P and from Q. The aim of TH
is to forward the interactions between P,Q and their respective third parties.

The formal specification of the synthesis algorithm is presented in Figure 3.5.

Let P = (SP , LP , DP , FP , s0P),
Q = (SQ, LQ, DQ, FQ, s0Q)
CONT = (SCONT , LCONT , DCONT , FCONT , s0CONT).
OP = (L∗P , AP) and
OQ = (L∗Q, AQ) be the respective ontologies of P and Q.
C = comm lang(P,Q).
CP , CQ be the common language projected on P,Q respectively.
TP , TQ be the third parties language of P,Q respectively.

The mediator M is equal to COM [|| TH]
where COM = (SC , LC , DC , FC , s0C) and

TH = (ST , LT , DT , FT , s0T) = [MTP] || [MTQ].
COM,TH are built as follows:
foreach α ∈ TP (TQ) do

build a cycle made by subsequent transitions on the initial state of MTP (MTQ);
insert a transition with label α followed by a transition with label α;
foreach α ∈ CP (CQ) do

if (α = α), i.e., it is a send, then
build a cycle made by subsequent transitions on the initial state of COM (s0C);
insert a transition with label α followed by a transition with label β where corresp(α, β)

else (α = α i.e. it is a receive)
build a cycle made by subsequent transitions on s0C ;
insert a transition with label β followed by a transition with label α where corresp(β, α);

Figure 3.5: Synthesis algorithm

If L∗CONT , the language of the context, contains the corresponding actions for both the third parties
language of P,Q, if any, then the the parallel composition P ||Q||M ||C let evolve P,Q to their final states.

3.4 Application of the Mediator Theory to the Popcorn Scenario

Considering the CONNECT overall challenge, we highlight here the specific contribution of our work on
CONNECTor synthesis with respect to the overall CONNECT dynamic process. Specifically, we use the
Popcorn scenario, also called Distributed Marketplace, introduced in [2] to illustrate the synthesis algo-
rithm.

3.4.1 Heterogeneous merchant and consumer

Consider the case of a German consumer (i.e, implemented using Lime tuple space) and the French
merchant (i.e, implemented using UPnP), see Figure 3.6. Figures 3.7 and 3.8 give the LTSs of the
consumer behavior and of the merchant behavior respectively.

CONNECT 231167 30/79

MerchantConsumer

German
Java - Lime

French
Java – UPnP

CONNECTor

Figure 3.6: Popcorn scenario: German consumer - French merchant

Informally, the German consumer behaves as follows: he first browses the tuple space to retrieve the
list of all merchants. Once he gets it, he looks for details about the merchants that sell a specific product
(popcorn in our case) with a certain price (for example, less then a threshold) and some measure of
distance (for example, within a given range).

Then, he writes into the tuple space a request to a chosen merchant of the product, also specifying
the quantity and waits for a response. If everything is fine, the consumer will receive a positive response
to the request and wait for a signal of proximity that will be sent by the merchant when he will be close
to him. Otherwise, the consumer will receive a negative response (e.g, because the merchant has no
sufficient quantity of product to satisfy the request). In both cases, the consumer can either restart from
the beginning, i.e., from browsing the tuple space, or send a new request.

Figure 3.7: Tuple space consumer

The behavior of the merchant can be roughly described as follows: he receives queries from con-
sumers and sends answers to them advertising his information. Then he receives more requests of in-
formation from the consumers and answers them providing the required information. Further he receives
requests of ordering of products from the consumers and answers a consumer either: positively sending

CONNECT 231167 31/79

a proximity message when he is physically close to the consumer, or negatively in case he is not able to
satisfy the request.

Figure 3.8: UPnP merchant

Even though these two applications have complementary behaviors, they are very different and they
are not able to interoperate. Here the need for an appropriate interoperability solution clearly emerges.

The solution we are proposing is to synthesize a mediating connector that allows the merchant and
consumer applications to interoperate. Specifically, with respect to the German consumer, the CON-
NECTor behaves as a compatible tuple space merchant. And, with respect to the French merchant, the
CONNECTor behaves as a compatible UPnP consumer. Last but not the least, the CONNECTor makes
suitable translations between enabled protocols.

The tuple space implementation of the Popcorn scenario is represented in Figure 3.9 and the portion
that the mediating connector has to implement is the one with labels in red text. In more detail the
behaviors of the tuple space that the connector should mimic are the following:

• It should receive and answer to browse requests about the merchants (namely, Rdg(Browse) and
TupleList(Browse));

• It should receive and reply to more detailed requests of information about the merchants (that is
Rdg(GetInfo) and TupleList(Info));

• It should receive specific ordering requests(Out(Request)), receive the request to be informed when
a response is available (reactsTo(Response)), notify that an answer is available and provide it
(Notification(Response) and In(Response) and either Tuple(Y es) or Tuple(No));

• It should receive the request to be informed when the merchant is in its vicinity, (reactsTo(Prox
imity)) and notify this fact with a message(Notification(Proximity) and In(Proximity) and
Tuple(Proximity).

It has to be noticed that, in the first, third, and fourth steps, the mediator should also interact with the
merchant in order to answer to the consumer.

Finally, by exploiting our knowledge about the consumer and merchant protocols, we extracted by hand
the translation between the two different roles (consumer and merchant) as shown in Figure 3.10.

CONNECT 231167 32/79

Figure 3.9: Tuple space implementation of the Popcorn scenario

Figure 3.10: Ontology mapping between tuple space consumer and UPnP Merchant

CONNECT 231167 33/79

3.4.2 Applying mediated matching and mapping

Let us now analyze the application of our theory to the Popcorn scenario. We assume to have: the
behavioral specification of consumer and merchant applications (as LTSs), their respective ontologies
describing their actions, and the ontology mapping that defines the common language between consumer
and merchant, i.e., represents their possible interactions. Indeed, as a first example we considered the
messengers applications that concerns peer protocols and we designed suitable notions of structural
and functional matching, based on bisimulation. Instead, this Popcorn scenario concerns client-server
protocols and we modified the structural and functional matching definitions, based on simulation. It has
to be noticed that further investigation are needed on the theory in order to highlight the relationship
between protocol types and equivalence relation that has to be adopted.

With the application of a slightly modified version of the theory to the scenario, we obtained the CON-
NECTor of Figure 3.11. The building of this CONNECTor is driven by the behavior of the consumer, of
the merchant and by their ontology mapping. In particular, between the consumer and the merchant’s
LTSs, the one with the “more restrictive behavior” is the consumer. Indeed, together with the merchant
they reflect the client-server paradigm and they are in simulation relation, that is, the server simulates the
client behavior. Hence, while building the CONNECTor’s LTS, being driven by the synthesis algorithm, we
have to be led by the the more restrictive behavior (consumer) and we have to create the appropriate
sequences of actions always taking into account the ontology mapping.

Figure 3.11: Mediating connector between tuple space consumer and UPnP merchant

3.5 Preliminary Assessment

In the previous sections, we have proposed a formal framework to precisely characterize interoperability
between two networked systems that functionally match while having protocol mismatches. The purpose
of the proposed formal model is to allow automated reasoning about functional matching and synthesis of
the CONNECTors.

In the direction of an evaluation of the presented theory, we consider how comprehensive it is with
respect to the coverage of mismatches that can occur during an interaction between two protocols. To
achieve this aim, we consider the protocol mismatches classifications proposed in the area of Web ser-
vices [23, 12, 42].

CONNECT 231167 34/79

Basically, protocol-level mismatches occurring between functionally matching protocols are nothing but
“behavioral problems” that prevent synchronization because of some “send/receive differences”. There
are six basic mismatches that can occur during a protocol interaction:

(1) Extra send mismatch: is about the send of actions from one protocol that have not the correspondent
receive in the other protocol;

(2) Extra receive mismatch: one protocol does not issue a send action that the other is expecting to
receive;

(3) One send - many receive mismatches: one protocol performs a sends action that corresponds to
more than one receive action in the other protocol;

(4) Many send - one receive mismatch: concerns the send of more than one action by a protocol that
correspond to only one receive action in the other protocol;

(5) Signature mismatch: the two protocols implement the same functionality/action but with different
names;

(6) Ordering mismatch: one protocol performs a send action that the other is not expecting.

The mediator proposed in the previous sections, synthesized without the developers intervention, is
able to detect and solve all the above described mismatches.

Let us consider two protocols and a context (third parties), such that the two protocols functionally
match while mismatch behaviorally. Each of the protocols actions belongs to only one of two disjoint sets.
These sets are the “common language” and the “third parties language”. Further, a protocol action can at
most be affected by a subset of the listed mismatches.

Intuitively, the algorithm identifies these mismatches thanks to the ontology mapping (plus the look
ahead for the ordering mismatch case only). Instead, for solving the mismatches, the mediator does
several things depending on the type of handled mismatch: it can translate and forward messages to the
appropriate counterpart, or it can implement the complementary actions to synchronize with the ones that
do not have the correspondence, or it can store and reorder actions.

Other aspects that will be interesting to investigate are complex mismatches that are obtained by
mixing two or more of the basic ones listed above. Currently the synthesized mediator is able to deal
with the complex mismatch obtained by combining all the basic mismatches (but (5)) with the signature
mismatch. Note that in our approach solving mismatch (5) “is for free” thanks to the ontology mapping.

As we said before, what we presented in this section is mostly a discussion in the direction of an
evaluation of the theory that we plan as future work together with the investigation of complex mismatches.
In addition, a limit of the current approach is that we do not address data mismatches. We plan to
investigate and extend our approach in this direction.

3.6 Summary

In this section, we briefly discuss the work we have been doing so far and the future work, in particular
based on the requirements that emerged from the application of the theory for CONNECTors to the Popcorn
scenario.

First of all, as we presented in the previous sections, we have formalized an initial theory [68, 67]
for the mediating connectors that, as it is, is well suited for peer-to-peer protocols, i.e., protocols that
implement the same “role” like the case of the two messenger clients. The need for changes arose
while trying to apply this theory to the Popcorn scenario. In more detail, the concepts of functional and
structural matching are central for establishing if the heterogeneous protocols are compatible and then if
the possibility to communicate through a CONNECTOR exists for them. The definition of these concepts are
dependent on the type of protocol considered. Indeed, while we adopted a modified version of bisimulation
for the functional matching in the case of peer-to-peer protocols (messengers), this does not work for
client-server protocols (consumer and merchant). In the latter case, we adopted a modified version of
simulation. Also the definition of structure is bound to the type of protocol and needs to be changed

CONNECT 231167 35/79

accordingly. Hence, we assumed different meanings for the structure concept depending on the kind of
protocols (i.e., peer, client, server, etc.) considered for the interoperability check.

With respect to the Popcorn scenario experiment, having in mind the whole CONNECT process [2],
the synthesis enabler assumes to take as input, from the learning enabler1, the behavior of the protocols
to be made interoperable. At the end of the experiment, conducted independently by each partner, we
found some differences between what we assumed as input from the learning enabler and what it is
currently able to provide that till now does not seem to be severe. For example, in the learned LTS of
the consumer there is only one transition labelled “Tuple(Proximity)” going back to the start state while in
the LTS that we are assuming there also exists the possibility that leads the consumer to make another
request. Furthermore, in the learned LTS of the merchant, there are two cycles to represent a request of
information while we are assuming an LTS with only one loop.

Future work spans several directions including: the extension of the theory for CONNECTORs consid-
ering other types of protocols and the assessment of the theory thanks to the correctness proof. Further-
more, we will also investigate how to mitigate the gap between the behavioral models produced at the
end of the learning phase and the ones assumed in our synthesis phase. Further future work concerns
establishing whether we need a unified approach for both middleware- and application-layer mediation, or
we should define two separate (possibly similar) approaches.

In the following we summarize the key points from this chapter, which relates to the assumptions
underlying the proposed CONNECTor synthesis algorithm:

• The interaction protocols of networked systems are assumed to be modeled by means of LTSs
whose transitions are labelled with the input/output messages that the systems exchange with their
expected environment;

• Ontological information describing the meaning of the input/output actions of the protocols, and a
mapping between ontologies of different protocols are provided.

With these assumptions, the CONNECTor synthesis algorithm is able to:

• Establish whether two protocols match and, hence, check whether there exists a mediator that lets
the two protocol interoperate;

• If there exists such a mediator, produce a suitable protocol mapping; that is, automatically synthesize
the required mediator.

1The protocol learning approach concerns the work conducted within work package WP4 [3].

CONNECT 231167 36/79

4 Middleware-layer CONNECTor synthesis: Beyond
State of the Art in Middleware Interoperability

In this chapter, we first highlight in Section 4.1 the different dimensions of interoperability to be ad-
dressed when concentrating on the the middleware-layer. Then, in Section 4.2, we recall some connector
concepts in order to better understand the relation between middleware and connectors. In Section 4.3,
we propose a formalization of the existing solutions to middleware-layer interoperability. Then, in Sec-
tion 4.4 we consider the one based on dynamic protocol translation, as aimed by CONNECT and assess
it through two different examples. In Section 4.5, we use the same two examples in order to evaluate
the applicability at the middleware-layer of the approach to application-layer interoperability presented in
Chapter 3. The conclusions and lessons learnt from these two experiences are discussed in Section 4.6,
together with our future work.

4.1 Middleware Interoperability

Pervasive distributed systems often consist of many networked systems that are highly heterogeneous
with respect to hardware, software and networks. These networked systems communicate via a plethora
of disparate protocols leading to data and behavior incompatibilities. Solutions that dynamically reveal
and fix interoperability issues are required to solve the mismatches that arise among the different running
systems.

Interoperability can be considered from many perspectives and at different levels, from the application
down to the network layer. Part of the focus should be on the middleware-layer since it stands as a
conceptual paradigm to effectively connect heterogeneous systems. Moreover, application designers
often choose a middleware first (based on the services provided), which may have an influence over the
application since it implies the use of particular programming model.

Interoperable middleware have been introduced to overcome middleware heterogeneity. However, so-
lutions remain rather static, requiring either the use of a proprietary interface or a priori implementation
of protocol translators. In general, interoperability solutions solve protocol mismatches from application-
layer down to middleware-layer at the syntactic level, which is too restrictive. This is particularly true when
one considers the many dimensions of heterogeneity which arise in ubiquitous networking environments
and require fine tuning of the middleware according to the specific capacities of the interacting parties.
Thus, interoperable middleware can at best solve protocol mismatches that occur among domain-specific
middleware. It is simply not possible to design beforehand a universal middleware solution that will enable
effective networking of digital systems, while spanning the many dimensions of heterogeneity that cur-
rently exist in networked environments or which are likely to exist in the future. A revolutionary approach
for the seamless networking of digital systems is to dynamically synthesize the connectors that make the
networked systems able to communicate, as already presented in the previous chapter. This way nei-
ther the application nor the middleware itself need to be changed. And, since interactions in pervasive
environments are generally spontaneous and dynamic, this adaptation should be fully automated.

Middleware provides the ability to dynamically find and use networked systems without any previous
knowledge of their specific location/behavior. This purpose is achieved using discovery protocols. Sev-
eral discovery protocols, like Jini [9], SLP [32]and SSDP [37] are now available, each of which is specific
to a particular domain and has its own advantages and drawbacks. Once the networked systems are
discovered, they need to interact using various paradigms, which have been classified into different archi-
tectural styles. The most important ones (see [8]) are: layered architectures, object-based architectures,
data-centered architectures, and event-based architectures. Consequently, a second heterogeneity issue
appears at the interaction level. Finally, non-functional properties, such as availability, reliability, timeliness
or security, exhibited by the networked systems are frequently considered to be very important and are
thus studied carefully. So, middleware should not only guarantee functional interoperability but also non-
functional properties. Thus, in order to provide interoperability among middleware, three heterogeneity
dimensions must be overcome: (i) discovery protocols, (ii) interaction protocols and, (iii) non-functional
properties.

We intend to address such an issue through CONNECTor synthesis, in a way similar to our approach

CONNECT 231167 37/79

to application-layer protocol mediation. Toward this goal, we need to relate the middleware paradigm to
that of connector.

4.2 Middleware-layer Connectors

In existing component models, connectors are meant to encapsulate interaction or communication while
components are meant to encapsulate computation. In these models, control originates in components,
and connectors are channels for coordinating the control flow (as well as data flow) between compo-
nents [66]. In this section, we first briefly present the connector concept according to the software archi-
tecture work, which will help us to establish the relation between connector and middleware.

4.2.1 Connector definition
A software connector is defined in [75] as “an architectural element tasked with effecting and regulating
interactions among components”

Figure 4.1: Component - Connector configuration

Formally, a connector type is defined by a set of roles and a glue specification (See Figure 4.1). The
roles describe the expected local behavior of each of the interacting parties. The glue describes how
the activities of these parties are coordinated [7]. Specifications for connectors are called protocols and
described using process algebra, and in particular FSP [69]. The semantics of FSP is then expressed
using LTS [45].

4.2.2 Connectors classification
There are many different kinds of connectors. The set is rich enough to require a taxonomy. We follow the
one proposed in [75] and initially introduced in [48]. The classification framework includes: service cate-
gory, type, dimension (and eventually subdimensions) and values for the dimensions (or subdimensions):

• The service category defines the interaction services the connector implements. There are four
categories of interaction services:

– Communication to support data transmission among components.

– Coordination to support transfer of control among components.

– Conversion to enable heterogeneous components to interact.

– Facilitation to provide further mechanisms to facilitate or optimize the components interaction.

• The type describes the way the interaction services are realized.

– Procedure call connectors use various invocation techniques and perform data transfer us-
ing parameters and return values. Thus, they provide both communication and coordination
services. Examples of such connectors are CORBA remote procedure call, RMI, HTTP and
SOAP.

CONNECT 231167 38/79

– Event connectors model the flow of control among components. Once an event (or an event
pattern) happens, a message description (that is, event notification) is sent to all interested
parties. Thus, they provide both communication and coordination services. Examples of such
connectors are CORBA event channel service and JMS.

– Data Access connectors allow components to access data maintained by a data store. Thus,
they provide both communication and conversion services. Examples of such connectors are
Linda and JavaSpaces.

– Linkage connectors enable the establishment of communication and coordination channels
between connectors that are then used by more functional connectors to enforce interaction
semantics. Thus, they provide facilitation service. One example of such a connector is Service
Binding.

– Stream connectors perform the transfer of large amounts of data between autonomous pro-
cesses. They provide communication service. Examples of such connectors are Unix pipe and
TCP.

– Arbitrator connectors streamline system operation, resolve any conflict and redirect the flow of
control. They provide both coordination and facilitation services. Examples of such connectors
are GLBP and transaction management systems.

– Adaptor connectors provide facilities to support interaction between components that have not
been designed to interoperate. They play a conversion role. Examples of such connectors are
bridges like OrbixCOMet and SOAP2CORBA.

– Distributor connectors perform the identification of interaction paths and subsequent routing
of communication and coordination information among components along these paths. They
provide facilitation service. Examples of such connectors are DNS, routing protocols, and
discovery protocols.

• The dimensions and subdimensions represent the architectural details of each connector type. For
example, a procedure call connector has the following dimensions:

– Parameters that are in turn subdivided to data trasfer, semantics, return value and invocation
record.

– Entry point which has two subdimensions, single or multiple.

– Invocation which is implicit or explicit.

– Synchronicity.

– Cardinality that has two subdimensions, fan in and fan out.

– Accessibility.

• The values represent the values a dimension or a subdimension can take. For example the data
transfer subdimension can take the values reference, value or name.

4.2.3 Convergence of middleware and connector
Middleware facilitates communication and coordination of components that are distributed across sev-
eral networked hosts. It provides a collection of services that take the primary responsibility of making
distributed applications communicate. Middleware often also provides other services such as security,
transaction, naming and events, which “aggregate” value to the communication between distributed appli-
cations [25].

From our perspective, middleware is represented by a set of connectors:

• Discovery protocols provide facilitation service of distributor type,

• Interaction protocols are represented by any connector type providing communication and coordi-
nation services, that is, procedure call, event, data access or stream connectors, and

• Non-functional properties can be modeled by the connector types providing facilitation services.

CONNECT 231167 39/79

As presented in the next section, existing approaches to middleware interoperability primarily manage
interoperability between connectors (middleware) of the same type, whereas we also aim at providing
interoperability between connectors of different types within the same service category.

4.3 Formalizing Existing Approaches to Middleware Interoperabil-
ity

Based on the work in [20], this section proposes an FSP-based formal specification of existing approaches
to middleware interoperability. We briefly present each approach and focus on its formalization, which
enables more accurate understanding and explanation of the approach than either an English language
description or a reference implementation (more details about the implementations of these approaches
can be found in [2]). It also provides a means to describe the approach in a way that it may be applied to
different connector types. In addition, with a formal description it is possible to reason about connectors
and help us to verify some properties and answer important questions about the effect of a particular
approach. Relevant questions include: does it do what it claims (correctness)? Is it deadlock-free? Does
it alter the interface of the communicating parties (transparency)?

Since we focus on connector behavior, it is natural to build on past work in this area, which uses pro-
cess algebra that have proven to be the most adequate formalism to describe and reason about connector
behavior. The process algebra chosen here is FSP because its notation and tool support were designed
to be simpler to use than other process algebra, and it provides a useful set of analyzes such as safety
and liveness verification.

4.3.1 FSP-based formalization

Based on the work in [69], a connector is formally defined in FSP [45] as a set of processes. Processes
describe actions as events that occur in sequence and choices between event sequences. Each process
P has an alphabet (αP) of the events that it is aware of. When composed in parallel, processes synchro-
nize on shared events that is the events belonging to their respective alphabets. There is one process
for each role of the connector, plus one process for the glue that describes how all the roles are bound
together. These processes are placed in parallel with the roles relabelled. Figure 4.2 gives the semantics
of a connector with roles R1...Rn and glue G.

||Connector = R1||R2||...||Rn||G

Figure 4.2: Connector specification

To illustrate this, consider a SOAP1 (Simple Object Access Protocol) connector. It has two roles
: SOAPclient and SOAPserver. The SOAPclient initiates a request, represented as a cSOAPreq event,
and get a response, represented as a cSOAPresp event. When the SOAPserver observes a request
sSOAPreq, it initiates a response sSOAPresp. The GlueSOAP coordinates the interaction of the two roles:
a cSOAPreq from the SOAPclientis followed by an sSOAPreq to the SOAPserver, and an sSOAPresp from
the SOAPserver is followed by a cSOAPresp to the SOAPclient (See Figure 4.3).

On the other hand, a component may have multiple interfaces, each of which is termed a port. A port
identifies a point of interaction between the component and its environment. Component ports are also
specified by processes. Then, a component, represented by ports P1...Pn, is attached to a connector,
represented by roles R1...Rn and glue G by replacing each component port with a connector role. The
replacement is possible if the component port is compatible with the connector role [29].

Using this connector specification, we propose a formal specification of existing solutions to middle-
ware interoperability. As in [2], we consider several families of solutions: bridging, interoperability platforms
and transparent interoperability (that also includes logical mobility as a special case).

1http://www.w3.org/TR/soap/

CONNECT 231167 40/79

//SOAP Connector specification
Role SOAPclient = cSOAPreq → cSOAPresp → SOAPclient
Role SOAPserver = sSOAPreq → sSOAPresp → SOAPserver
GlueSOAP = cSOAPreq → sSOAPreq → GlueSOAP

| sSOAPresp → cSOAPresp → GlueSOAP
||ConnectorSOAP = SOAPclient||GlueSOAP ||SOAPserver

Figure 4.3: SOAP connector specification

4.3.2 Bridging
Bridging assumes a priori knowledge of middleware (connectors) that have to interoperate without code
modification and provides a mapping between various protocols. This mapping can either be 1→ 1, which
is direct bridging; or n→ 1→ m, which is indirect bridging.

Direct Bridging

The principle is to transform one of the connector roles according to the component port (see Figure 4.4).
Formally, the glue of each connector is first tagged in order to avoid unwanted event synchronization
(tag1 :Glue1 and tag2 :Glue2). Then, a set of transformations is applied to the connectors in order to adapt
their respective behaviors (T). Finally, the transformations are chained with the glues through the Bridge
process.

//Specification of the connector1 & connector2

Role R1i,i∈[1··2] = Specification of Role R1 of connectori
Role R2i,i∈[1··2] = Specification of Role R2 of connectori
Gluei,i∈[1··2] = Specification of the glue of connectori
Set Ii,i∈[1··2] = Set of events initiated from role R1i and R2i
Bridge = tag1.[e1 : I1]→ tag2.[e1]→Bridge

| tag2.[e2 : I2]→ tag1.[e2]→Bridge
//Adaptation process
T = Specification of the required transformations to bridge

Connector1 to Connector2

//Semantic of the connector
‖C-DBridge = R11‖tag1 :Glue1‖Bridge ‖T‖tag2 :Glue2‖R22

Figure 4.4: Direct bridging specification

Direct bridges, such as OrbixCOMet2 and SOAP2CORBA3, provide interoperability between two fixed
protocols (DCOM-CORBA and SOAP-CORBA respectively). A direct bridge must thus be developed
separately for every pair of protocols between which interaction is needed. The diversity of protocols that
are used in today’s networked systems implies that this is a substantial development task.

Indirect bridging

Resolving heterogeneity among two sets of n and m middleware requires n × m direct bridges. An
alternative approach is then to use a common fixed intermediary protocol. In this case, interoperability is
achieved in two steps: first one native middleware protocol taken among n middleware is translated to a
common intermediary protocol, then this is translated to another native middleware protocol taken among
m middleware (see Figure 4.5). First, one of the n (m) connectors is selected using the Switch (Switch′)
process: Connectori (Connector′k). Then, direct bridges are used between Connectori and Connectorbus
(ToTi‖Bridgei), and between Connectorbus and Connector′k (ToT ′k‖Bridge′k).

Indirect bridges, such as Enterprise Service Buses (ESBs) or MUSDAC [61] rely either on an interme-
diary infrastructure or on a single fixed intermediary protocol they translate messages to and from it. This

2http://www.iona.com/support/whitepapers/ocomet-wp.pdf
3http://soap2corba.sourceforge.net/

CONNECT 231167 41/79

//Bus Connector
Role R1bus = Specification of Role R1 of connectorbus
Role R2bus = Specification of Role R2 of connectorbus
Gluebus = Specification that describes interactions between roles

R1bus and R2bus
//Connectors specification
Role R1 = |ni=1(a.gluei → R1i),
R1i,i∈[1··n] = R1i initial specification as given by Connectori

| reset→ R1
Role R2 = |mk=1(b.glue′k → R2k),
R2k,k∈[1··m] = R2k initial specification as given by Connector′k

| reset→ R2
Gluei,i∈[1··n] = Specification that describes interactions between

roles R1i and R2i
Glue′k,k∈[1··m] = Specification that describes interactions between

roles R′1k and R′2k
//Set of events initiated or observed
Set I1i,i∈[1··n] = Set of events initiated from role R1i
Set O1i,i∈[1··n] = Set of events observed from role R1i
Set I2k,k∈[1··m] = Set of events initiated from role R′2k
Set O2k,k∈[1··m] = Set of events observed from role R′2k
//Switch processes
Switch = (a.election→ a.reset→ Switch

|ni=1 a.election→ a.gluei → Switch)\{a.election}
Switch′ = (b.election→ b.reset→ Switch′

|mk=1 b.election→ b.glue′k → Switch′)\{b.election}
//Adaptation processes
T1 = |ni=1(a.gluei → ToTi),
T oTi,i∈[1··n] = Specification of the required transformations to bridge

Connectori to Connectorbus
| a.reset→T1

T2 = |mk=1(b.glue′k → ToT ′k),
T oT ′k,k∈[1··m] = Specification of the required transformations to bridge

Connectorbus to Connector′k
| b.reset→T2

//Bridging processes
Bridge1 = |ni=1(a.gluei → Bridgei),
Bridgei,i∈[1··n] = [e : I1i]→ a.tagi.[e]→ Bridgei

| a.tagi.[e : O1i]→ [e]→ Bridgei
| a.reset→Bridge1

Bridge2 = |mk=1(b.glue′k → Bridge′k),
Bridge′k,k∈[1··m] = [e : I2k]→ b.tagk.[e]→ Bridge′k

| b.tagi.[e : O2k]→ [e]→ Bridge′k
| b.reset→ Bridge2

//The Connector
‖C-IBridge = R1‖Switch‖T1‖ni=1a.tagi :Gluei

‖Bridge1‖Gluebus‖Bridge2

‖mk=1b.tagk :Glue′k‖T2‖Switch′‖R2

Figure 4.5: Indirect bridging specification

CONNECT 231167 42/79

approach reduces the development effort from n2 to n + m, but may limit the expressiveness, as some
aspects of the relevant protocols may not be compatible with the chosen intermediary protocol.

4.3.3 Interoperability platforms

To overcome the static nature of bridges, approaches that dynamically select the best middleware bridge
at a given time and place have emerged. Interoperability platforms enable clients or services to switch
their interaction protocol on-the-fly according to their networked environment. The principle is to provide an
explicit interface that abstracts the different interaction protocols used in the environment (see Figure 4.6).
The interface is formally specified by a role Rinterface. A non-deterministic process (Switch) selects the
appropriate connector among n: Connectori. Then, the Rinterface is bridged to Connectori using the
same method than direct bridging, that is ToTi‖Bridgei.

//Proprietary interface
Role Rinterface = Specification of the bridge interface
Role R2 = |ni=1(gluei → R2i),
R2i,i∈[1··n] = Initial specification of the role R2 of Connectori

| reset→ R2
Gluei,i∈[1··n] = Specification of the glue of Connectori
//Set of events initiated or observed
Set I2i,i∈[1··n] = Set of events initiated from role R2i
Set O2i,i∈[1··n] = Set of events observed from role R2i
Set Iinterface = Set of events initiated from role Rinterface
Set Ointerface = Set of events observed from role Rinterface
//Switch process
Switch = (election→ reset→ Switch

|ni=1 election→ gluei → Switch)\{election}
//Adaptation process
T = |ni=1(gluei → ToTi),
T oTi,i∈[1··n] = Specification of the required transformations to bridge

Rinterface to Connectori
| reset→ T

//Bridging process
Bridge = |ni=1(gluei → Bridgei),
Bridgei,i∈[1··n] = [e : Rinterface]→ tagi.[e]→ Bridgei

| tagi.[e : Ointerface]→ [e]→ Bridgei
| [e : I2i]→ tagi.[e]→ Bridgei
| tagi.[e : O2i]→ [e]→ Bridgei
| reset→Bridge

//The Connector
‖C-InteropPlatforms = Rinterface‖Switch‖T‖Bridge‖ni=1tagi :Gluei‖R2

Figure 4.6: Interoperability platforms specification

Interoperability platforms such as UIC [62] and ReMMoC [31], allow the development of applications
independently from the underlying protocol. They select the most appropriate communication protocol
according to the context. Many applications, however, have not been developed using such middleware
systems and cannot be modified because their source code, for example, is not available.

4.3.4 Transparent interoperability

Transparent interoperability solutions do not rely on a fixed common protocol anymore but rather synthe-
size it dynamically based on the interaction behavior of communicating parties in a way similar to the
CONNECT approach to the synthesis of mediating connector discussed in Chapter 3.

In this deliverable, we are more specifically interested in dynamic protocol translation [18]. This ap-
proach extends indirect bridging solutions with concepts taken from the theory of protocol projection [41].
The theory enables mapping incompatible protocols to an image protocol, which proves useful for rea-
soning about conversions and semantic equivalence among heterogeneous protocols [18]. In particular,
an image protocol abstracts incompatibilities among protocols to exclusively consider their similarities.
Further, by generating an image protocol on-the-fly, it is possible to provide a dynamic semantical corre-
spondence among heterogeneous middleware protocols. In other terms, a projection function f is used

CONNECT 231167 43/79

to synthesize an image protocol resulting from the greatest common denominator of the different middle-
ware protocol similarities (see Figure 4.7). First, the glue of all the connectors are tagged in order to avoid
unwanted event synchronization. Then, one connector is chosen among n (m) connectors through the
Switch (Switch′) process: Connectori (Connector′k). W1 (W2) are then used to synchronize tagged glues
with their respective roles depending on the selected connector. The strength of the approach lies in M1

and M2 processes that are used to define the semantics of the events. To do so, a projection function (f)
is used to establish the semantic equivalence between events: f(e1) = f(e2) if and only if e1 and e2 have
the same semantics. Finally, Bridge1 and Bridge2 tag/untag the projected events in order to allow M1 and
M2 to synchronize. Thus, the approach is fully automated, the only requirement is the definition of the
semantics of events using the f function.

The INDISS [19] and NEMESYS [20] middleware implement the dynamic protocol translation approach
for service discovery and interaction protocol, respectively. uMiddle [58], OSDA [43], SeDiM [27] are other
implementations of the transparent interoperability approach.

4.4 Assessing the Transparent Interoperability Approach

To better understand the transparent interoperability approach, and in particular the one described in [18],
consider the Popcorn scenario that is detailed in [2] and already used in Section 3.4.

As stated in Section 4.1, interoperability issues at the middleware-layer may arise due to three di-
mensions: discovery, interaction and non-functional properties. Note that the non-functional dimension
will be addressed in future work. Since the different actors (Popcorn Merchants and Consumers) do
not know each other beforehand, they have to locate and discover each other at runtime. Middleware
support for service discovery is indispensable for developing applications in these highly heterogeneous
environments. As mentioned before, different discovery protocols are deployed in today’s networked en-
vironments. For our study, we have chosen Service Location Protocol (SLP) [32] and Simple Service
Discovery Protocol (SSDP) [37] since they are among the most broadly used dynamic service discovery
protocols (Section 4.4.1). This further illustrates interoperability among connectors of the same type but
with heterogeneous dimensions.

Then, we address a more complex and not yet addressed case (as the best of our knowledge) that is
considering interoperability among different connector types of the same category. We more specifically
investigate interoperabilty among Universal Plug and Play(UPnP) [37] and Linda in a Mobile environment
(Lime) [57]. Thus, we will be dealing with different connector types: distributor-procedure call connectors
for UPnP, and data access-event for Lime (Section 4.4.2).

4.4.1 Example 1: Interoperability within the same connector type
Service Discovery interoperability has been widely addressed and many approaches have been proposed.
We consider the transparent interoperability approach, as defined in [18], since it efficiently addresses
interoperability at runtime between a set of components, as aimed by CONNECT. To do so, a set of
semantic events is associated with any discovery protocol, which helps in defining the image protocol,
that is the intermediary protocol, in order to use the transparent interoperability approach to make SLP
interoperate with SSDP , that is the Spanish/French Popcorn scenarios described in [2]. We first start by
describing and formalizing SSDP and SLP. Then, we show how to apply the approach to this example.

Simple Service Discovery Protocol(SSDP)

The Simple Service Discovery Protocol (SSDP) is the Universal Plug and Play (UPnP) discovery protocol.
UPnP defines two network entities:

• Devices: implement the protocols required by the UPnP architecture.

• Control points: ask for a functionality provided by a device.

The UPnP control points and devices represent one multicast group using the IP address 239.255.255.250
and port 1900. Devices advertise the services that are providing using alive messages. Control points
look for services by multicasting a MSEARCH message. The devices reply by sending a unicast response

CONNECT 231167 44/79

//Connectors specification
Role R1 = |ni=1(a.gluei → R1i),
R1i,i∈[1··n] = R1i Initial specification as given by Connectori

| reset→ R1
Role R2 = |nk=1(b.gluek → R2k),
R2k,k∈[1··n] = R2k Initial specification as given by Connector′k

| reset→ R2
Gluei,i∈[1··n] = Specification that describes interactions between roles

R1i and R2i
Glue′k,k∈[1··m] = specification that describes interactions between roles

R′1k and R′2k
//Definition of set of events
Set I1i,i∈[1··n] = Set of events initiated from role R1i
Set O1i,i∈[1··n] = Set of events observed from role R1i
Set I2k,k∈[1··m] = Set of events initiated from role R′2k
Set O2k,k∈[1··m] = Set of events observed from role R′2k
Set E1i,i∈[1··n] = αR1i ∩ αGluei
Set E2k,k∈[1··m] = αR2k ∩ αGlue′k
Set

∑
E1n

= ∪ni=1E1i
Set

∑
E2m

= ∪mk=1E2k
Set

∑
O1n

= ∪ni=1O1i
Set

∑
O2m

= ∪mk=1O2k
//Switch processes
Switch = (a.election→ a.reset→ Switch

|ni=1 a.election→ a.gluei → Switch)\{a.election}
Switch′ = (b.election→ b.reset→ Switch′

|mk=1 b.election→ b.glue′k → Switch′)\{b.election}
//Image protocol generation
W1 = |ni=1(a.gluei → ToGluei),
T oGluei,i∈[1··n] = [e : I1i]→ a.tagi.[e]→ ToGluei

| a.tagi.[e : O1i]→ [e]→ ToGluei
| a.reset→W1

W2 = |nk=1(b.glue′k → ToGlue′k),
T oGlue′k,k∈[1··m] = [e : I2k]→ b.tagk.[e]→ ToGlue′k

| b.tagk.[e : O2k]→ [e]→ ToGlue′k
| b.reset→W2

M1 = |ni=1(a.gluei → ToMapi),
T oMapi,i∈[1··n] = a.tagi.[e : I1i]→ a.tagi.f(e)→ ToMapi

| a.tagi.f(e :
∑

[O1n])→ a.tagi.[e : O1i]→ ToMapi
| a.reset→M1

M2 = |nk=1(b.glue′k → ToMap′k),
T oMap′k,k∈[1··m] = b.tagk.[e : I2k]→ b.tagk.f(e)→ ToMap′k

| b.tagk.f(e :
∑

[O2m])→ b.tagk.[e : O2k]→ ToMap′k
| b.reset→M2

//Bridging
Bridge1 = |ni=1(a.gluei → ToBridgei),
T oBridgei,i∈[1··n] = a.tagi.f

(
e2 :

∑
[E2k]

)
→ f(e2)→ ToBridgei

| f(e1 :
∑

[E1n])→ a.tagi.f(e1)→ ToBridgei
| a.reset→Bridge1

Bridge2 = |mk=1(b.glue′k → ToBridge′k),
T oBridge′k,k∈[1··m] = b.tagk.f

(
e1 :

∑
[E1n]

)
→ f(e1)→ ToBridge′k

| f(e2 :
∑

[E2m])→ b.tagk.f(e2)→ ToBridge′k
| b.reset→Bridge2

//The Connector
C-Transparent Interop = R1‖ Switch ‖ni=1a.tagi : Gluei/{f(r : αGluei)/[r]}

‖W 1‖ M 1‖Bridge1

‖Bridge2‖M 2‖W 2

‖mk=1b.tagk : Gluek/{f(r : αGluek)/[r]}‖Switch ′‖R2

Figure 4.7: Transparent interoperability specification

CONNECT 231167 45/79

containing a device description. The control points process the device description and perform HTTP GET
requests to get the corresponding services description. FSP-based specification of SSDP is illustrated in
Figure 4.8.

UPNP GROUP MANAGER = IDLE,
IDLE = (join[upnp]→MATCH

| send[Multicast groups]→ IDLE
) ,

MATCH =
(send[group : Multicast groups]→

if (group == upnp) then
(send[group]→MATCH
|leave→ IDLE)

else
MATCH

| leave→ IDLE
)

UPNP RECEIVER = (join[upnp]→ LISTENING),
LISTENING = (send[upnp]→ LISTENING

| send[upnp]→ response→ LISTENING
| send[upnp].alive[i : DeviceRange]→ description[i]→ LISTENING
| leave→ STOP
) +{join[Multicast groups]}

//Service description
UPNP SERVICE = (httpget→ httpgetResponse→UPNP SERVICE)
//The join then advertise step
UPNP JOIN ADVERTISE = (join[upnp]→ alive→STOP)/{alive/send[upnp]}
//Discovery step
UPNP DISCOVERY = (msearch→UPNP DISCOVERY

| response[i : DeviceRange]→ description[i]→UPNP DISCOVERY
| response[i : DeviceRange]→UPNP DISCOVERY
) /{msearch/send[upnp]}

//Description step
UPNP DESCRIPTION = (description→ httpget→ httpgetResponse→ UPNP DESCRIPTION

| description→ httpget→ httpgetResponse→ control→ UPNP DESCRIPTION)
‖SSDP = (device[DeviceRange] :UPNP GROUP MANAGER

‖ device[DeviceRange] :UPNP RECEIVER
‖ service[i : DeviceRange][j : ServiceRangei] :UPNP SERVICE
‖ device[DeviceRange] :UPNP JOIN ADVERTISE
‖ device[DeviceRange] :UPNP DISCOVERY
‖ service[i : DeviceRange][j : ServiceRangei] :UPNP DESCRIPTION
) /{description[i : DeviceRange]/service[i][ServiceRangei].description}

Figure 4.8: SSDP specification

Service Location Protocol (SLP)

The Service Location Protocol is an IETF standard that provides a scalable framework for automatic
resource discovery on IP networks [32]. It includes three “agents” that operate on behalf of the network-
based software:

• User Agents (UA) perform service discovery.

• Service Agents (SA) advertise the location and attributes of services.

• Directory Agents (DA) aggregate service information into what is initially a stateless repository.
When a DA is present, it collects all service information advertised by SAs, and UAs unicast their
requests to the DA. In the absence of a DA, UAs repeatedly multicast the same request they would
have unicast to a DA. SAs listen for these multicast requests and unicast responses to the UA if it
has advertised the requested service.

The SLP agents represent one multicast group using the IP address 239.255.255.253 and port 427.
Since we are interested in pervasive environments, we consider that there is no directory agent. We then
consider a subset of SLP message types:

• Service Request: UAs find service by type, scope, and search filter.

• Service Reply: SA returns Service URLs and their lifetimes.

CONNECT 231167 46/79

• SAAdvert: SA sends its Service URL, scope, and attributes.

The SLP protocol formalization is illustrated in Figure 4.9.

SLP GROUP MANAGER = IDLE,
IDLE = (join[slp]→MATCH

| send[Multicast groups]→ IDLE
) ,

MATCH =
(send[group : Multicast groups]→

if (group == slp) then
(send[group]→MATCH
|leave→ IDLE)

else
MATCH

| leave→ IDLE
)

SLP RECEIVER = (join[slp]→ LISTENING),
LISTENING = (send[slp]→ LISTENING

| send[slp]→ serviceReply → LISTENING
| send[slp].saadvert[i : DeviceRange]→ serviceReply[i]→ LISTENING
| leave→ STOP
) +{join[Multicast groups]}

//The join then advertise step
SLP JOIN ADVERTISE = (join[slp]→ saadvert→STOP)/{saadvert/send[slp]}
//Discovery step
SLP DISCOVERY = (serviceRequest→SLP DISCOVERY

| serviceReply[i : DeviceRange]→SLP DISCOVERY
) /{serviceRequest/send[slp]}

‖SLP = (device[DeviceRange] :SLP GROUP MANAGER
‖ device[DeviceRange] :SLP RECEIVER
‖ device[DeviceRange] :SLP JOIN ADVERTISE
‖ device[DeviceRange] :SLP DISCOVERY
)

Figure 4.9: SLP specification

Achieving interoperability

Let us now apply the transparent interoperability specification in order to make SLP and SSDP inter-
operate. We first have to define the projection function that defines the semantics of the events (see
Figure 4.11). Then, all the other processes: Switch, Switch′, W1, W2, M1, M2, Bridge1 and Bridge2 are
automatically generated (see Figure 4.10).

To illustrate the functioning of the approach, consider an SLP client (R1) searching for a UPnP Service
(R2). First, a serviceRequest event is thrown, W1 synchronizes with it and generates a.tag.serviceRequest.
M1 rises a.tag.map.discover that is handled by Bridge1 and transformed to map.discover, which makes
Bridge2 synchronize and throw b.tag.map.discover. Then, M2 generates b.tag.map.msearch that is trans-
formed to msearch by W1. The UPnP device synchronizes with its glue and generates response that
synchronizes with W2 and with UPNP DISCOVERY (see Figure 4.8). W2 generates b.tag.response that
is handled by M2 and transformed to b.tag.map.deviceDesc but none of the processes can synchronize
with this event. On the other hand, UPNP DISCOVERY throws an httpget followed by httpgetResponse.
The latter is handled by W2 that generates b.tag.httpgetResponse that is handled by M2 and trans-
formed to b.tag.map.reply. Then, Bridge2 synchronizes and raises map.reply, which makes Bridge1 throw
a.tag.map.reply. Then, M2 generates a.tag.map.serviceReply that is transformed to serviceReply by W1.
Then the SLP client receives the reply.

4.4.2 Example 2: Interoperability among different connector types

In this example, we go further by addressing interoperability between middleware based on different con-
nector types: UPnP and Lime. We start by describing and formalizing each of them. Then, we discuss the
applicability of the transparent interoperability approach (and in particular dynamic protocol translation) to
this example.

CONNECT 231167 47/79

n = m = 1
R1 = R11 = SLP JOIN ADVERTISE‖SLP DISCOVERY‖SLP RECEIVER
R2 = R21 = UPNP JOIN ADVERTISE‖UPNP DISCOVERY‖UPNP RECEIVER

‖UPNP SERVICE‖UPNP DESCRIPTION
Glue1 = SLP GROUP MANAGER
Glue2 = Glue′1 = UPNP GROUP MANAGER
E1 = E11 = {join[slp], saadvert, serviceRequest, serviceReply}∑
E11

= E11 = E1

E2 = E21 = {join[upnp], alive,msearch, response}∑
E21

= E21 = E2

I1 = I11 = {join[slp], saadvert, serviceRequest, serviceReply}
O1 = O11 = I1∑
O11

= O11 = I1
I2 = I21 = {join[upnp], alive,msearch, response, httpget, httpgetResponse}
O2 = O21 = I2∑
O21

= O21 = I2
//Switch processes
Switch = Glue1

Switch′ = Glue2

//Image protocol generation
W1 = ToGlue1 = join[slp]→ a.tag.join[slp]→W1 | a.tag.join[slp]→ join[slp]→W1

| saadvert→ a.tag.saadvert→W1 | a.tag.saadvert→ saadvert→W1

| serviceRequest→ a.tag.serviceRequest→W1 | a.tag.serviceRequest→ serviceRequest→W1

| serviceReply → a.tag.serviceReply →W1 | a.tag.serviceReply → serviceReply →W1

| a.reset→W1

W2 = ToGlue′1 = join[upnp]→ b.tag.join[upnp]→W2 | b.tag.join[upnp]→ join[upnp]→W2

| alive→ b.tag.alive→W2 | b.tag.alive→ alive→W2

| msearch→ b.tag.msearch→W2 | b.tag.msearch→ msearch→W2

| response→ b.tag.response→W2 | b.tag.response→ response→W2

| httpget→ b.tag.httpget→W2 | b.tag.httpget→ httpget→W2

| httpgetResponse→ b.tag.httpgetResponse→W2 | b.tag.httpgetResponse→ httpgetResponse→W2

| b.reset→W2

M1 = ToMap1 = a.tag.join[slp]→ a.tag.map.join→M1 | a.tag.map.join→ a.tag.join[slp]→M1

| a.tag.saadvert→ a.tag.map.advert→M1 | a.tag.map.advert→ a.tag.saadvert→M1

| a.tag.serviceRequest→ a.tag.map.discover →M1 | a.tag.map.discover → a.tag.serviceRequest→M1

| a.tag.serviceReply → a.tag.map.reply →M1 | a.tag.map.reply → a.tag.serviceReply →M1

| a.reset→M1

M2 = ToMap′1 = b.tag.join[upnp]→ b.tag.map.join→M2 | b.tag.map.join→ b.tag.join[upnp]→M2

| b.tag.join[upnp]→ b.tag.map.join→M2 | b.tag.map.join→ b.tag.join[upnp]→M2

| b.tag.alive→ b.tag.map.advert→M2 | b.tag.map.advert→ b.tag.alive→M2

| b.tag.msearch→ b.tag.map.discover →M2 | b.tag.map.discover → b.tag.msearch→M2

| b.tag.response→ b.tag.map.deviceDesc→M2 | b.tag.map.deviceDesc→ b.tag.response→M2

| b.tag.httpget→ b.tag.map.serviceDscv →M2 | b.tag.map.serviceDscv → b.tag.httpget→M2

| b.tag.httpgetResponse→ b.tag.map.reply →M2 | b.tag.map.reply → b.tag.httpgetResponse→M2

| b.reset→M2

//Bridging
Bridge1 = ToBridge1 = a.tag.map.join→ map.join→ Bridge1

| a.tag.map.advert→ map.advert→ Bridge1

| a.tag.map.discover → map.discover → Bridge1

| a.tag.map.reply → map.reply → Bridge1

| map.join→ a.tag.map.join→ Bridge1

| map.advert→ a.tag.map.advert→ Bridge1

| map.discover → a.tag.map.discover → Bridge1

| map.reply → a.tag.map.reply → Bridge1

| a.reset→Bridge1

Bridge2 = ToBridge′1 = b.tag.map.join→ map.join→ Bridge2

| b.tag.map.advert→ map.advert→ Bridge2

| b.tag.map.discover → map.discover → Bridge2

| b.tag.map.reply → map.reply → Bridge2

| map.join→ b.tag.map.join→ Bridge2

| map.advert→ b.tag.map.advert→ Bridge2

| map.discover → b.tag.map.discover → Bridge2

| map.reply → b.tag.map.reply → Bridge2

| b.reset→Bridge2

//The Connector
‖C-Transparent Interop = R1‖W 1‖ M 1

‖Glue1/{f(r : αGlue1)/[r]}‖Bridge1

‖Bridge2‖ Glue2/{f(r : αGlue2)/[r]}
‖M 2‖W 2‖R2

Figure 4.10: Application of the transparent interoperability approach to SLP-SSDP

CONNECT 231167 48/79

f(join[slp]) = map.join f(join[upnp]) = map.join
f(saadvert) = map.advert f(alive) = map.advert
f(serviceRequest) = map.discover f(msearch) = map.discover
f(serviceReply) = map.reply f(response) = map.deviceDesc

f(httpget) = map.serviceDscv
f(httpgetResponse) = map.reply

Figure 4.11: Projection function

Universal Plug and Play (UPnP)

A UPnP device can be any entity on the network that implements the protocols required by the UPnP
architecture [37]. Each UPnP device implements zero or more services. A service represents a function-
ality provided by the device. Each service has a set of actions that represents the methods offered by
the service. A control point is an entity on the network that asks for a functionality provided by a device.
In other words, the control point behaves as a client invoking actions on services provided by the device.
UPnP defines the following phases:

• Addressing. The device or the control point joins the network.

• Advertising. The device multicasts its device description.

• Discovery. The control point searches for a device. The device replies by sending its device de-
scription.

• Description. Once the control point gets the device description, it addresses a request to ask for
the description of one of its services.

• Control. Once the control point gets the service description, it invokes one of the service actions.

UPnP relies on SSDP (see Section 4.4.1) to get the service description and then on SOAP to invoke its
method. Figure 4.12 presents the FSP-based formalization of UPnP.

ACTION = (soapRequest→ compute→ soapResponse→ ACTION
CONTROL = (control→ soapRequest→ soapResponse→ CONTROL
‖A UPNP MW = (SSDP

‖ service[i : DeviceRange][j : ServiceRangei][k : ActionRangeij] :ACTION
‖ service[i : DeviceRange][j : ServiceRangei][k : ActionRangeij] :CONTROL
) /{service[i : DeviceRange][j : ServiceRangei].control/

service[i][j][ActionRangeij].control}

Figure 4.12: UPnP specification

Linda in a Mobile environment (Lime)

Lime is a Java-based middleware that provides a coordination layer that can be exploited for designing
applications that exhibit either logical or physical mobility [57]. In Linda, processes communicate by
writing, reading, and removing data from a tuple space that is assumed to be persistent and globally
shared among all processes. Lime adapts this notion to a mobile environment by breaking down the
notion of a global tuple space, and distributing its contents across multiple mobile components. Lime
also introduces the notions of tuple location, for querying a partition of the federated tuple space, and of
reactive programming, to allow actions to be performed with varying degrees of atomicity upon insertion
of a tuple. Tuple spaces are also extended with a notion of location and programs are given the ability to
react to specified states. Lime explicitly extends the basic Linda tuple space with the notion of reaction.
The formal specification of the Lime middleware is illustrated in Figure 4.13.

CONNECT 231167 49/79

set Tuples = {tuple1, tuple2}
range TupleUsersRange = 1..N
//Linda specification
TUPLE(T = ′any) = TUPLE[0];
TUPLE[i : 0..N] = (out[T] →

if (i < N) then
TUPLE[i+ 1]

| when (i > 0)in[T] → TUPLE[i− 1]
| when (i > 0)inp[True][T] → TUPLE[i− 1]
| when (i == 0)inp[False][T] → TUPLE[i]
| when (i > 0)rdg[T] → TUPLE[i]
| rdp[i > 0][T] → TUPLE[i]
)

//Reaction specification
NOTIFICATION MANAGER = IDLE,
IDLE = (reactsTo[patt : Tuples] → MATCH[patt]

| out[Tuples] → IDLE
),

MATCH[patt : Tuples] = (out[tuple : Tuples] →
if (tuple == patt) then

(notification[tuple]→MATCH[patt]
|leave→ IDLE)

else
MATCH[patt]

| leave → IDLE
)

‖NOTIFICATIONS MANAGER = (user[TupleUsersRange] :NOTIFICATION MANAGER)
/{out/user[TupleUsersRange].out}

SENDER = (out[Tuples] → SENDER)
RECEIVER(P = ′pattern) = (reactsTo[P] → LISTENING),
LISTENING = (notification[P] → LISTENING

| notification[P] → leave→STOP
) + {join[Tuples]}

‖LIME = ((forall [t : Tuples] TUPLE(t))
‖ user[TupleUsersRange] :RECEIVER(′tuple1)
‖ user[TupleUsersRange] :RECEIVER(′tuple2)
‖ user[TupleUsersRange] :RECEIVER(′tuple3)
‖ NOTIFICATIONS MANAGER
‖ SENDER)

Figure 4.13: Lime specification

CONNECT 231167 50/79

Achieving interoperability

Connectors of the same type adhere to the same abstract protocol, which is the image protocol. However,
when considering different types of protocols it is harder, if not impossible, to find such an abstract protocol
since the coordination paradigms are divergent even if they both aim at making the components communi-
cate. As a consequence it is not possible to find the set of semantic events (represented by the projection
function) shared between the connectors because there is a big difference in the semantics of different
types of connectors. In this case, the procedure call connector of UPnP uses two basic primitives, Send
and Receive, while the data access connector of Lime provides shared address space through Read and
Write primitives. Thus, a new approach should be defined to address this issue.

HTTPGET

HTTPGETResponse

HTTPGETResponse

HTTPGET

alive

alive

Response

MSEARCH
MSEARCH

Response

join[upnp]

Figure 4.14: LTS of the SSDP glue

SAAdvert

SAAdvert

Service Reply

Service Request

Service Request

Service Reply

join[slp]

Figure 4.15: LTS of the SLP glue

4.5 Middleware-layer Interoperability versus Application-layer In-
teroperability

As an alternative approach to middleware interoperability, we study the applicability to the middleware-
layer of our approach to application-layer interoperability approach introduced in Chapter 3. To this end,
we use the same examples as in Section 4.4.

CONNECT 231167 51/79

SLP Glue UPnP Glue Description

join[slp] join[upnp] Join

SAAdvert alive Advertize

Service Request MSEARCH Discover

m Service Reply Response
HTTPGET
HTTPGETResponse

Get service description

m

Figure 4.16: SLP/SSDP ontology mapping

join[upnp]

SAAdvert

Service Request

Service Replyjoin[slp]

alive

MSEARCH

HTTPGETRequest

HTTPGETResponse

Response

Figure 4.17: LTS of the SLP/SSDP mediator

4.5.1 Example 1: Interoperability within the same connector type

We recall that in this example, we would like to adapt the SLP protocol to the SSDP protocol using the
application-layer interoperability approach. This approach relies on the LTSs of the protocols to be made
interoperable and on the ontology mapping of their primitives. The required LTS are generated from the
FSP models described in Section 4.4. However, they are abstracted due to state explosion. Figures 4.14
and 4.15 illustrate the abstraction of the SSDP glue and the SLP glue respectively. Their ontology mapping
is represented in Figure 4.16.

By applying the approach, we obtain the mediator illustrated in Figure 4.17.

4.5.2 Example 2: Interoperability among different connector types

We recall that in this example, our target is to make UPnP interoperate with Lime using the application-
layer interoperability approach. Figure 4.18 and 4.19 illustrate the abstraction of the UPnP glue and Lime
glue respectively. However, it is not possible, to the best of our knowledge, to establish an ontology
mapping between them.

As for the transparent interoperability approach, when considering connectors of the same type, we
can define an ontology/event mapping since both of them use the same abstract model associated with
the interaction service that is realized. However, when considering connectors of different types, it is hard
to define a direct ontology/event mapping between their primitives.

Moreover, structural matching that is applied at the application-layer is too constraining for middleware-
layer interoperability, particularly, when addressing components running middleware based on different
coordination models. On the other hand, at the middleware layer, we may consider the protocols known in

CONNECT 231167 52/79

HTTPGET

HTTPGETResponse

Join[upnp]

HTTPGETResponse

HTTPGET

SOAPRequest

HTTPGETResponse

SOAPResponse

SOAPRequest

alive

alive

Response

MSEARCH
MSEARCH

Response

SOAPMessageSOAPMessage

Figure 4.18: LTS of the UPnP glue

TupleList

rdg

Tuple

In

out

reactsTo

Notification

out

Figure 4.19: LTS of the Lime glue

advance, which is not possible at the application layer. We then get another perspective on interoperability.

4.6 Summary

In this chapter, we first established the relation between connectors and middleware. We used an FSP-
based formalization to specify the existing approaches to middleware interoperability, which are informally
discussed in [2]. We assessed the transparent interoperability approach (the one based on dynamic pro-
tocol synthesis, as aimed by CONNECT) through two different examples, the first one addresses hetero-
geneity between connectors of the same type while the second tackles heterogeneity between connectors
of different types. The same two examples were also used to evaluate the application-layer interoperability
approach, which was described in Chapter 3, for middleware-layer protocols.

Both approaches succeed to manage interoperability among connectors of the same type but fail to
achieve interoperability among connectors of different types. Indeed, both of them require the commu-
nicating parties to use primitives that have the same semantics. This is expressed in the transparent
interoperability approach by the use of the projection function, and for application-layer interoperability by
the existence of an ontology mapping.

CONNECT 231167 53/79

These approaches also focus on the control flow between the communicating parties. However, the
exchanged data and its semantics, might be a valuable dimension that has to be considered. Existing
approaches to middleware interoperability have to be enhanced in order to tackle broader heterogeneity
and to handle not only connectors of the same type but also of different types. This can only be achieved
by finding the right abstraction that captures the similarities of different connectors regardless of the type
they belong to.

CONNECT 231167 54/79

5 Application-layer Protocol Elicitation: Towards
an Automated Model-based Approach

As discussed in [1], one of the key challenges of CONNECT concerns the possibility to characterize
Networked Systems (NSs) semantically. This means that besides a syntactical description of the NS
signature, e.g., by means of either the WSDL notation [6] or an IDL (Interface Definition Language) de-
scription, there is the need in the CONNECTor synthesis process for pieces of semantic information about
the functionality the NS provides. As discussed in Chapter 3, these pieces of information can describe
different views of the system semantics, from ontological ones that ease discovery, to behavioral ones
that ease synthesis. For the latter many approaches have been proposed in the literature with the aim
to automatically synthesize composition/coordination/mediation code for a set of heterogeneous NSs,
see [11, 17, 21, 22, 35, 36, 40, 46, 47, 50, 54, 56, 60, 64, 73, 76] just to mention the most recent. These
approaches rely on the assumption that, along with the syntactical description of the NS signature, some
information is provided about how other systems interacting with the NS should behave. We call this be-
havioral information the system behavior protocol. Unfortunately, in the application scenarios envisioned
by CONNECT [1], this assumption turns out to be unfounded.

This is the problem we address in this chapter: how to compensate for the lack of information about a
NS’s behavioral assumptions?. Note that this problem is related to behavior protocol learning issues inves-
tigated in WP4 [3]. However, the work described in this chapter has to be considered as complementary,
and not as substitutive, of CONNECT learning algorithms. Actually, as discussed in detail in Section 5.5,
the work in this chapter presents several differences with respect to work in WP4. It should be considered
as work developed within WP3 in order to understand the requirements, for the work in WP4, that enable
automated CONNECTor synthesis. During the first year of the project, the work described in this chapter
allowed, on one side, WP3 to work in parallel with WP4, and on the other side, for the definition of the rela-
tionships among the two WPs. Therefore, the concepts underlying the work described in this chapter can
be seen as a bridge between the CONNECT synthesis process and the learning algorithms. Furthermore,
note also that protocol elicitation does make sense for application-layer protocols only. Middleware-layer
protocols have to be part of either the interface or some given knowledge base.

In this chapter, we present the work published in [14], which has been applied to the context of Web
services (WSs). Thus, the work in this chapter considers only WSs as possible NSs. Note that this is
not a limitation since the theoretical core of the approach is general enough to be applied also to other
application contexts. In fact, considering WSs just requires to start from a WSDL description instead of
starting from another type of syntactical signature description, e.g., Microsoft IDL, Java IDL, OMG IDL.
The approach we present, called StrawBerry (Synthesized Tested Refined Automaton of Web service
BEhavior pRotocol), is a method for the automatic discovery of the behavior protocol of a WS. Since for
a published WS, in practice, only its signature syntactical description, i.e., its WSDL, can generally be
assumed to be available, StrawBerry derives from the WSDL, in an automated way, a partial ordering
relation among the invocations of the different WSDL operations, which we represent as an automaton.
This automaton, called Behavior Protocol automaton, models the interaction protocol that a client has
to abide by to correctly interact with the WS. This automaton also explicitly models the data that has to
be passed to the WS operations. More precisely, the states of the behavior protocol automaton are WS
execution states and the transitions, labelled with operation names plus I/O data, model possible operation
invocations from the client of the WS.

The behavior protocol is obtained through synthesis and testing stages. The synthesis stage is driven
by data type analysis, through which we obtain a preliminary dependencies automaton, that can be op-
timized by means of heuristics. Once synthesized, this dependencies automaton is validated through
testing against the WS’s implementation to verify conformance, and finally transformed into the behavior
protocol.

StrawBerry is a black-box and extra-procedural method. It is black-box since it takes into account
only the WSDL of the WS. It is extra-procedural since it focuses on synthesizing a model of the behavior
that is assumed when interacting with the WS from outside, as opposed to intra-procedural methods that
synthesize a model of the implementation logic of the single WS operations [44, 82, 83]. In fact, the
behavior protocol obtained through StrawBerry enables the automated orchestration of WSs.

This chapter is organized as follows. Section 5.1 presents the actual technological scenario in which

CONNECT 231167 55/79

StrawBerry works and discusses the underlying programming assumptions. In Section 5.2, by means
of an explanatory example, we introduce the StrawBerry method. Section 5.3 presents the method
formalization. In Section 5.4, we show an application of StrawBerry to a WS existing on the Web, i.e.,
the Amazon E-Commerce Service. In Section 5.5, we relate StrawBerry to other similar approaches
discussing also differences with work developed in WP4. In Section 5.6, we give some concluding remarks
on the presented approach.

5.1 Setting the Context

A WS is typically constructed over HTTP and it is by default a state-less software entity. That is, no state
internal to the WS exists during a complex interaction with the a client application. This is not the best
solution for many application scenarios, e.g., e-commerce. Some technologies have been proposed to
allow the development of state-full WSs through the implementation of the concept of session. Informally,
a session consists of a set of attributes (set of data with name, type, and value) that characterize an
invoked sequence of WS operations. Typically, a session is realized to be persistent during a complete
WS interaction with the client. Different approaches have been proposed to realize a session: (i) by using
the well-known mechanism of cookies; (ii) by using WS-oriented APIs1, or, at a lower level, by means of
session IDs associated to the header of the SOAP messages; (iii) based on the WS-ReliableMessaging
standard2; or (iv) by ad-hoc programming, that mixes data used for managing the session with business
logic data3.

Each of these approaches has its own advantages and disadvantages. Techniques (i) and (ii) keep
the business logic separated from the logic used to manage the session. However, in order to use these
techniques, the client code must be aware of the session WS capabilities. Technique (iii) also keeps
the business logic separated from the session management logic. Furthermore, session management
is completely transparent to the client since it is demanded to a framework on top of which the WS
is built. However the client application must support the particular implementation of the framework.
Using technique (iv), WSs keep their state-less nature, and a session is implicitly realized by passing the
relative data (i.e., data encoding the WS state) from one operation to another. Therefore, session data
are explicitly added as I/O data of the WS operations. The disadvantage of this technique is that the
data concerning both business and session logic are mixed in the WSDL. However the client application
needs only to rely on the WSDL interface in order to interact with the WS. This promotes WS reuse and
interoperability among different WSs.

It is worthwhile noticing that BPEL (Business Process Execution Language) orchestration (which
means standard WS composition/coordination/mediation) cannot be realized with WSs developed by us-
ing techniques (i), (ii), and (iii). A BPEL connector cannot use such (hidden) techniques to enable a
session management. Since the present standard for WS composition is BPEL and an important num-
ber of relevant WSs, like Amazon, follows technique (iv), this is also the programming assumption for
StrawBerry.

5.2 Method Description

In this section we provide an overview of the StrawBerry method (Section 5.2.1). Then, by means of a
simple explanatory example (Section 5.2.2), we informally introduce its steps (Section 5.2.3).

5.2.1 Overview

StrawBerry takes as input the WSDL of a WS, and returns an automaton modeling its behavior protocol
(client side). Figure 5.1 graphically represents StrawBerry as a process split into five main activities. The
Dependencies Elicitation activity elicits data dependencies between the I/O parameters of the operations
defined in the WSDL. A dependency is recorded whenever the type of the output of an operation matches

1e.g., JAX-WS: http://weblogs.java.net/blog/ramapulavarthi/archive/2006/06/ maintaining ses.html
2WS-ReliableMessaging standard: http://weblogs.java.net/blog/mikeg/ archive/2006/08/wsreliable mess.html
3As it is done, e.g., for the Amazon e-commerce service: http:// webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl.

CONNECT 231167 56/79

with the type of the input of another operation. The match is syntactic. The elicited set of I/O dependen-
cies may be optimized under some heuristics concerning the syntactic characteristics of the WSDL. The
elicited set of I/O dependencies (see the Input/Output Dependencies artifact shown in Figure 5.1) is used
for constructing a data-flow model (see the Saturated Dependencies Automaton Synthesis activity and the
Saturated Dependencies Automaton artifact shown in Figure 5.1) where each node stores data depen-
dencies that concern the output parameters of a specific operation and directed arcs are used to model
syntactic matches between output parameters of an operation and input parameters of another operation.
This model is completed by applying a saturation rule. This rule adds new dependencies that model the
possibility for the client to invoke a WS operation by directly providing its input parameters. The resulting
automaton is then validated against the implementation of the WS through testing (see Dependencies
Automaton Refinement Through Testing activity shown in Figure 5.1).

Figure 5.1: Overview of the StrawBerry method

The testing phase takes as input the SOAP messages produced by the Test-cases generation activity.
The latter, driven by coverage criteria, automatically derives a suite of test cases (i.e., SOAP envelope
messages). For this purpose, we use the WS-TAXI [10] tool that takes as input the WSDL of a WS and
automatically produces the SOAP envelope messages ready for execution. Note that testing is used here
in opposite way with respect to the usual model-based testing (MBT) practice [78]. In fact, in MBT the
automaton is used as an oracle, and testing aims at checking whether the implementation conforms to it.
In StrawBerry instead, the oracle is based on the implementation and testing aims at validating whether
the synthesized automaton is a correct data-flow abstraction of it. Intuitively, we can say that StrawBerry
tests if the model conforms to the implementation. Testing is used to refine the syntactic dependencies
by discovering those that are semantically wrong. By construction, the inferred set of dependencies is
syntactically correct. However, it might not be correct semantically since it may contain false positives. If
during the testing phase an error is found, this means that the automaton must be refined since the set of
I/O dependencies contains false dependencies.

Once the testing phase is successfully terminated, the final automaton models, following a data-flow
paradigm, the set of validated “chains” of data dependencies. StrawBerry terminates by transforming this
data-flow model into a control-flow model (see the Behavior Protocol Synthesis activity in Figure 5.1). This
is another kind of automaton whose nodes are WS execution states and whose transitions, labelled with
operation names plus I/O data, model the possible operation invocations from the client to the WS.

5.2.2 Explanatory example
The explanatory example that we use in this chapter is a WS of an online bookshop that we call WS Lib.
This WS defines, in its WSDL, the following operations:

• Connect: in order to login, a registered user inserts his/her username and password. This operation
returns an empty cart and a userID (to uniquely identify the session). If something wrong occurs (e.g.,

CONNECT 231167 57/79

wrong user or password), an error message is returned; an output parameter of name errmsg is also
included for all the other operations.

Input data Output data
user: string; cart: BookCart;
password: string; userID: string;

errmsg: string;

• Disconnect: it is used by a logged user to log out and close the session.

Input data Output data
userID: string; regularResponse: string;

errmsg: string;

• Search: it is used to search the bookshop catalogue by means of different search criteria, namely, by
authors, ISBN, keywords, and title, and returns a list of books satisfying the search criteria.

Input data Output data
authors: string; bookDetailsList: BookDetailsList;
isbn: string; errmsg: string;
keywords: string;
title: string;

• AddToCart: it adds a book from a list to the cart associated to the user.

Input data Output data
itemId: string; cart: BookCart;
itemList: BookDetailsList; errmsg: string;
cart: BookCart;

• MakeAnOrder: it makes an order of the books contained in the cart. When the order has been made the
cart is emptied.

Input data Output data
cart: BookCart; cart: BookCart;

errmsg: string;

Data that characterize a WS session are: userID (user identifier), cart (the cart associated to the
user), bookDetailsList and itemList (the list of books that match the search criteria).

5.2.3 Stepwise description

By referring to Figure 5.1, we show an overview of how our approach would process the WS Lib WSDL.

Activity 1: Dependencies elicitation.
This activity is split into the following two steps. The first step is mandatory and it is the true dependencies
elicitation step. The second is optional and performs an optimization through some heuristics.

Step 1.1, dependency set elicitation: StrawBerry automatically derives a “flat” version of the WSDL. This
flattening process aims at making the structure of the I/O messages of the WSDL operations explicit with
respect to the element types defined in the XML schema of the WSDL. Starting from the flattened WSDL,
by syntactically matching the type of an output element of an operation with the type of an input element
of another operation, StrawBerry automatically elicits the following set of data dependencies:

CONNECT 231167 58/79

Connect.cart 7→BookCart AddToCart.cart
Connect.cart 7→BookCart MakeAnOrder.cart
Connect.userID 7→string x, for each x∈Istring
Connect.errmsg 7→string x, for each x∈Istring
Disconnect.regularResponse 7→string x, for each x∈Istring
Disconnect.errmsg 7→string x, for each x∈Istring
Search.bookDetailsList 7→BookDetailsList AddToCart.itemList
Search.errmsg 7→string x, for each x∈Istring
AddToCart.cart 7→BookCart AddToCart.cart
AddToCart.cart 7→BookCart MakeAnOrder.cart
AddToCart.errmsg 7→string x, for each x∈Istring
MakeAnOrder.cart 7→BookCart AddToCart.cart
MakeAnOrder.cart 7→BookCart MakeAnOrder.cart

MakeAnOrder.errmsg 7→string x, for each x∈Istring
where: Istring={Connect.user,Connect.password,Search.authors, Search.isbn,Search.keywords,
Search.title,Disconnect.userID, AddToCart.itemId}.

For instance, Search.bookDetailsList 7→BookDetailsList AddToCart.itemList means that, the value
of bookDetailsList, as output of Search, can be set as input parameter itemList of AddToCart.

Given a data dependency, we refer to its left hand-side operation as the source operation, and to
the right hand-side operation as the sink operation. Dependencies are labelled as certain or uncertain.
Initially all derived dependencies are marked as uncertain; as we collect more evidence (which happens
via testing or through application of heuristics), uncertain dependencies are either eliminated or promoted
to certain.
Step 1.2, dependency set optimization: this optimization step can be enabled/disabled by the
StrawBerry user. It aims at identifying those dependencies that can be already removed or considered
as certain, hence preventing waste useless test resources in the fourth activity of our method. This step is
currently based on the following three heuristics (as we accumulate further experience, smarter heuristics
can be introduced).
• Heuristic 1: all dependencies defined on a “complex type” are considered as certain. This heuristic
comes out from the observation that a dependency defined on a complex type is certain with a high
probability due to the specificity of that type. In our approach, as complex type, we consider XML Schema
types defined by means of the complexType and simpleType tags (e.g., sequence, choice, all, restriction
and extension of a base type).
• Heuristic 2: all dependencies defined between data parameters having the same name (and the same
type) are considered as certain. This heuristic comes out from usual programming practice.
• Heuristic 3: all dependencies defined between an output parameter that is interpreted as an error and
an input parameter can be removed. In our example, errmsg is a string. Error outputs should be never
matched since they represent the end of an interaction. Thus, if the StrawBerry’s user has this information
this heuristic can be enabled to prune the set of dependencies.

Coming back to our explanatory example, after the application of Heuristic 1, the following dependen-
cies are considered as certain:

Connect.cart 7→BookCart AddToCart.cart
Connect.cart 7→BookCart MakeAnOrder.cart
Search.bookDetailsList 7→BookDetailsList AddToCart.itemList
AddToCart.cart 7→BookCart AddToCart.cart
AddToCart.cart 7→BookCart MakeAnOrder.cart
MakeAnOrder.cart 7→BookCart AddToCart.cart
MakeAnOrder.cart 7→BookCart MakeAnOrder.cart

Note that in this case it is possible to perform a MakeAnOrder operation after another MakeAnOrder
even though the cart is empty (the same hold for a MakeAnOrder operation after Connect) since the WS
implementation considers this behavior as correct. In another scenario this could be considered as an
error thus preventing the use of Heuristic 1.

Now, if we apply Heuristic 2, another dependency is considered as certain: Connect.userID 7→string

Disconnect.userID. Finally, if we apply Heuristic 3, the following dependencies are removed:

CONNECT 231167 59/79

Connect.errmsg 7→string x, for each x∈Istring
Disconnect.errmsg 7→string x, for each x∈Istring
Search.errmsg 7→string x, for each x∈Istring
AddToCart.errmsg 7→string x, for each x∈Istring
MakeAnOrder.errmsg 7→string x, for each x∈Istring

Activity 2: Saturated dependencies automaton synthesis.
Step 2.1, node generation: once the data dependencies are elicited, StrawBerry synthesizes the depen-
dencies automaton. To do this StrawBerry builds a node for each WSDL operation that has at least one
elicited dependency.

In Figure 5.2, we show the nodes built for WS Lib. A node stores the name of the operation and the
data dependencies defined on its output parameters. In Figure 5.2, certain dependencies are identified
by the tick (X).
Step 2.2, Dependencies automaton synthesis: each arc from a node to another node reflects the data
dependencies stored in the source node. The dependencies automaton for WS Lib is shown in Figure 5.3.
The Env node and the dotted lines represent the node and the arcs added by the saturation phase ex-
plained in the following step.

Figure 5.2: Generated nodes

Step 2.3, Dependencies automaton saturation: for testing purposes we need to take into account also the
possibility for the client to directly provide inputs to the WS operations. Thus, we add a new node, Env.
This node stores uncertain dependencies conforming to the pattern: F 7→T Op.p for each sink operation
Op and for each input parameter p of Op of type T . The symbol F denotes a datum directly provided by
the client. For the sake of presentation, we do not show the content stored into Env. According to the
dependencies stored into Env, the saturation step adds an arc from Env to every other depending node.

Figure 5.3: Saturated dependencies automaton

Activity 3: Test-cases generation.

CONNECT 231167 60/79

As said, the only input to StrawBerry is a WSDL description. From it, StrawBerry derives the black-box
test cases that are used in the testing stage (see next activity). Since the test subject is a WS, a test case
consists of a SOAP envelope message whose input parameters are filled with appropriate data values.
There exist several tools that help to automatically derive such test cases from WSDL, among which
soapUI4. is probably the most popular. StrawBerry adopts the WS-TAXI tool [10] that enhances soapUI
by fully automating test case derivation. Since it is not crucial for the purposes of the work described in
this chapter, we do not provide all the details of the WS-TAXI functioning which can be found in [10]. It is
worth however to clarify how WS-TAXI deals with input parameter values.

Listing 5.1 shows an example of a SOAP envelope message produced by WS-TAXI for testing Search.
This test case aims at performing a book search based on the authors criterion. In Listing 5.1, the authors
parameter is randomly generated, which is the default approach of WS-TAXI for string type when no
value is available. However, randomly generated string, such as KOVjot... below, are not very useful
for testing purposes. To overcome this problem, WS-TAXI can derive more meaningful values from a
populated database, when available.

Listing 5.1: Generated AddToCart SOAP envelope message
xmlns : soapenv=” h t t p : / / schemas . xmlsoap . org / soap / envelope / ”
xmlns : l i b =” h t t p : / / www. example . org / L ib /”>
<soapenv : Header/>
<soapenv : Body xmlns=” h t t p : / / www. example . org / L ib /”>
<SearchRequest>
<authors>KOVjotMZBEfbeynkhtAviBIEs</ authors>

</SearchRequest>
</soapenv : Body>

</soapenv : Envelope>

In our approach, it is both necessary and reasonable to assume that, for some of the WSDL input
parameters, a set of meaningful values, called an instance pool [30], is available. For example, in the
case of Connect, it is necessary to use a correct pair of user and password. Typically, the credentials to
access a WS are provided when making the registration for using it, as done for the Amazon e-commerce
service. Thus, we assume to have an instance pool of valid user/password pairs. Other instance pools
of different nature can be reasonably provided by an application user or a domain expert. For instance,
it is easy to produce a list of books probably contained in Amazon. Wrapping up, if an instance pool is
available for some operations, StrawBerry exploits this useful piece of information feeding the WS-TAXI
database. For the WS Lib example, we provide the instance pool for Connect and Search, as shown in
Table 5.1. Back to Listing 5.1, the authors parameter can be now taken directly from the instance pool in
Table 5.1, thus producing more realistic test cases.

Operation Input Data Operation Input Data
Connect u: Antonella; p: anto Search auth: Jean-Paul Sartre

u: Massimo; p: Max auth: R. Sennett, J. Cobb
u: Paola; p: paolina auth: Noam Chomsky
u: Patrizio; p: P@ auth: J. David Salinger
· · · · · ·

Table 5.1: Instance pools

Activity 4: Dependencies automaton refinement through testing.
The goal of this activity is to validate and possibly refine the dependencies automaton against the WS
implementation. The test cases are selected so to cover all the dependencies; the oracle is provided
by the WS implementation, as explained below. Note that since we start from the saturated automaton
and the objective of the testing is to prune the false dependencies, coverage driven test selection in this
case fulfills completely the purpose, i.e., we are sure we cannot miss any dependency (contrary to the
well-known risk of missing functionalities in code coverage testing).

4eviware soapUI: http://www.soapui.org

CONNECT 231167 61/79

When we invoke the WS, we cannot know in advance what the expected answer will be. However,
we can always assume that for each test invocation, the WS can either return some output values or
answer the request by providing an error message. We refer to the two cases as a regular answer and an
error answer, respectively. The problem we have to face now is that, without analyzing the semantics of
the message response it is not possible to distinguish between responses to malformed requests (e.g., a
wrong cart) and negative responses to well-formed requests (e.g., a search of a book not contained into
the DB). Obviously, it is always possible to define an oracle specific for the considered WS that contains
the semantics of errors as can be inferred from the WS documentation. The advantage of this solution
is a precise oracle while the disadvantage is that it must be built for each WS. For this reason, in this
chapter we propose a partial, but general, oracle that is based on the following observations: (i) whenever
invoking different operations with wrong input data, the error answer message is (almost) always the
same; (ii) error answers are typically short; (iii) regular answers are typically different from each other;
(iv) regular answers are typically long. This partial oracle can be realized by using a statistical approach
to partition WS responses into regular and error answers. In this chapter, we do not discuss the actual
implementation of such a general oracle.

The testing activity is organized into three steps. StrawBerry runs positive tests in the first step and
negative tests in the second step. Positive test cases reproduce the elicited data dependencies and
are used to reject fake dependencies: if a positive test invocation returns an error answer, StrawBerry
concludes that the tested dependency does not exist. Negative test cases are instead used to confirm
uncertain dependencies: StrawBerry provides in input to the sink operation a random test case of the
expected type. If this test invocation returns an error answer, then StrawBerry concludes that the WS was
indeed expecting as input the output produced by the source operation, and it confirms the hypothesized
dependency as certain. If uncertain dependencies remain after the two steps, StrawBerry resolves the
uncertainty by assuming that the hypothesized dependencies do not exist. Intuitively, this is the safest
choice, given that at the previous step the invoked operation accepted a random input. Alternatively, we
could investigate further by launching more test cases and making a statistic inference from the observed
results. An empirical evaluation of the impact of this third step, and a possible improvement of StrawBerry
with a significance test for the uncertain dependencies that reach the third step, is left to future work.
Step 4.1, false dependencies elimination: each uncertain dependency in every node is tested. For ex-
ample, considering the dependency Connect.userID 7→string Search.isbn in Connect, StrawBerry ex-
ecutes a test for it by invoking Search passing as isbn the value of userID obtained as result of Connect
on an instance pool data. It gets an error answer and therefore it removes this dependency. After this
step, all dependencies whose test case produced an error message are eliminated. When deleting the
last dependency that participates in a connection between two nodes, also the arc between these two
nodes must be removed. Nodes that have no incoming and outgoing arc can be removed. For the nodes,
different from Env, that have outgoing arcs and no incoming arc except for loops, StrawBerry adds an
incoming arc from Env and adds the corresponding certain dependencies into Env. Note that Env can still
contain uncertain dependencies.

Focusing on our example, all the dependencies in Env that have MakeAnOrder and Disconnect as sink
operations are removed (as the corresponding arcs). Thus, the survived dependencies into Env are:

F 7→stringAddToCart.itemId,
F 7→stringSearch.p, p∈{authors,isbn,keywords,title},
F 7→stringConnect.p, p∈{user,password}.

Figure 5.4: Dependencies automaton after Step 4.1

All the uncertain dependencies except for the ones stored in Env are removed. Thus, some arcs shown

CONNECT 231167 62/79

in Figure 5.3 are removed leading to the automaton shown in Figure 5.4. A node is validated when it stores
either only certain dependencies or no dependency. After this step, the only non-validated node is Env as
shown in Figure 5.4 where validated nodes are marked with X. Validation in this step is essentially due to
the good functioning of the heuristics.
Step 4.2, true dependencies confirmation: this step performs a first trivial check. Env is marked as vali-
dated and all its dependencies become certain. By considering the automaton shown in Figure 5.4, this
means that we can conclude the testing activity. However, if we had applied StrawBerry without heuristics,
we would have had for instance that Connect.userID 7→string Disconnect.userID (which has been pro-
moted, in Step 4.1, as certain by Heuristic 2) could not be deleted since the test did not fail, and therefore
Connect would have not been validated. In this case, StrawBerry exercises every remaining uncertain
dependency in every node through a negative test. For example, it executes a test for the dependency
Connect.userID 7→string Disconnect.userID. By providing as input to the Disconnect operation a ran-
domly generated input of type String, StrawBerry gets an error answer and therefore it promotes to
certain this dependency. After this step, all dependencies whose negative test case produced an error
answer are confirmed as certain.
Step 4.3, solving remaining uncertain dependencies: dependencies, if any, that remain uncertain after
steps 4.1 and 4.2 refer to cases in which the testing of the sink operation of a dependency did not distin-
guish between the output produced by the source operation or a random input. In such (experimentally
few) remaining cases, StrawBerry resolves the uncertainty by assuming that the hypothesized depen-
dency does not exist.
Activity 5: Behavior protocol synthesis.
This activity takes as input the validated dependencies automaton. For each operation op in the automa-
ton, this activity takes into account the operations that are required to produce the input parameters of op.
For instance, for AddToCart, the validated dependencies where AddToCart is a sink operation are:

F 7→stringAddToCart.itemId,
Connect.cart7→BookCartAddToCart.cart,
AddToCart.cart7→BookCartAddToCart.cart, and
Search.bookDetailsList 7→BookDetailsListAddToCart.itemList.

By looking at these dependencies, this activity elicits that, in order to invoke AddToCart, itemId must
be provided by the client, cart can be set by the output cart of either Connect, AddToCart itself, or
MakeAnOrder, and itemList is set by the output bookDetailList of Search. In Figure 5.5, we graphi-
cally represent the operations that should be invoked before invoking AddToCart (see table TAddToCart)
according to the dependencies validated on its input parameters itemId, itemList, and cart. An analo-
gous process is performed for the other operations hence leading to produce the information graphically
represented in Figure 5.5.

Figure 5.5: Operation invocation dependencies

This information is used to synthesize an automaton that models the behavior protocol of the WS,
i.e., the interaction protocol that a client has to abide by to correctly interact with the WS. In Figure 5.6,
we show this automaton for our explanatory example. This automaton explicitly models also the data
that has to be passed to the WS operations. Each arc label follows the syntax: operation name ‘(’
comma separated inputs ‘)’ ‘:’ comma separated outputs. The synthesis algorithm reflects the val-
idated data dependencies in conjunction with the operation invocation dependencies represented in Fig-
ure 5.5. The algorithm is presented in Section 5.3. For the sake of readability, in Figure 5.6, we omit I/O

CONNECT 231167 63/79

data for some operation and in place of a data parameter name we use its initials.

Figure 5.6: Behavior protocol automaton

In Figure 5.6, the state with the (no-source) incoming arrow and the doubled circled state are the initial
and final states, respectively. Note that, in general, the WSDL of the WS can define operations that are
not taken into account by the validated dependencies automaton since these operations are not involved
in any dependency because they can be always invoked. In order not to complicate a behavior protocol
automaton, this aspect is reflected by implicitly considering that these operations become loop transitions
on every state of the automaton.

5.3 Method Formalization

In this section we formalize the StrawBerry method. This formalization rigorously defines all the method
stages concluding with a detailed presentation of the StrawBerry testing process and of the behavior
protocol automaton synthesis. Furthermore, it represents the specification from which the prototypal
implementation of StrawBerry has been realized. For the sake of simplicity, we omit the formalization of
the three heuristics discussed in Section 5.2.3 since it is straightforward.

Let W be a WSDL interface, we denote with OpW the set of all the operation names of W .
We denote with DW the set of all I/O data dependencies of W obtained by syntactically matching

the type of an output parameter of an operation in OpW with the type of an input parameter of another
operation in OpW. DW can be partitioned into CW and UW that denote the set of all the certain and
uncertain dependencies, respectively. Thus, with either op.p 7→tX op′.p′ or F 7→t′X op′.p′ we denote elements
of CW for some op,op′ ∈ OpW and parameter names p,p′ of type t. Analogously, with either op.p 7→top

′.p′

or F 7→t′op
′.p′ we denote elements of UW . Note that this notation implies that p is the name of an output

parameter of op and p′ is the name of an input parameter of op′.
Hereafter if op.p 7→t op

′.p′ (op.p 7→tX op′.p′), we write that “a dependency exists” for op. We can also
write that op′ “depends on” op. If F 7→t′ op

′.p′ (F 7→t′X op′.p′), we write that op′ “is dependent” on the
environment.

Once the set of I/O dependencies has been built we can construct the Dependencies Automaton as
defined in Def. 17. This definition makes use of the function Node generator defined in Def. 16. The role
of this function is to define the nodes of the automaton that will be built by Def. 17. A special case is
the node Env that is directly added by a saturation rule, see Def. 18. As described in Section 5.2 Node
generator implements the Step 2.1, node generation of the Activity 2. The operations for which a node
must be built are identified by means of the I/O Dependency set DW .

CONNECT 231167 64/79

Definition 16 (Node generator)
Node generator Ngen:OpW−→2DW , is a function that given as input op∈OpW returns the set D∈2DW s.t.
either D is empty or for each dep∈D, a dependency exists for op and there does not exist D′∈2DW s.t. for
each dep′∈D′\D, a dependency exists for op.

At the beginning, all the dependencies stored into a node generated by Node generator are uncertain.
StrawBerry makes use of the previously discussed three heuristics in order to set to certain some depen-
dencies and to remove some others. We recall that by exploiting the Node generator function and the I/O
Dependency set, StrawBerry synthesizes an automaton that models all the chains of data dependencies
that should be taken into account while using the WS. Each arc from a node to another node reflects the
I/O Dependency set, thus we call this automaton the Dependencies automaton.

Definition 17 (Dependencies automaton)
A Dependencies automaton AW=(N ,∆) of a WSDL interface W is an automaton where:
I N={(op1,Ngen(op1)),· · · ,(opv,Ngen(opv))} is the set of nodes s.t. {op1,· · · ,opv} ⊆ OpW and for each
i = 1, · · · , v either a dependency exists for opi or opi depends on some operation;
I ∆ ⊆ N × N is the set of arcs s.t. ∆={(nop′1 ,nop1), · · · ,(nop′j ,nopj)} and for each i = 1,· · · ,j, then
(nop′i ,opi,nopi)∈∆ iff a dependency exists for opi, opi depends on op′i, nopi=(opi,Ngen(opi)), and nop′i =
(op′i,Ngen(op′i)).

As already mentioned in Section 5.2, we need to “saturate” the automaton in order to complete it
with respect to the possibility for the environment to directly provide input parameters. The result of this
saturation step is called the Saturated dependencies automaton.

Definition 18 (Saturated dependencies automaton)
Let AW = (N ,∆) be the Dependencies automaton of a WSDL interface W , the Saturated dependencies
automaton SW of W is the tuple (Nsat,∆sat) where:
I Nsat = N ∪ {nEnv} s.t. nEnv=(Env,D) is the environment node and D={F 7→top.p | op ∈ OpW, p of
type t};
I ∆sat = ∆ ∪ ∆Env, ∆ ∩ ∆Env = ∅, s.t. ∆Env = {(nEnv,nop1),· · · ,(nEnv,nopj)} and for each i = 1,· · · ,j,
then (nEnv,nopi) ∈ ∆Env iff a dependency exists for opi, and nopi = (opi,Ngen(opi)).

Definition 19 (I/O dependencies chain)
Let SW=(Nsat,∆sat) be the saturated dependencies automaton of a WSDL interface W , an I/O de-
pendencies chain of SW is a c∈N∗sat defined in such a way that there exists m>0, n0,· · · ,nm∈Nsat s.t.
n0=(Env,D), c=〈n0n1· · ·nm〉, and (n0, n1)∈∆sat,· · · ,(nm−1, nm)∈∆sat.

Let SW=(Nsat,∆sat) be a saturated dependencies automaton, given a node n∈Nsat, the set of I/O
dependencies chains leading to n (and originating from the node of name Env) is denoted as Ch(n). We
denote the normalization of Ch(n) with Ch(n) and it is defined as the set of traces of Ch(n) without either
loops (i.e., loop transitions) or cycles (i.e., cyclic paths).

Note that Ch(n) is a finite set, whereas Ch(n) can be infinite.
Given (op,Dop)∈Nsat and op 6=Env, with IP (op) we denote the set of instance pools for the operation

of name op. That is IP (op)={(p1:v1,· · · ,pn:vn) s.t. p1,· · · ,pn are input parameters of op and v1,· · · ,vn are
the values of p1,· · · ,pn, respectively}. With SoapEnv we denote the set of all the SOAP messages that
conform to the XML Schema of W . We denote the oracle that we use for testing purposes as a function
Oracle : SoapEnv−→{regular,error}. In the following, we use a function TestW : SoapEnv−→SoapEnv
that represents the execution of a test case (encoded as a SOAP message) on a WS implementing W .
That is, it represents a WS operation invocation (i.e., the operation input message) retrieving another
SOAP message as answer (i.e., the operation output message). We also use a function Resp2Reqs :
SoapEnv×OpW×OpW−→SoapEnv∗ that takes as input the response of the invocation of op∈OpW and
returns a tuple of requests for op′∈OpW that depends on op. Thus, each of these requests is built by taking
into account the dependencies stored in the node of op. Listing 5.2 is an operational description of the
testing procedure that StrawBerry performs to produce the validated dependency automaton out of the
saturated one. Note that this description is not the optimal algorithm with respect to computational load.
However optimality is not the focus here. This procedure exploits the Oracle, TestW , and Resp2Reqs

CONNECT 231167 65/79

functions. The validated dependency automaton, as synthesized by our testing procedure, is defined
by Def. 20. In Listing 5.2, given an operation op∈OpW, we denote the node of op in Nsat as node(op).
Furthermore, we denote a SOAP envelope message as either soap or soapi for some i.

Listing 5.2: StrawBerry testing procedure
(N ,∆) being the Saturated dependencies automaton of a WSDL i n t e r f a c e W , perform

the f o l l o w i n g steps :
Inizialization: mark every dependency i n SW as nonVis i ted ;

create an empty stack c a l l e d Stack ;
Step 1: while ∃ v=(op ,Dop)∈N t h a t s to res a nonVis i ted uncer ta in dependency do

while ∃ ch=〈op1· · ·opnopn+1〉∈Ch(op) (op=opn+1) s . t . node(op1)· · ·node(opn−1) s to re only
c e r t a i n dependencies and ∃ i n node(opn) a nonVis i ted dependency , opn+1

depends on , do
i f IP (op1) 6=∅ then produce soap1 from IP (op1) ;

else produce soap1 randomly f o r op1 ;
push Resp2Reqs(TestW (soap1) ,op1 ,op2) i n t o Stack ;
set i to 2 ;
while i<n+ 1 do

foreach soap popped out from Stack do
push Resp2Reqs(TestW (soap) ,opi ,opi+1) i n t o Stack ;

set i to i+ 1 ;
foreach soap popped out from Stack do

i f Oracle(TestW (soap))=error then remove from node(opn) a l l dependencies opn+1

depends on w. r . t . a l l the output parameters p of opn t h a t are invo lved
i n soap

else mark as v i s i t e d these dependencies ;
i f node(opn) s to res no dependency opn+1 depends on then remove (opn ,op) from ∆

Step 2: i f ∃ v=(op ,Dop)∈N , op6=Env and v has no incoming arc then add (sEnv ,v) to
∆ , sEnv=(Env ,DEnv) , and add the corresponding c e r t a i n dependencies to
DEnv ;

foreach v=(op ,Dop)∈N t h a t s to res an uncer ta in dependency do
foreach op′ t h a t depends on op w. r . t . an uncer ta in dependency do

produce soap randomly f o r op′ ;
i f Oracle(TestW (soap))=error then mark as c e r t a i n a l l dependencies i n

node(op) , op′ depends on ;
Step 3: foreach v=(op ,Dop)∈N s . t . op 6= Env do

remove a l l the uncer ta in dependencies from Dop ;
i f Dop=∅ and v has no incoming arc then remove v .

Definition 20 (Validated dependency automaton)
The Validated dependency automaton VW of a WSDL interfaceW is the pair (N ,∆) that holds the following
properties:
• ∀n∈N : ∃op∈OpW: n=(op,Dop) and either Dop contains only certain dependencies or it is empty;
• ∀n∈N : Ch(n) 6=∅;
• ∀d∈∆: ∃op,op′∈OpW: d=((op,Dop), (op′,Dop′)) ∧ op.p 7→tX op′.p′∈Dop.

From the Validated dependency automaton, the transformations specified in Def. 22 produce a Behav-
ior protocol automaton. Let VW=(N ,∆) be the Validated dependency automaton of a WSDL interface W ,
with ioDS(VW) we denote the I/O dependency set of VW and with Op(VW) the set of operation names for
VW . ioDS(VW) corresponds to the set of I/O dependencies stored in the nodes of VW . Note that they are
all certain dependencies. Op(VW) corresponds to the set of operation labels stored in the nodes of VW ,
including Env. Starting from VW StrawBerry produces a table Top for each op ∈ Op(VW) different from
Env. Top={(o1,· · · ,on)∈Op(VW)n s.t. n is the number of input parameters of op and for each parameter p
of op, an operation oi exists s.t. oi.p′ 7→tX op.p ∈ ioDS(VW)}.

CONNECT 231167 66/79

By taking into account each Top, StrawBerry produces a set Υ of sets of operations for which no
mutual dependency exists. Each set of operations in Υ corresponds to a connected component in the
behavior protocol automaton to be synthesized.

For example, {op,op′}∈Υ means that neither op.p 7→∗tX op′.p′ nor op′.p′ 7→∗tX op.p hold for any p, p′, and we
say that op and op′ are independent. Thus four states, s1,s2,s3, and s4, and four transitions, (s1,op,s2),
(s2,op′,s4), (s1,op′,s3), and (s3,op,s4), are produced in the behavior protocol automaton. In general, if

op1, · · · , opn (n > 1) are independent, then n+ (
n−1∑
i=1

n!
i!

) + 2 states are generated and sequences of tran-

sitions labelled with op1, · · · , opn are produced among these states in order to build all the linearizations
modeling the interleaving of op1, · · · , opn. If {op}∈Υ, the produced connected component is represented
by the transition (s1, op, s2) and the states s1 and s2. Note that each of these connected components has
a source state and a sink state. For the sake of presentation, in Def. 22 we use a function, CCB (Con-
nected Component Builder), that takes as input VW and produces the set {k1,· · · ,kh} of above discussed
connected components. We denote with ksourcei and with ksinki the source state and the sink state of ki,
respectively. Def. 22 uses the definition of trace for a behavior protocol automaton (see Def. 21).

Definition 21 (Trace)
Let IW=(S,F ,s0,A,∆) be a behavior protocol automaton, a trace of IW is a t∈A∗ defined in such a way
that there exist n>0, s0,· · · ,sn∈S such that t=〈o1o2· · · on〉 and (s0, o1, s1)∈∆,· · · ,(sn−1, on, sn)∈∆.

Let IW=(S,F ,s0,A,∆) be a behavior protocol automaton, given a state s∈S, the set of traces leading
to s (and originating from s0) is denoted as Tr(s).

Definition 22 (Behavior protocol automaton)
Let VW = (N ,∆) be the Validated dependencies automaton of a WSDL interface W , the Behavior protocol
automaton of W is the tuple (S,F ,s0,A,∆′) where:
I S= {s|s is a state of a connected component k∈CCB(VW)}.
I F= {s1F ,· · · ,smF } where each siF is the sink state of a connected component built from operations that
are not source operations of any dependency.
I s0= ksource where k∈CCB(VW) is built from only Env.
I A={op(p1,· · · ,pm):o1,· · · ,ok s.t. op∈ OpW, o1,· · · ,ok are output parameters of op and p1,· · · ,pm are input
parameters of op}.
I ∆′⊆S×A×S, ∆′=∆cc∪∆′′∪∆loop, and ∆cc∩∆′′∩∆loop=∅, where:
H ∆cc is the union set of the sets of transitions of each connected component k∈CCB(VW).
H ∆′′={(s,l,s′) | there exist op∈Op(VW) and k∈CCB(VW) such that: s′=ksink and k contains a transition
labelled with op; and for each tr=〈op1· · · opn〉∈Tr(s) and each (o1,· · · ,om)∈Top s.t. oi contained in tr, then
l=op(p1,· · · ,pm):out1,· · · ,outk where out1,· · · ,outk are output parameters of op, for each i=1,· · · ,m then pi
is an output parameter of oi, and oi.pi 7→tX op.p ∈ ioDS(VW) for some p that is input parameter of op}.
H ∆loop={(s,l,s) | for all s∈S, op∈OpW\Op(VW), l=op(p1,· · · ,pm):o1,· · · ,ok where o1,· · · ,ok are output
parameters of op and p1,· · · ,pm are input parameters of op}.

5.4 The Amazon E-Commerce Service Case Study

In this section, we show the results of the application of StrawBerry to an existing WS, that is the Amazon
E-Commerce Service (AECS). AECS is part of the Amazon Associates WS suite5. The aim of this section
is to show the applicability of StrawBerry to a complex WS that is well-known and widely used by practi-
tioners. Moreover, AECS is well-documented. Thus it allowed us to validate that the concepts underlying
StrawBerry and the choices we made to realize them are reasonable in practice.

We focus on discussing the collected results rather than on detailing the execution steps of StrawBerry
to AECS. This would be impractical due to the size of AECS in terms of I/O data dependencies. Starting
from the AECS WSDL6, StrawBerry performs the steps described in Section 5.2.3 producing the results
discussed below.

5Amazon Associates: http://aws.amazon.com/associates/
6AECS WSDL: http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

CONNECT 231167 67/79

Operation certain uncertain uncertain uncertain
after 1.2 after 1.2 after 4.1 after 4.2

Help 2 2358 0 0
ItemSearch 44 2838 18 0
ItemLookup 44 2838 14 0
BrowseNodeLookup 2 1572 0 0
ListSearch 46 11222 8 0
ListLookup 46 11222 4 0
CustomerContentSearch 46 15676 4 0
CustomerContentLookup 46 15676 8 0
SimilarityLookup 44 2838 12 0
SellerLookup 2 5502 10 0
CartGet 2 4978 32 0
CartAdd 2 4978 24 0
CartCreate 2 4978 16 0
CartModify 2 4978 32 0
CartClear 2 4978 16 0
TransactionLookup 2 5502 6 0
SellerListingSearch 2 8908 10 0
SellerListingLookup 2 8908 12 0
TagLookup 46 11222 38 0
VehicleSearch 2 1310 20 0
VehiclePartSearch 46 3886 4 0
VehiclePartLookup 46 3886 4 0
MultiOperation 90 35020 75 0

Total: 568 175274 367 0

Table 5.2: Summary of the AECS case study results

Step 1.1: StrawBerry discovers that AECS exports 23 operations and elicits 187894 dependencies. Ta-
ble 5.2 summarizes the discovered data; the operations are listed as they appear in the WSDL of AECS.
Step 1.2: heuristics 1 and 2 allow StrawBerry to promote 568 dependencies as certain (40 and 528,
respectively). The AECS reference guide allows us to enable heuristic 3 since it reports that all the
operation parameters of type Errors are used to encode error answers. Thus, Heuristic 3 removes 12052
dependencies. In Table 5.2 we show how the 568 discovered certain dependencies are distributed among
the AECS operations. At the end of this step, there remain 175274 uncertain dependencies.
Step 2.1: StrawBerry generates 23 nodes, one for each operation, and each of them stores a number of
certain and uncertain dependencies as reported by the first three columns of Tab. 5.2.
Step 2.2: StrawBerry generates a dependency automaton that has 23 nodes and 529 arcs. The size of
this automaton prevents us to graphically show it. However, in Figure 5.7, we show an excerpt from the
behavior protocol automaton constructed by StrawBerry at the end of the process.
Step 2.3: the previous automaton is saturated by adding the Env node and 23 arcs, each of them from
Env to another node. Env stores 350 uncertain dependencies.

Figure 5.7: An excerpt from the behavior protocol of AECS

Activity 3: we build an instance pool in order to generate, by means of StrawBerry, the SOAP envelope
messages for testing AECS. We need to provide SOAP test messages with a pair of unique identifiers that
are required, for security purposes, by each operation. These identifiers are provided by Amazon after the
Amazon Associate registration process. Furthermore, we can add instance pools related to meaningful

CONNECT 231167 68/79

Amazon items, e.g., some author names as shown in Tab. 5.1.
Step 4.1: the previously generated test cases are used by StrawBerry to prune the set of 175274 uncer-
tain dependencies obtained after Step 1.2. After Step 4.1, in which we test each of them, only 367 uncer-
tain dependencies survive, distributed among the operations as shown in the fourth column of Tab. 5.2.
Note that, already after Step 4.1, we can have some operations (Help and BrowseNodeLookup) for which
no uncertain dependency survives.
Step 4.2: the surviving 367 dependencies are confirmed as certain by the tests in Step 4.2 and hence
there is no uncertain dependency to be solved in Step 4.3. Thus, StrawBerry directly performs Activity 5.
Activity 5: starting from the validated dependency automaton, as obtained after the execution of Step 4.2,
StrawBerry synthesizes the behavior protocol automaton of AECS. The validated dependency automaton
has 24 nodes and 288 arcs. In Figure 5.7, we show an excerpt concerning all the “item search” and
“cart management” operations of AECS. For the sake of readability we omit the data parameters in the
operation labels. Furthermore, for each state there are other incoming and outgoing transitions from and
to states that do not appear in the figure. By looking at Figure 5.7 one could think that one specific state
is corresponding to one specific operation; however as already seen in Figure 5.6, this does not hold in
general.

We performed some ad hoc validation of the synthesized automaton. We checked that all the results
described above and the synthesized protocol match with what is described in the AECS API reference7.
Moreover we further validated the synthesized behavior protocol of AECS through a Web client provided
by Amazon8. Thus, we empirically verified that StrawBerry produces a realistic model for AECS.

Besides showing the effectiveness of StrawBerry, this case study highlights that, even when the nec-
essary information is available, the hand-made provisioning of the behavior protocol is a difficult and error
prone task.

5.5 Related Work

Several authors have recently addressed the problem of deriving a behavioral model from an implemented
system. We discuss here some of these works, including work in WP4 in the domain of state machine
learning algorithms, with respect to the StrawBerry method.

In [44], the authors describe a technique, called GK-Tail, to automatically generate behavioral models
from (object-oriented) system execution traces. GK-Tail assumes that execution traces are obtained by
monitoring the system through message logging frameworks. For each system method, an Extended
Finite State Machine (EFSM) is generated. It models the interaction between the components forming
the system in terms of sequences of method invocations and data constraints on these invocations. The
correctness of these data constraints depends on the completeness of the set of monitored traces with
respect to all the possible system executions that might be infinite. Furthermore, since the set of monitored
traces represents only positive samples of the system execution, their approach cannot guarantee the
complete correctness of the inferred data constraints. Instead the set of data dependencies, inferred by
StrawBerry, concerns both positive and negative samples and it is syntactically correct by construction.
However, it might not be correct semantically since it may contain false positives. These false positives
are detected by the testing phase. Furthermore, dealing with black-box WSs, we cannot assume to take
as input a set of interaction traces. Finally note that StrawBerry is an extra-procedural method, whereas
GK-Tail is intra-procedural. In fact we synthesize a model of the possible interactions between the WS
and its environment, whereas they synthesize an intra-system interaction model.

The work described in [30] (i.e., the SPY approach) aims to infer a formal specification of stateful
black-box components that behave as data abstractions (Java classes that behave as data containers)
by observing their run-time behavior. SPY proceeds in two main stages: first, SPY infers a partial model
of the considered Java class; this partial model is generalized to deal with data values beyond the ones
specified by the given instance pools. The model generalization is based on two assumptions: (i) the
value of method parameters does not impact the implementation logic of the methods of a class; (ii) the
behavior observed during the partial model inference process enjoys the so called “continuity property”

7AECS API reference: http://awsdocs.s3.amazonaws.com/ECS/latest/aaws-dg.pdf
8http://www.awszone.com/scratchpads/index.aws

CONNECT 231167 69/79

(i.e., a class instance has a kind of “uniform” behavior). In our context, we cannot rely on the previously
mentioned assumptions.

The approach described in [83], and implemented by Jadet, analyzes Java code to infer sequences of
method calls. These sequences are then used to produce object usage patterns that serve to detect object
usage violations in the code. Differently from StrawBerry, Jadet is a white-box method. Furthermore, as
it is for the work described in [44], Jadet focuses on modeling objects from the point of view of single
methods that is a goal different from ours.

The work described in [82] (i.e., OP-Miner) is very similar to Jadet. Differently from our work, it is
a white-box approach. Java code is analyzed to infer the sequence of operations an object variable
goes through before being used as a parameter. In general, this is slightly similar to what StrawBerry
synthesizes but, in practice, analogously to what Jadet does, this is done by looking at each single method.
In this sense the analysis performed by OP-Miner (and Jadet) is intra-procedural, whereas our approach
is extra-procedural.

Work in WP4 is about automated approaches for inferring state machines by observing the output that
the system produces when stimulated with selected inputs [13]. The main difference between StrawBerry
and the work in WP4 is that we have the opposite problem of relaxing, through testing, some data de-
pendencies between the system operations (when its existence is not certain) rather than adding new
dependencies, as it is done in the work in WP4. Furthermore, the work in WP4 allows for the inference
of more detailed behavioral models that contain both intra- and extra-procedural information, whereas
StrawBerry concerns the synthesis of behavior protocol with only extra-procedural information.

The authors of [49] describe a learning-based black-box testing approach in which the problem of
testing functional correctness is reduced to a constraint solving problem. A general method to solve this
problem is presented and it is based on function approximation. Functional correctness is modeled by pre-
and post-conditions that are first-order predicate formulas. A successful black-box test is an execution of
the program on a set of input values satisfying the pre-condition, which terminates by retrieving a set of
output values violating the post-condition. Black-box functional testing is the search for successful tests
w.r.t. the program pre- and post-conditions. As coverage criterion, the authors formulate a convergence
criterion on function approximation. Their testing process is an iterative process. At a generic testing
step, if a successful test has to be still found, the approach described in [49] exploits the input and output
assignments obtained by the previous test cases in order to build an approximation of the system under
testing and try to infer a valid input assignments that can lead the system to produce an output either
violating the post-condition or useful to further refine the system approximated model. The testing phase
of our approach shares some ideas with the approach described in [49]. That is, through black-box testing,
we refine an approximated data-flow model in order to prune fake I/O dependencies. However, we do not
use function approximation theory and our coverage criterion is established by looking at the inferred I/O
dependencies.

5.6 Summary

In this chapter we have presented the StrawBerry method. It takes as input a WSDL description, matches
by type the input and output parameters of its operations, applies some graph synthesis and heuristics,
and going through a testing phase, eventually synthesizes what we have called the Behavior Protocol
automaton.

StrawBerry fulfills an important exigency in CONNECT, that is to get more semantic information for a
networked system (e.g., a WS), where the current practice is to publish only its signature. A behavioral
model is required for the CONNECTor synthesis process to both understand how a networked system
should be used, and to properly synthesize a mediator in order to achieve interoperability among het-
erogeneous networked systems. As already discussed at the beginning of this chapter, this exigency
should be addressed by the work specific to work package WP4. However, due to the differences of the
StrawBerry approach with respect to the WP4’s work, we preferred to keep the work described in this
chapter separate from the work of WP4.

The method that we propose is practical and realistic in that it only assumes: (i) the availability of the
WSDL; and (ii) the possibility to derive a partial oracle that can distinguish between regular and error
answers. This oracle is needed in the testing stage to confirm or reject uncertain dependencies. For the

CONNECT 231167 70/79

work described in this chapter, we have taken assumption (ii) in strict sense, in that we have assumed the
existence of this oracle, i.e., that the available WS information allows a tester to recognize when a test
outcome is an error message. In future work, we intend to investigate if and how assumption (ii) could be
relaxed, and, where such a partial oracle does not exist, the deterministic testing steps could be replaced
by a statistical testing session.

We have started to show, through its application to the the Amazon WS, that the method is viable,
and that it nicely converges to a realistic automaton. We obviously need to carry out more empirical
investigation to convey such preliminary evidences into a real quantitative assessment of the method.
However, the case study convinced us that the combination of heuristics and basic testing can work quite
effectively. In particular, the introduction of heuristics for optimization seems interesting and we believe
that it is the first direction to push further to reduce the testing effort in the subsequent steps.

CONNECT 231167 71/79

6 Conclusion and Future Work
Given the interaction protocols of networked systems, one of the core challenges of CONNECT is to

automatically synthesize protocol mediators, at both the application and middleware layer, in order to
achieve interoperability among networked systems. We recall that the role of work package WP3 is to
devise automated and compositional approaches to CONNECTor synthesis, which can be performed at
run-time.

In this deliverable we have presented a formal theory sustaining the automated synthesis of application-
and middleware-layer protocol mediators. We have formalized the concept of mediating connector (also
refered to as mediator or CONNECTor) between application-layer protocols by rigorously defining two es-
sential relationships: protocol matching and mapping. The former allows one to establish whether a
mediator letting two mismatching protocols interoperate exists. The latter is essentially the algorithm that
should be performed to synthesize the required mediator, when it exists.

In order to also support middleware-layer mediation, we have analyzed the different dimensions of
protocol heterogeneity at the middleware-layer and we have exploited this analysis to formalize the various
solutions to middleware interoperability existing in the literature. This formalization further allows us to
characterize to which extent the synthesis method defined for application-layer mediators can be applied
to middleware-layer mediation, hence hinting on the adjustments to be applied to the devised theory.

Since our work on automated mediation is based on the assumption that a model of the interaction
protocol for a networked systems is dynamically discovered, we have finally presented an approach, based
on data-flow analysis and testing, to the automated elicitation of application-layer protocols from software
implementations. This work allowed us to reason about the requirements that should be satisfied, in favor
of the synthesis method, by the work conducted within work package WP4 [3].

As future work, we intend to rigorously evaluate the theory underlying application-layer mediator syn-
thesis with respect to the classification of possible mismatches informally discussed in Section 3.5. To
this end, we plan to formalize a correctness proof of the theory with respect to the devised mismatches. A
limit of the current approach is that we do not address data mismatches. We also plan to investigate and
extend our approach in this direction.

The theory devised so far is able to deal with peer-to-peer protocols only. We will adjust it in order
to deal with other architectural styles, such as client-server systems. The experiments conducted so far
have shown that, for this purpose, we will need to define a notion of behavioral equivalence, which is
dependent on the protocol role, e.g., based on bisimulation for peer-to-peer protocols, or on simulation for
client-server protocols. In this direction, experimentation of the theory with systems conforming to different
architectural styles will be crucial. This also necessitates extending the theory to deal with middleware-
layer interoperability.

We found some differences between the model of interaction protocols as learned by the approach
devised within work package WP4 and the model expected by the current mediator synthesis method.
However, these differences do not seem to be severe. This suggests us that a suitable model transforma-
tion can be easily defined. As future work, we will work in conjunction with work package WP4 either to
solve these differences or to define the needed transformation.

Furthermore, we intend to revise and enhance the current theory of mediating connectors in order
to take into account two relevant characteristics for CONNECT: (i) Quality-of-Service dimensions of the
interaction that have been not considered yet. This aspect is particularly crucial for middleware-layer
mediation. (ii) Compositionality of the mediator synthesis method. This aspect increases the efficiency of
the synthesis process hence allowing its execution at run-time.

Concerning the protocol elicitation approach described in Chapter 5, as future work, we intend to
investigate if and how the oracle assumption could be relaxed.

Finally, for all the approaches described in this deliverable, we obviously need to carry out more em-
pirical investigation to convert the achieved preliminary results into a real quantitative assessment of the
various methods.

CONNECT 231167 73/79

Bibliography
[1] CONNECT consortium. CONNECT Annex I: Description of Work. FET IP CONNECT EU project,

FP7 grant agreement number 231167, http://connect-forever.eu/.

[2] CONNECT consortium. CONNECT Deliverable D1.1: Initial CONNECT architecture. FET IP CON-
NECT EU project, FP7 grant agreement number 231167, http://connect-forever.eu/.

[3] CONNECT consortium. CONNECT Deliverable D4.1: Establishing basis for learning algorithms. FET
IP CONNECT EU project, FP7 grant agreement number 231167, http://connect-forever.eu/.

[4] Jabber Software Foundation, http://www.jabber.org/.

[5] Windows Live Messenger, http://www.messenger.it/.

[6] WSDL: Web Services Description Languages v1.1 spec. http://www.w3.org/tr/2001/note-wsdl-
20010315.

[7] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans. Softw. Eng.
Methodol., 6(3):213–249, 1997.

[8] M. V. S. Andrew S. Tanenbaum. Distributed systems : principles and paradigms. Upper Saddle
RIiver, NJ : Pearson Prentice Hall, 2007.

[9] K. Arnold. The jini architecture: Dynamic services in a flexible network. In DAC, pages 157–162,
1999.

[10] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. WS-TAXI: a WSDL-based testing tool for Web
Services. In ICST 2009, Denver, Colorado - USA. IEEE, 2009.

[11] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime. UPPAAL-Tiga: Time for
Playing Games! In CAV 2007, 2007.

[12] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Developing adapters for
web services integration. In proceedings of the International Conference on Advanced Information
Systems Engineering (CAiSE), Porto, Portugal, pages 415–429. Springer Verlag, 2005.

[13] T. Berg, B. Jonsson, and H. Raffelt. Regular Inference for State Machines Using Domains with
Equality Tests. In FASE 2008, Budapest, Hungary, pages 317–331, 2008.

[14] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic Synthesis of Behavior Protocols for
Composable Web-Services. In ESEC/FSE09, 2009.

[15] P. Bidinger, A. Schmitt, and J.-B. Stefani. An abstract machine for the kell calculus. In FMOODS,
pages 31–46, 2005.

[16] P. Bidinger and J.-B. Stefani. The kell calculus: Operational semantics and type system. In FMOODS,
pages 109–123, 2003.

[17] A. Brogi and R. Popescu. Automated generation of BPEL adapters. In ICSOC 2006, Chicago, USA,
2006.

[18] Y.-D. Bromberg. Solutions to middleware heterogeneity in open networked environment. PhD thesis,
Université de Versailles Saint-Quentin-en-Yvelynes, 2006.

[19] Y.-D. Bromberg and V. Issarny. Indiss: Interoperable discovery system for networked services. In
Middleware, pages 164–183, 2005.

[20] Y.-D. Bromberg and V. Issarny. Formalizing middleware interoperability: From design time to runtime
solutions. Technical report, Rocquencourt, France, 2008.

CONNECT 231167 75/79

[21] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi. Automatic Service Composi-
tion and Synthesis: the Roman Model. IEEE Data Eng. Bull., 31(3):18–22, 2008.

[22] C. Canala, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Software Composition.
In FMOODS 2006, 2006.

[23] E. Cimpian and A. Mocan. Wsmx process mediation based on choreographies. In C. Bussler and
A. Haller, editors, Business Process Management Workshops, volume 3812, pages 130–143, 2005.

[24] G. Denaro, M. Pezzè, and D. Tosi. Ensuring interoperable service-oriented systems through engi-
neered self-healing. In Proceedings of ESEC/FSE 2009. ACM Press, 2009.

[25] W. Emmerich. Software engineering and middleware: a roadmap. In ICSE - Future of SE Track,
pages 117–129, 2000.

[26] D. Fensel and C. Bussler. The web service modeling framework wsm. Journal of Electronic Com-
merce Research and Application, 1(1):113–137, 2002.

[27] C. A. Flores-Cortés, G. S. Blair, and P. Grace. An adaptive middleware to overcome service discovery
heterogeneity in mobile ad hoc environments. IEEE Distributed Systems Online, 8(7), 2007.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Resusable Object-
Oriented Software. Addison-Wesley Professional, 1995.

[29] D. Garlan. Formal modeling and analysis of software architecture: Components, connectors, and
events. In SFM, volume 26, pages 1–24. Springer, 2003.

[30] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing Intentional Behavior Models by Graph Transfor-
mation. In ICSE 2009, Vancouver, Canada, 2009.

[31] P. Grace, G. S. Blair, and S. Samuel. Remmoc: A reflective middleware to support mobile client
interoperability. In CoopIS/DOA/ODBASE, pages 1170–1187, 2003.

[32] E. Guttman. Service location protocol: Automatic discovery of ip network services. IEEE Internet
Computing, 3(4):71–80, 1999.

[33] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[34] P. Inverardi and M. Nesi. Deciding Observational Congruence of Finite-State CCS expressions by
Rewriting. Theor. Comput. Sci., 139(1-2):315–354, 1995.

[35] P. Inverardi and M. Tivoli. Deadlock-free software architectures for COM/DCOM Applications. Elsevier
Journal of Systems and Software, 2003.

[36] P. Inverardi and M. Tivoli. Software Architecture for Correct Components Assembly. In Springer,
LNCS 2804, 2004.

[37] M. Jeronimo and J. Weast. UPnP Design by Example :A Software Designer’s Guide to Universal
Plug and Play. Intel Press, 2003.

[38] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The state of the art. In Y. Kalfoglou, M. Schor-
lemmer, A. Sheth, S. Staab, and M. Uschold, editors, Semantic Interoperability and Integration, num-
ber 04391 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. (IBFI), Schloss Dagstuhl,
Germany.

[39] R. M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384, 1976.

[40] A. Kucera and O. Strazovský. On the Controller Synthesis for Finite-State Markov Decision Pro-
cesses. In FSTTCS 2005, pages 541–552, 2005.

[41] S. S. Lam. Correction to ”protocol conversion”. IEEE Trans. Software Eng., 14(9):1376, 1988.

CONNECT 231167 76/79

[42] X. Li, Y. Fan, J. Wang, L. Wang, and F. Jiang. A pattern-based approach to development of service
mediators for protocol mediation. In proceedings of WICSA ’08, pages 137–146. IEEE Computer
Society, 2008.

[43] N. Limam, J. Ziembicki, R. Ahmed, Y. Iraqi, T. Li, R. Boutaba, and F. Cuervo. Osda: Open service
discovery architecture for efficient cross-domain service provisioning. Computer Communications,
30(3):546–563, 2007.

[44] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic Generation of Software Behavioral Models. In
ICSE 2008, pages 501–510, NY, USA, 2008. ACM.

[45] J. Magee and J. Kramer. Concurrency : State models and Java programs. Hoboken (N.J.) : Wiley,
2006.

[46] A. Marconi, M. Pistore, and P. Traverso. Automated Composition of Web Services: the ASTRO
Approach. IEEE Data Eng. Bull., 31(3):23–26, 2008.

[47] M.Autili, P.Inverardi, A.Navarra, and M.Tivoli. SYNTHESIS: a tool for automatically assembling cor-
rect and distributed component-based systems. In ICSE 2007, 2007.

[48] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In ICSE,
pages 178–187, 2000.

[49] K. Meinke. Automated Black-box Testing of Functional Correctness using Function Approximation.
SIGSOFT Softw. Eng. Notes, 29(4):143–153, 2004.

[50] T. Melliti, P. Poizat, and S. B. Mokhtar. Distributed Behavioural Adaptation for the Automatic Compo-
sition of Semantic Services. In FASE 2008, LNCS 4961, Springer.

[51] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[52] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univ. Press, 1999.

[53] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Inf. Comput., 100(1):41–77,
1992.

[54] S. B. Mokhtar, N. Georgantas, and V. Issarny. COCOA: COnversation-based Service Composition
in PervAsive Computing Environments with QoS Support. Journal of System and Software, 80(12),
2007.

[55] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-automated
adaptation of service interactions. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 993–1002, New York, NY, USA, 2007. ACM.

[56] M.Tivoli and P.Inverardi. Failure-free coordinators synthesis for component-based architectures. Sci-
ence of Computer Programming, 71(3):181.

[57] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol., 15(3):279–328, 2006.

[58] J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran. A bridging framework for universal
interoperability in pervasive systems. In ICDCS, page 3, 2006.

[59] N. F. Noy. Semantic integration: a survey of ontology-based approaches. SIGMOD Rec., 33(4):65–
70, 2004.

[60] J. Pathak, S. Basu, R. R. Lutz, and V. Honavar. MOSCOE: an Approach for Composing Web Services
through Iterative Reformulation of Functional Specifications. Int. Journal on Artificial Intelligence
Tools, 17(1):109–138, 2008.

CONNECT 231167 77/79

[61] P.-G. Raverdy, V. Issarny, R. Chibout, and A. de La Chapelle. A multi-protocol approach to service
discovery and access in pervasive environments. In Proc. of MobiQuitous’06, pages 1–9. IEEE
Computer Society, 2006.

[62] M. Román, R. H. Campbell, and F. Kon. Reflective middleware: From your desk to your hand. IEEE
Distributed Systems Online, 2(5), 2001.

[63] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1997.

[64] G. Salaün. Generation of Service Wrapper Protocols from Choreography Specifications. In SEFM
2008, page 313.

[65] A. Schmitt and J.-B. Stefani. The kell calculus: A family of higher-order distributed process calculi. In
Global Computing, pages 146–178, 2004.

[66] M. Shaw. Procedure calls are the assembly language of software interconnection: Connectors de-
serve first-class status. Technical report, Pittsburgh, PA, USA, 1994.

[67] R. Spalazzese, P. Inverardi, and V. Issarny. A Theory of Mediators for the Ubiquitous Networking
Environment - Technical Report TRCS 006/2009 Dipartimento di Informatica, University of L’Aquila,
September 2009.

[68] R. Spalazzese, P. Inverardi, and V. Issarny. Towards a formalization of mediating connectors for
on the fly interoperability. In Proceedings of the Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture (WICSA/ECSA 2009), pages 345–
348, 2009.

[69] B. Spitznagel and D. Garlan. A compositional formalization of connector wrappers. In ICSE, pages
374–384, 2003.

[70] J.-B. Stefani. A calculus of kells. Electr. Notes Theor. Comput. Sci., 85(1), 2003.

[71] M. Stollberg, E. Cimpian, and D. Fensel. Mediating capabilities with deltarelations. In In Proceedings
of the First International Workshop on Mediation in Semantic Web Services, co-located with the Third
International Conference on Service Oriented Computing (ICSOC 2005, 2005.

[72] M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A semantic web mediation architecture. In
In Proceedings of the 1st Canadian Semantic Web Working Symposium (CSWWS 2006. Springer,
2006.

[73] J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a Theory of Web Service Choreographies. In WS-
FM’07, LNCS 4937, page 1.

[74] D. Taubner. Finite representations of ccs and tcsp programs by automata and petri nets. LNCS 369,
1989.

[75] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture : foundations, theory, and
practice. Hoboken (N.J.) : Wiley, 2009.

[76] M. Tivoli, P. Fradet, A. Girault, and G. Goessler. Adaptor synthesis for real-time components. In
TACAS 2007, LNCS 4424, Springer-Verlang Berlin Heidelberg, page 185.

[77] M. Tivoli and P. Inverardi. Failure-free coordinators synthesis for component-based architectures.
Sci. Comput. Program., 71(3):181–212, 2008.

[78] M. Utting and B. Legeard. Practical Model-Based Testing - A Tools Approach. Morgan and Kaufmann,
2006.

[79] R. Vaculı́n, R. Neruda, and K. P. Sycara. An agent for asymmetric process mediation in open envi-
ronments. In R. Kowalczyk, M. N. Huhns, M. Klusch, Z. Maamar, and Q. B. Vo, editors, SOCASE,
volume 5006 of Lecture Notes in Computer Science, pages 104–117. Springer, 2008.

CONNECT 231167 78/79

[80] R. Vaculı́n and K. Sycara. Towards automatic mediation of owl-s process models. Web Services,
IEEE International Conference on, 0:1032–1039, 2007.

[81] R. J. van Glabbeek. Notes on the methodology of ccs and csp. In ACP ’95: Proceedings from the
international workshop on Algebra of communicating processes, pages 329–349, Amsterdam, The
Netherlands, The Netherlands, 1997. Elsevier Science Publishers B. V.

[82] A. Wasylkowski and A. Zeller. Mining Operational Preconditions. http://www.st.cs.uni-
saarland.de/models/
papers/wasylkowski-2008-preconditions.pdf (Tech. Rep.).

[83] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting Object Usage Anomalies. In ESEC-FSE ’07, pp.
35-44. ACM, 2007.

[84] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, 25:38–
49, 1992.

[85] G. Wiederhold and M. Genesereth. The conceptual basis for mediation services. IEEE Expert:
Intelligent Systems and Their Applications, 12(5):38–47, 1997.

[86] S. K. Williams, S. A. Battle, and J. E. Cuadrado. Protocol mediation for adaptation in semantic web
services. In ESWC, pages 635–649, 2006.

[87] D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM Trans. Program.
Lang. Syst., 19(2):292–333, 1997.

CONNECT 231167 79/79

	List of Figures
	List of Tables
	Introduction
	Foundations for Connector Synthesis
	From Mediation to Connectors
	Formal Foundations for Connectors
	Connect Matching and Mapping Concepts
	Summary

	Application-layer Connector Synthesis: Towards a Supporting Theory of Mediators
	The Instant Messaging Example
	A Formalization of Protocols for Ubiquitous Connection
	Protocols as LTS
	Abstracting protocols to reason about functional matching
	Functional matching of protocols

	Towards Automated Matching and Synthesis
	Mediated matching
	Ontology-based functional matching
	Abstract mediator synthesis

	Application of the Mediator Theory to the Popcorn Scenario
	Heterogeneous merchant and consumer
	Applying mediated matching and mapping

	Preliminary Assessment
	Summary

	Middleware-layer Connector synthesis: Beyond State of the Art in Middleware Interoperability
	Middleware Interoperability
	Middleware-layer Connectors
	Connector definition
	Connectors classification
	Convergence of middleware and connector

	Formalizing Existing Approaches to Middleware Interoperability
	FSP-based formalization
	Bridging
	Interoperability platforms
	Transparent interoperability

	Assessing the Transparent Interoperability Approach
	Example 1: Interoperability within the same connector type
	Example 2: Interoperability among different connector types

	Middleware-layer Interoperability versus Application-layer Interoperability
	Example 1: Interoperability within the same connector type
	Example 2: Interoperability among different connector types

	Summary

	Application-layer Protocol Elicitation: Towards an Automated Model-based Approach
	Setting the Context
	Method Description
	Overview
	Explanatory example
	Stepwise description

	Method Formalization
	The Amazon E-Commerce Service Case Study
	Related Work
	Summary

	Conclusion and Future Work
	Bibliography

