
HAL Id: inria-00465229
https://hal.inria.fr/inria-00465229

Submitted on 19 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability in dynamic, evolving and heterogeneous
systems: the CONNECT approach

Antonia Bertolino, Felicita Di Giandomenico, Paolo Masci, Antonino Sabetta,
Fabio Martinelli, Ilaria Matteucci, Antinisca Di Marco, Valérie Issarny, Rachid

Saadi

To cite this version:
Antonia Bertolino, Felicita Di Giandomenico, Paolo Masci, Antonino Sabetta, Fabio Martinelli, et al..
Dependability in dynamic, evolving and heterogeneous systems: the CONNECT approach. SERENE
2010 - 2nd International Workshop on Software Engineering for Resilient Systems, ERCIM, Apr 2010,
London, United Kingdom. �inria-00465229�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50102713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00465229
https://hal.archives-ouvertes.fr


Dependability in dynamic, evolving and heterogeneous
systems: the CONNECT approach

[Project Paper]

Antonia Bertolino
Felicita Di Giandomenico

Paolo Masci
Antonino Sabetta
CNR-ISTI, Pisa, Italy

surname@isti.cnr.it

Fabio Martinelli
Ilaria Matteucci
CNR-IIT, Pisa, Italy

name.surname@iit.cnr.it

Antinisca Di Marco
Università dell’Aquila, Italy
adimarco@univaq.it

Valérie Issarny
Rachid Saadi
INRIA, France

name.surname@inria.fr

ABSTRACT
The EU Future and Emerging Technologies (FET) Project
Connect aims at dropping the heterogeneity barriers that
prevent the eternality of networking systems through a revo-
lutionary approach: to synthesise on-the-fly the Connectors
via which networked systems communicate. The Connect
approach, however, comes at risk from the standpoint of de-
pendability, stressing the need for methods and tools that
ensure resilience to faults, errors and malicious attacks of
the dynamically Connected system. We are investigat-
ing a comprehensive approach, which combines dependabil-
ity analysis, security enforcement and trust assessment, and
is centred around a lightweight adaptive monitoring frame-
work. In this project paper, we overview the research that
we are undertaking towards this objective and propose a uni-
fying workflow process that encompasses all the Connect
dependability/security/trust concepts and models.

1. INTRODUCTION
Our everyday activities are increasingly dependent upon the
assistance of pervasive inter-connected digital systems. How-
ever, the efficacy of integrating and composing such systems
is proportional to the level of interoperability achieved be-
tween the systems’ respective underlying technologies. This
leads to a landscape of technological islands of networked
systems, among which ad hoc connection bridges are possi-
bly deployed, which are strongly technology-dependent. Yet,
the fast pace at which technology evolves, at all abstraction
layers of networked systems, challenges the lifetime of in-
teroperability in the digital environment. The European

Project Connect1 aims at dropping the heterogeneity bar-
riers that prevent networked systems from being eternally
Connected and at enabling their seamless composition in
spite of technology heterogeneity and evolution. Connect
targets the dynamic synthesis of Connectors via which
networked systems communicate. The resulting emergent
Connectors then compose and further adapt the interac-
tion protocols run by the Connected systems.

The above prospected Connect approach comes at risk
from the standpoint of dependability. Indeed, as described
in [10], there exist many potential threats to the depend-
ability of modern dynamic, evolving and heterogeneous sys-
tems such as those tackled in Connect. Recently, other
European projects and Networks of Excellence specifically
focused on achieving dependability against accidental and
intentional failures, both in traditional settings [1], and in
evolving systems [2], where an additional concern is how to
face changes. In the latter perspective, which is very close to
the Connect vision, dependability is more precisely referred
to as resilience [14, 16]. In Connect, we are investigat-
ing a comprehensive approach, which combines dependabil-
ity analysis, security enforcement and trust assessment, and
is centred around a lightweight adaptive monitoring frame-
work. In this project paper, we overview the research we
are undertaking towards this goal and propose a unifying
workflow process view that encompasses all the Connect
dependability/security/trust concepts and models.

The paper is structured as follows: Section 2 presents the
challenges of the Connect project; Section 3 surveys Con-
nect dependability concerns and illustrates our monitoring-
centric view; Section 4 gives a unifying workflow process
view of the dependability related activities in Connect, and
Section 5 concludes the paper.

1Connect: Emergent Connectors for Eternal Soft-
ware Intensive Networked Systems (http://www.connect-
forever.eu) is an FP7 FET Proactive IP Project,
G.No.231167, addressing the Theme: ICT Forever Yours



2. CONNECT CHALLENGES
The core objective of Connect is to establish eternal in-
teroperability among networked systems through on-the-fly
synthesis, implementation and deployment of emergent Con-
nectors.

We depict schematically in Figure 1 the architectural vision
of Connect. Four types of entities populate the Connect
world: (i) Networked Systems, which use Connect services;
(ii) Connect Enablers, which encapsulate the Connect
logic that allows to synthesise a communication bridge be-
tween heterogeneous Networked Systems; (iii) Connectors,
i.e., the emergent communication bridges synthesised by En-
ablers; (iv) the Connected System, which is obtained by
Connecting different Networked Systems.

Figure 1: The CONNECT vision

Connect Enablers represent the core of the Connect ap-
proach: they can accept requests from Networked Systems,
discover new Networked Systems, gather / learn informa-
tion on their functional and non-functional behaviour, and
synthesise a suitable Connector that allows inter-operation
among Networked Systems willing to interact. There are dif-
ferent types of Enablers, according to their provided func-
tionality: Discovery Enablers, Learning Enablers, Synthesis
Enablers, Monitoring Enablers, and so on.

To achieve its goals, the Connect project undertakes in-
terdisciplinary research in the areas of behaviour learning,
formal methods, semantic services, software engineering, de-
pendability, and middle-ware. Among the above areas, this
paper specifically focuses on dependability concerns.

In Connect, dependability addresses two complementary
issues: (i) verification and validation techniques to ensure
that Networked Systems and synthesised Connectors be-
have as specified with respect to their functional and non-
functional properties, and (ii) security, trust, and privacy
assurance for interacting parties.

3. DEPENDABILITY IN CONNECT
In Connect, we direct the investigation on dependability
towards the peculiar aspects of the project, i.e., the threats
deriving from the on-the-fly synthesis of Connectors. We
explore appropriate means for assessing/guaranteeing that
the Connected system yields acceptable levels for different
non-functional properties, such as dependability (e.g., the
Connector will provide continued communication without
interruption), security and privacy (e.g., the transactions do
not disclose confidential data), and trust (e.g., components
are put in communication only with parties they trust). In
order to have a label that includes all the above concerns,

hereafter we will use the term “dependability” with two dif-
ferent senses: a stricter one, consistent with the classical
definition given in [3], and a broader one, in which the term
dependability is meant as a label inclusive of all the differ-
ent concerns listed above. The context will make clear if we
mean dependability in strict or in broad sense.

With reference to the four types of entities illustrated in
Figure 1, dependability issues are of concern to all of them.
Hence, the characterisation of the fault model and of the
metrics of interest is specific to the individual entity con-
sidered. In general terms, and inspired by consolidated lit-
erature on fault types [3], we consider both development
and operational faults, affecting both hardware and software
components, caused by an accidental event or maliciously in-
troduced by humans, and whose persistence may be either
transient or permanent.

Classical dependability metrics defined in the literature are
very useful to give a conceptual classification of different con-
cerns in assigning reliance on a system. Starting from such
concepts, we are working on a Connect metrics conceptual
framework [9] that can be used to refine classical metrics
with respect to some peculiar aspects of the Connect vi-
sion. Indeed, in Connect, Enablers may need to synthesise
Connectors on-the-fly, even when the knowledge on the be-
haviour and capabilities of some Networked Systems is still
incomplete. In these cases, Connect Enablers may initially
synthesise a basic Connector that permits only some ele-
mentary form of interaction, and an enhanced Connector
may be synthesised only in a second phase, when Connect
Enablers have learnt the behaviour of the new Networked
Systems. Two basic refinement dimensions are envisaged for
dependability metrics: (i) a CONNECT-dependent dimen-
sion, which considers the four actors of the Connect ar-
chitecture (Networked Systems, Enablers, Connectors and
the Connected System); (ii) a context-dependent dimen-
sion, which takes into account the application scenario and
the heterogeneous and evolvable aspects of the different ac-
tors.

In the following, we introduce the four activities related to
dependability in Connect: (i) Model-based analysis, (ii)
Security enforcement and Privacy, (iii) Trust management,
and (iv) Monitoring.

3.1 Model-based Analysis
Model-based analysis techniques are sought in Connect
to ensure that Networked Systems and Connectors satisfy
specified levels of accomplishment for dependability require-
ments, according to pertinent dependability metrics. Both
off-line and on-line approaches to verification and valida-
tion and to fault forecasting are pursued, to cover a wider
range of needs from the point of view of dependability as-
surance. As commonly intended in the literature, off-line
analysis refers to activities devoted to analyse the system at
hand before its deployment, or after deployment but in iso-
lation with respect to the system in operation. On the con-
trary, on-line analysis refers to activities performed while
the system is in operation, so accounting for the detailed
system and environment aspects during that specific system
execution. We adopt the off-line and on-line terminology
with this meaning.



Methods considered in Connect belong to those for prob-
abilistic, model-based quantitative evaluation, which aim at
evaluating, in terms of probabilities, the extent to which
the attributes of interest are satisfied. Research in depend-
ability analysis has developed a variety of models, each of
which focuses on particular levels of abstraction and/or sys-
tem characteristics. Model-based approaches [18, 5], being
based on the construction of a model of the system from the
elementary stochastic processes that model the behaviour
of the system components and their interactions, are very
suited to early detect design errors and deficiencies, which
could otherwise be very costly or even catastrophic when
discovered at later stages. Therefore, with reference to the
different Connect entities, such assessment methods could:
(i) help in guiding the process towards the on-line synthesis
of Connectors with the desired dependability accomplish-
ment level (ii) allow to assess whether the emergent Con-
nector satisfies a desired dependability requirement; the
provided assessment could be used as a further criterion for
the optimal selection of the Connector to deploy to satisfy
specific interaction needs (iii) quantify metrics for end-to-
end dependability, in order to verify whether desired levels
are satisfied.

Model-based methods for dependability evaluation are cur-
rently applied as traditional off-line methods. However, in-
vestigations are undertaken for extending the approach to
deal with the dynamic aspects involved in the generation of
Connectors in Connect, so as to allow to some extent an
on-line assessment of quantitative dependability properties.
How to deal with model generation and, especially, model
solution so as to provide feedback from the analysis in proper
time to be profitably used are the big challenges in this con-
text. Methods based on progressive model definition and
refinement, so as to allow for partially pre-determined anal-
ysis to be refined/completed at run-time, seem to be promis-
ing directions to explore. Monitoring activities (see Sec-
tion 3.4), by providing accurate information on those model
parameters that cannot be estimated in advance, constitute
a paramount support to on-line assessment. Also, moni-
toring can guide model refinement by revealing mismatches
between the actual dependability level and the expected level
estimated through the off-line analysis.

In addition, forms of partially-dynamic/partially-static meth-
ods will be analysed as well, such as Case Based Reasoning
methodologies, where, e.g., a Knowledge Base (KB) repos-
itory (or simply a Look-up table) could be set up off-line,
storing information on the most appropriate fault-tolerance
solution for the Connector to be synthesised for specific
dependability requirements, on the basis of the results of
a (off-line) model-based evaluation activity. At run-time,
the KB is used to search for the best pre-determined so-
lution mapping the requested non-functional properties (or
the closest one, in case a proper match is not found). This
way, fast decision-making is achieved. The KB is dynami-
cally extended with new “cases” to be added, to account for
interoperability requests of evolving Networked Systems.

It is worth noting that, in Connect, the activity on depend-
ability assessment is complemented by a verification frame-
work that includes on-line verification and quantitative com-
positional reasoning, which is part of the foundations and

verification methods for composable Connectors [8].

3.2 Security and Privacy
Connect aims at guaranteeing that the communication be-
tween components is always secure. For that reason, we pro-
pose and elaborate the Security-by-Contract (S×C) paradigm
[11, 12] for providing security in Connected systems. The
basic idea of the S×C framework is the concept of the con-
tract of an application. The contract is a description of the
behaviour of the application and it is provided with the ap-
plication itself.

Consider two Networked Systems that want to communi-
cate. Consider also that each Networked System has a se-
curity policy set on it, P1 and P2 respectively. In order to
communicate, both Networked Systems send their commu-
nication request and their security policies to an Enabler
that has to provide a Connector to allow Networked Sys-
tems to communicate. Such a Connector will be a mobile
code, that the Enabler may chose among a set of already
existing Connectors or it synthesises a new one on-the-
fly. In both cases, the Enabler provides, to each Networked
System, a Connector and a contract C that describes the
Connector behaviour. Moreover C satisfies both P1 and
P2.

We are considering the case in which both Networked Sys-
tems have also a private policy, P1priv and P2priv respec-
tively. Before executing the Connector, each Networked
System locally checks if the contract C is compliant with
the local private policy. If this is the case then the Con-
nector is executed, otherwise the local private policies are
enforced. In both cases the communication is established.

The basic idea of the proposed enforcement architecture is
the following: when the Enabler provides the Connector to
each Networked System, both of them verify if the code and
the contract actually match by an evidence checking pro-
cedure (Check Evidence). This step is intended to provide
a formal proof that the contract effectively denotes every
possible behaviour of the running program. This step can
be implemented, for instance, using the model-carrying code
[22, 23] method. Briefly, the Enabler attaches a formal proof
that the Connector satisfies its contract. Then, the Net-
worked Systems simply check whether the code satisfies the
proof.

If the check fails, the user can decide to refuse the Con-
nector or to enforce the private security policy on it (En-
force Policies) by exploiting the run-time enforcement in-
frastructure (e.g., [7]). Otherwise, the Networked System
can proceed to verify whether the contract (correctly repre-
senting the application) satisfies the private security policy
(Contract-Policy matching [13] at deployment-time). Once
again, if this step fails, the solution consists in enforcing the
private security policy on the execution. Finally, if the pre-
vious checks were positively passed, the communication is
established without any run-time monitoring (Execute Ap-
plication).

3.3 Trust
Thanks to Connect Enablers, Networked systems get Con-
nected via Connector(s) that can be composed and reused.



Thus, the Connect trust model is defined to allow: (i)
Enablers to safely cooperate in order to build and deploy
Connectors, (ii) Enablers to assess Connector trustwor-
thiness and hence provides Connected systems with the
most trusted Connector and (iii) handle monitoring feed-
backs to fairly update the trustworthiness of both Enablers
and Connectors.

Enablers Assessment. In order to assess the trustwor-
thiness of each Enabler, the Connect trust model applies a
reputation mechanism. The trust reputation of each Enabler
is computed from trust relations among Enablers and also
from the Enabler’s behaviour. The Connect trust model
assesses for each Enabler a trust reputation value through
a decentralised reputation mechanism. Thus, the reputa-
tion of each Enabler is managed by other Enablers, which
have been selected with a distributed hash table, such as
in CAN [20] or Chord [24]. We use several hash functions
to replicate the reputation of each Enabler. This prevents
against malicious Enablers and also keep the system more
resistant to inherent dynamic network behaviour, namely,
Enablers that unexpectedly disconnect.

Connector Assessment. In the Connect trust model,
Synthesis Enablers assess the Connectors they produce by
computing a trust recommendation value, which results from
(i) the trust on the Connector based on previous deploy-
ment and also from (ii) the trustworthiness of all the En-
ablers that are involved in the specific synthesis. The de-
ployment history of each Connector is maintained by its
Synthesis Enabler. We take inspiration from trust assess-
ment in Web Service composition [17, 19, 15], in which all
trust relations that are involved in this composition are ag-
gregated and composed in order to return the trust recom-
mendation of the whole composition.

Feedbacks management. The Connect trust model has
to update fairly (increase or decrease) the trustworthiness
of each Connect stakeholder (i.e., the reputation of the in-
volved Enablers and the trustworthiness of the Enabler on
its synthesised Connector) after each Connector deploy-
ment. Thus, the Connect trust model deals with two pa-
rameters: (i) the degree of involvement (i.e., responsibility)
of each Enabler in the process of synthesising and running
Connectors and (ii) the recommendation value that is given
by each Enabler for its contribution to the Connector. In-
deed, we consider that each Enabler must be rewarded or
penalised proportionately to both its involvement and the
value of its given recommendation. Therefore, in course of
time, the Connect trust model will be able to identify trust-
worthy Enablers and hence will provide more efficient and
relevant Connectors. However, after a while, the Connect
system will mostly solicit Enablers with a high reputation
(i.e., good history). This will preclude newcomers (with-
out history) by making their participation to the running
system very difficult or even impossible. Thus, in order to
allow Connect networks to evolve with new capable En-
ablers, we endow the Connect trust model with an incen-
tive Risk-based property, in which, Enablers that have a
high reputation are pushed to reduce their recommendation
values in order to maintain their reputation (i.e., minimise
the penalisation). To implement this incentive property we
use The Behaviour function that is defined in [21]. Thus, by

adopting this behaviour, everyone wins. On the one hand,
the entities with high reputation will save their position,
and on the other hand, this incentive behaviour will boost
the bootstrapping phase by giving the opportunity to new
legitimate Enablers to be considered by Connect.

3.4 Monitoring
The very vision of Connect, i.e., achieving automated and
eternal interoperability puts monitoring in a central posi-
tion for the overall project. In Connect, monitoring is
conceived as a common core service used by the other En-
ablers to implement feedback loops whereby approaches that
are normally used off-line (e.g. techniques for dependabil-
ity analysis, Connector synthesis, behaviour learning) can
be adapted to an on-line setting and can be enhanced to
cope with change and dynamism. Monitoring is performed
alongside the functionalities of the Connected system and
is used to detect conditions that are deemed relevant by its
clients (i.e., the other Connect Enablers). Upon detecting
the occurrence of such conditions, the monitoring system
alerts the interested client which, in turn, triggers an up-
date of the analysis, synthesis, and learning. In this way,
powerful but expensive techniques are executed only when
necessary.

As we intend to realise a monitoring system that can ad-
dress different purposes, covering both functional and non-
functional aspects, it must be designed with special emphasis
on flexibility. Furthermore, although monitoring can provide
valuable support to dependability assurance, it can easily in-
cur in feasibility problems caused by excessive overhead. To
cope with this issue, the performance penalty due to moni-
toring should be minimised, while achieving the intended ob-
servation goals. Approaches for reducing the impact of mon-
itoring include using statistical sampling or self-tuning algo-
rithms for directing the focus of monitoring to certain parts
of the overall monitored system that are deemed especially
critical or interesting [4]. As a matter of fact, most exist-
ing monitoring systems follow a best-effort policy, whereby
overhead is kept as low as possible but is in fact unbounded.
In Connect, we pursue efficiency by adopting predictable
strategies to estimate the computational, storage and trans-
mission resources that are demanded by a given set of mon-
itoring goals. This means that the load caused by monitor-
ing will not only be limited, but also predictable and con-
trollable, along the lines of the approach advocated in [6].
Providing a reasoning framework to handle the trade-offs be-
tween monitoring precision and efficiency is one of the goals
of our research in the remainder of the project.

4. WORKFLOW PROCESS VIEW
In Connect, the four activities related to dependability
span over all stages of the Connect process, i.e., discovery
time, synthesis time, and execution time. Combining and
integrating the activities within the overall Connect pro-
cess is a complex iterative endeavour. During this first year
of the project, we envisaged a dependability-centric scheme
of the Connect process. The high-level description of the
scheme is depicted in Figure 2. In the figure, the Connect
process is modelled as an activity diagram with separate
swim-lanes. There is one swim-lane for each activity related
to dependability, plus an additional swim-lane “other Con-
nect activities”, which represents the rest of the Connect



Figure 2: Life-cycle workflow of activities within the CONNECT process

activities other than dependability-related ones. Along this
generic swim-lane, the Connect approach is triggered by a
request of communication. This request, originating from a
Networked System S1, is intercepted by Connect Discovery
Enablers.

To serve S1 request, we have here a first decision point:
does there already exist a suitable Connector that can be
reused? So, when a Discovery Enabler E accepts the re-
quest, it will first search for a suitable Connector already
synthesised. Suitable here means that, among all the func-
tional and non-functional characteristics of the Connector,
this yields adequate dependability properties and a trust
level at least equal to the trust level associated to E. If
the answer is positive, then the Enabler retrieves an imple-
mentation of the Connector from a repository and deploys
it, Connecting S1 with a receiver Networked System S2.
Moreover, the deployed Connector is provided with a mon-
itor that at execution time will warn the Enabler when and
if the established communication is no longer satisfying S1
needs (this may happen for many reasons: because either the
environment or S2 changed, or because the trust reputation
decays, or due to negative reports from on-line analysis).

If no suitable Connector is available, then the synthesis
process is started by the Synthesis Enabler. The latter may
interact with the Learning Enabler to infer the desired func-
tional behaviour of the Connector, and may also obtain
some dependability requirements from S1 interface descrip-
tion. Hence, during synthesis, the Enabler will interact with
the Dependability Analysis Enablers to predict whether the
built Connector is satisfacing2.

2The word satisfice, coined by Herbert Simon, blends “sat-
isfy” and “suffice”, to highlight the aim to meet criteria for
adequacy, rather than to identify an optimal solution.

At execution time, the monitoring mechanism is activated
to keep track of the Connector behaviour (monitoring at
the Networked Systems interfaces) and of the Connected
System (end-to-end). Additionally, when security specifica-
tions are provided (security-by-contract), security enforce-
ment mechanisms are activated at execution time. This
discover and synthesis flow cycles whenever the communi-
cation is no longer satisficing. Throughout, the trust man-
agement model is pervasive; among the available Enablers,
those yielding the highest trust reputation can be chosen,
and trust reputation is updated at execution time according
to monitoring feedback.

5. CONCLUSIONS
We have briefly introduced the European Project Connect
and have focused on the unifying dependability framework
that is currently under development [9]. The concept of de-
pendability in Connect is quite broad, and includes four
main activities: model-based V&V, security enforcement
and privacy, trust management, and monitoring. A first
proposal of a unified dependability-centric life-cycle has been
outlined. The life-cycle spans over three phases of the Con-
nect process (discovery time, synthesis time and execution
time) and points out the role of the different activities re-
lated to dependability. At the time of writing, the Con-
nect project has just concluded its first year, during which
we focused on devising appropriate models and background
material for the various dependability concerns. In the re-
maining years of the project, we will focus on developing the
workflow process explained in this paper, which integrates
different approaches to address the dependability challenges
of dynamic, evolving, heterogeneous systems.

6. ACKNOWLEDGEMENTS
This work is partially supported by the European Commis-
sion Framework Program 7 Project Connect (FP7–231167)



7. REFERENCES
[1] Dependable Systems of Systems (DSoS) EU FP5

Project, 2000–2003.

[2] European Network of Excellence ReSIST .
http://www.resist-noe.org/, 2006–2009.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable and Secure Computing, 1(1):11–33, 2004.

[4] A. Bertolino, G. D. Angelis, A. Sabetta, and S. G.
Elbaum. Scaling up sla monitoring in pervasive
environments. In A. L. Wolf, editor, ESSPE, pages
65–68. ACM, 2007.

[5] A. Bondavalli, S. Chiaradonna, and F. Di
Giandomenico. Model-based evaluation as a support
to the design of dependable systems. In H. B. Diab
and A. Y. Zomaya, editors, Dependable Computing
Systems: Paradigms, Performance Issues, and
Applications, pages 57–86. Wiley, 2005.

[6] S. Callanan, D. Dean, M. Gorbovitski, R. Grosu,
J. Seyster, S. Smolka, S. Stoller, and E. Zadok.
Software monitoring with bounded overhead. In
Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–8,
April 2008.

[7] A. Castrucci, F. Martinelli, P. Mori, and F. Roperti.
Enhancing java me security support with resource
usage monitoring. In ICICS, pages 256–266, 2008.

[8] CONNECT Consortium. Deliverable 2.1 – Capturing
functional and non-functional connector behaviours
(available soon), 2010.

[9] CONNECT Consortium. Deliverable 5.1 – Conceptual
models for assessment and assurance of dependability,
security and privacy in the eternal CONNECTed
world (available soon), 2010.

[10] G. Di Marzo Serugendo. Robustness and
dependability of self-organizing systems - a safety
engineering perspective. In R. Guerraoui and F. Petit,
editors, SSS, volume 5873 of Lecture Notes in
Computer Science, pages 254–268. Springer, 2009.

[11] N. Dragoni, F. Martinelli, F. Massacci, P. Mori,
C. Schaefer, T. Walter, and E. Vetillard.
Security-by-contract (SxC) for software and services of
mobile systems. In At your service: Service
Engineering in the Information Society Technologies
Program. MIT Press, 2008.

[12] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan.
Security-by-contract: Toward a semantics for digital
signatures on mobile code. In EuroPKI, pages
297–312, 2007.

[13] P. Greci, F. Martinelli, and I. Matteucci. A framework
for contract-policy matching based on symbolic
simulations for securing mobile device application. In
ISoLA, pages 221–236, 2008.

[14] E. Hollnagel, D. D. Woods, and N. Leveson. Resilience
engineering: concepts and precepts. Ashgate
Publishing, Surrey, 2006.

[15] Y. Kim and K. Doh. Trust Type based Semantic Web
Services Assessment and Selection. Proceedings of
ICACT, IEEE Computer, pages 2048–2053, 2008.

[16] J. Laprie. From dependability to resilience. In 38th
IEEE/IFIP Int. Conf. On Dependable Systems and

Networks, 2008.

[17] S. Nepal, Z. Malik, and A. Bouguettaya. Reputation
propagation in composite services. In ICWS ’09:
Proceedings of the 2009 IEEE International
Conference on Web Services, pages 295–302,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] D. M. Nicol, W. H. Sanders, and K. S. Trivedi.
Model-based evaluation: from dependability to
security. IEEE Transactions on Dependable and
Secure Computing, 1:48–65, January-March 2004.

[19] S. Paradesi, P. Doshi, and S. Swaika. Integrating
behavioral trust in web service compositions. In ICWS
’09: Proceedings of the 2009 IEEE International
Conference on Web Services, pages 453–460,
Washington, DC, USA, 2009. IEEE Computer Society.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and
protocols for computer communications, pages
161–172. ACM Press, 2001.

[21] R. Saadi, J. M. Pierson, and L. Brunie. T2D: A Peer
to Peer trust management system based on Disposition
to Trust. In 25th ACM Symposium On Applied
Computing (SAC). ACM Press, 2010 (to be appear).

[22] R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan,
and S. A. Smolka. Model-Carrying Code (MCC): a
New Paradigm for Mobile-Code Security. In NSPW
’01: Proceedings of the 2001 Workshop on New
security paradigms, pages 23–30, New York, NY, USA,
2001. ACM Press.

[23] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar,
and D. C. DuVarney. Model-carrying code: a practical
approach for safe execution of untrusted applications.
In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
15–28, 2003.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 149–160, New
York, NY, USA, 2001. ACM.


