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Abstract This paper deals with the problem of identifying elephants in the Internet

Traffic. The aim is to analyze a new adaptive algorithm based on a Bloom Filter. This

algorithm uses a so-called min-rule which can be described as in the supermarket model.

This model consists of joining the shortest queue among d queues selected at random in

a large number of m queues. In case of equality, one of the shortest queues is chosen at

random. An analysis of a simplified model gives an insight into the error generated by

the algorithm for the estimation of the number of the elephants. The main conclusion is

that, as m gets large, there is a deterministic limit for the empirical distribution of the

filter counters. Limit theorems are proved and the limit is identified. It depends on key

parameters. The condition for the algorithm to perform well is discussed. Theoretical

results are validated by experiments on a traffic trace from France Telecom and by

simulations.

Keywords Elephant and mice: networking mining · Bloom Filter · Supermarket

model

1 Introduction

To be efficient, network traffic measurement methods have to be adapted to the actual

traffic characteristics. Internet links currently carry a huge amount of data at a very

high bit rate (40 Gb/s in OC-768). To analyze on-line this traffic, scalable algorithms

are required. They have to operate fast, using a limited small memory. The traffic is
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mainly analyzed at the flow level. A flow is a sequence of packets defined by the classical

5tuple composed of the source and destination addresses, the source and destination

port numbers together with the protocol type. Flow statistics are very useful for traf-

fic engineering and network management. In particular, information about large flows

(also called elephants) is very interesting for many applications. Note that an elephant

is a flow with at least K packets, where K is in practice equal to 20. Elephants are not

numerous (around 5 to 20% of the number of flows), but they represent the main part

(80-90%) of the traffic volume in terms of packets. Elephant statistics can be exploited

in various fields such as attack detection or accounting. In the literature, some prob-

abilistic algorithms have been developed to estimate on-line the number of elephants

in a dense traffic. In [7], Flajolet analyzed the adaptive sampling algorithm proposed

by Wegman. This algorithm is based on a special sampling method that provides a

random set of the original flows. Some characteristics on elephants (number, size dis-

tribution) can be inferred from this sample. Some other algorithms (see [8,2]) based on

sampling are designed to provide elephant statistics, but they seem to be designed to

very specific flow size distribution or require an a priori knowledge of the total number

of flows to recover the loss of information caused by the sampling. Moreover none of

these algorithms are able to identify elephants, i.e., to give their addresses. Such infor-

mation is particularly useful for attack detection. For this application, an attack, seen

as an elephant in some sense to define, must be detected even if it is alone, and the

previous algorithms, based on sampling, fail to do this.

For that, the paper deals with an algorithm based on Bloom filters. Estan and

Varghese [6] proposed a first version. It is quick enough and it uses a limited memory,

but it is not adapted to traffic variations. It uses a fixed parameter which should be

adjusted according to traffic intensity. Azzana in [1] proposes an improvement for this

algorithm by adding a refreshment mechanism that depends on traffic variations. The

principle of this latter algorithm is the following. The filter is composed of d stages.

Each stage contains m counters and is associated to a hashing function. When a packet

is received, its IP header is hashed by the d independent hashing functions and the

corresponding counter in each stage is incremented by one. When each counter reaches

K (the smallest elephant’s size), the corresponding flow is considered as an elephant.

Due to the heavy Internet traffic, the filter needs to be sometimes refreshed, otherwise

all the counters will exceed the threshold K, and then all the flows will be seen as

elephants. The idea is to decrease all counters by one every time the proportion of

non null counters reaches a given threshold r. In this way, the refreshment frequency

of the filter depends closely on the actual traffic intensity. Notice that the algorithm

uses an improvement, the min-rule, also called conservative update in [6]. It consists

in incrementing only the counters among d having the minimum value, for an arriving

packet. Indeed, because of collisions, the flow size is greater than or equal to the smallest

associated counters, in the ideal configuration where no packet is lost because of the

refreshment mechanism. So the min-rule tends to reduce the overestimation of flow

size.

Chabchoub et al. present in [3] a theoretical analysis of the algorithm proposed by

Azzana and described above. Their objective is to estimate the error generated by the

algorithm for the estimation of the number of elephants. The analytical study does not

take into account the min-rule.

In this paper, we focus on the analysis of the min-rule. For this purpose, in order

to obtain a model more standard to analyze, the algorithm described above has been

slightly modified. We consider now just one filter and d hashing functions. (Keep in
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mind the case d = 2). An arriving packet increments the smallest counter among the

d associated counters. In case of equality, only one counter is incremented at random.

In this way, every packet increments exactly one counter. A flow is declared as an

elephant when its smallest associated counter reaches C = K/d. The same refreshment

mechanism is maintained with a threshold r of about 50%. The basic idea is that when

the filter is not overloaded, in general, for each arriving packet of a given flow, one of the

d counters will be incremented in an alternative way. It means that the d counters will

have almost the same values and when the smallest one reaches C, the corresponding

flow has a total size of about K = dC packets (C packets hitting each counter).

The advantage of this new algorithm is that each arriving packet increments exactly

one counter. In this case, the way to increment the counters is exactly, in a system of m

queues, the way a customer joins the shortest queue among d queues chosen at random,

ties being solved at random. This model, called supermarket model by Mitzenmacher

[12] and Luczak and McDiarmid [11], also known as a load-balancing model, or model

with choice, has been extensively studied in the literature because of its numerous

useful applications. In computer science, the central result is stated in a pioneer paper

by Azar et al. [15], then by Miztenmacher [12], and, by other arguments, by Luczak

and McDiarmid [11] for a discrete time model where n balls are thrown into n urns

with the choice. It is proved that, with probability tending to 1 as n gets large, the

maximum load of an urn is logn/ log log n+O(1) when d = 1 and log logn/ log d+O(1)

if d ≥ 2. Luczak and McDiarmid, in continuous time related models with the choice,

explore the concentration of the maximum queue length (see [11], [10]). But the model

had also already been studied in Mitzenmacher [12], Vvedenskaya et al. [13], Graham

[9] and others for mean-field limit theorems. In [12] and [13], a functional law of large

numbers is stated: The process of the vector of the tail proportions of queues converges

in distribution as m tends to infinity to the unique solution of a differential system. For

d ≥ 2, the differential equation has a unique equilibrium point uρ(k) = ρ(dk−1)/(d−1)

for a throughput ρ < 1. It means that, when d ≥ 2, the tail probabilities of the

queue length decrease drastically. In Vvedenskaya and Suhov [14], variants of the choice

policy and general service time distributions are investigated. Graham in [9] proves the

convergence of the invariant measures to the Dirac measure at uρ. In other words,

when m is large, the stationary vector of the proportions of queues with k customers

is essentially deterministic and given by this limit.

The aim of this paper is to analyze the min-rule via the supermarket model and

to evaluate the performance of the new proposed algorithm. In particular, we want

to calculate the error generated by the algorithm on the estimation of number of

elephants. Notice that this error is due to both false negatives (missed elephants)

and false positives (mice considered as elephants). There is a trade-off between the

proportion of false positives and false negatives. Moreover this trade-off depends on the

target applications. For example, for attacks detection, it will be better to have false

positives, say suspicious flows, than to miss an elephant, i.e. an attack. The operator

can further easily make the difference between anomalies and attacks. On the contrary,

in order to count elephants, it is reasonable to avoid having too much false positives

because mice are numerous and a small proportion of false positives implies a non

negligible error on the number of elephants. Let us first focus on false positives. To

be declared as an elephant, a mouse must be hashed to one among d counters greater

than C after this operation. So the proportion of such counters is a good parameter to

investigate in order to evaluate false positives.
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The most part of the paper is the analysis of a simple model where the flows are

mice of size one. It is relevant because most of the flows are mice so collisions between

flows are mainly due to collisions between mice. It turns out that the probability that

a mouse is detected as an elephant is bounded by the probability that a given counter

is greater than C just before a refreshment time. Thus the problem reduces to analyze

the behavior of the model at the refreshment times. Moreover the transition phase is

very short thus the study of the stationary behavior is pertinent.

The key idea of the study is to use the Markovian framework in order to rigorously

establish limit theorems and analytical expressions in the stationary regime. The main

result is that, as m tends to infinity, the evolution of the model is characterized by

a dynamical system which has a unique fixed point w̄. The interpretation of w̄ as a

key quantity in a supermarket model with deterministic service times is discussed.

Analytical expressions are given in [3] for d = 1 but are more complicated to obtain

here for d ≥ 2.

An objective would be to prove the convergence of the invariant measure of the

Markov chain as m tends to +∞ to the Dirac measure δw̄ at the fixed point w̄. In

practice, such a result is completely crucial. If it is not true, if the sequence of invari-

ant measures do not converge, the system oscillates with long periods of transition

between different configurations (metastability phenomenon). So even if the algorithm

performs well during a while, it can reach another state where it can give bad results.

This question is partially addressed here. The convergence of the invariant measures

is conjectured, due to simulations of the algorithm where such a phenomenon has not

been observed. For such a result, a possible technique is the existence of a Lyapounov

function which both proves the convergence of the dynamical system to its unique

fixed point w̄ and the convergence of the sequence of invariant measures to δw̄. Such a

function is exhibited in [3] for d = 1 and C = 2.

A simulation of the limit distribution w̄ is done for a uniform general mice size

distribution which is non analytically tractable for d ≥ 2. It is compared to the ex-

periment on a real trace. This one hour trace is commercial traffic provided by France

Telecom. Results are very close. This trace is used as a validation test and no algorithm

parameter need to be changed to fit to some characteristics of this particular trace.

Experiments have three other goals. First to compare the original version with the min

rule to the modified version of the algorithm introduced here. It appears that the latter

version exhibits performances as good as the original one. Second, the time between

two refreshments is plotted. This quantity is crucial for the trade-off between false

positives and false negatives. It depends on the value of the threshold r. If r is high,

the counters are high due to collisions, involving many false positives. But refreshment

times occur less often so less packets are lost, inducing less false negatives. The analysis

shows such a behavior. Experiments validate the analysis. Third, the time to reach the

stationary phase is also discussed.

The paper is an extended version of Chabchoub [4]. Sketches of proofs have been

replaced by proofs. Experiments have been completed to enlight the algorithm be-

haviour.

The organization of the paper is as follows: Section II presents the analytical results

for the simple model defined to study the question of false positives. Section III is

devoted to experiments. Section IV mainly gives a discussion of the way to choose the

parameter r in order to have an algorithm which performs well.
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2 The Markovian urn and ball model

2.1 Description of the model

In this section, the question of false positives is addressed: The target quantity is the

probability for a mouse to be detected by the algorithm as an elephant.

The problem is studied in a simple framework, where flows are reduced to mice of

size one. Thus the model can be described as a urn and ball model because one size

flows hashed in a filter with m counters can be viewed as balls thrown into m urns with

capacity C under the supermarket rule: For each ball, a subset of d urns is chosen at

random and the ball is put in the least loaded urn, ties being resolved uniformly. Balls

overflowing the capacity C are rejected. Moreover if, after putting the ball, the number

of non empty urns exceeds rm, then one ball is removed from every non empty urn.

The probability of a flow to be detected as an elephant is reduced to the probability

that, after the ball arrival, all the d chosen urns have C balls. It is bounded by the

probability that, just before a refreshment time, after putting the last ball in its urn,

all the d urns chosen for that contain C balls. The bound is more convenient to study.

Let us focus on the embedded model just before the refreshment times.

2.2 A Markovian framework

For fixed C, let us consider the sequence (Wm
n )n∈N, where Wm

n denotes the vector of

the proportions of urns with 0, . . . , C balls just before the nth refreshment time. For

m ≥ 1, (Wm
n )n∈N is an ergodic Markov chain on the finite state space

P(r)
m = {w ∈

(
N
m

)C+1

,

C∑
i=0

w(i) = 1,

C∑
i=1

w(i) =
drme
m
},

(where drme denotes the smallest integer larger than rm). Thus it has a unique invari-

ant measure πm.

The problem is that this quantity is combinatorically intractable. Even the transi-

tion probability Pm of the Markov chain is awfully difficult to write. Nevertheless, one

could expect an asymptotic of this quantity when m gets large. In other words, the

limit of the invariant measures πm when m is large is investigated.

2.3 A dynamical system

The way which is used here to obtain limit theorems is very classical (see [5] for

example). In fact, similar results for d = 1 can be found in Chabchoub et al [3]. The

following results extend the case d = 1 to d ≥ 1. Of course the motivation here is the

case d ≥ 2. The proofs must often be rewritten with new arguments and the sections

which are still valid will be in general omitted.
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Let us introduce some notations. Let

P def
= {w ∈ RC+1

+ ,

C∑
i=0

w(i) = 1}

and P(r) def= {w ∈ RC+1
+ ,

C∑
i=0

w(i) = 1 and

C∑
i=1

w(i) = r}

be the state spaces. Let s be the shift defined as

s : w 7→ (w(0) + w(1), w(2), . . . , w(C), 0) on P

and

λ : P(r) → R+, w 7→
∫ r

r−w(1)

du

1− ud
. (1)

For the vector of proportions v ∈ P, it is more convenient to deal with the vector of

the tail proportions u defined by uk =
∑
i≥k vi. G is then defined on P(r) by

G(w) = v(λ(w)) (2)

where (v(t)) is associated to (u(t)) the unique solution of

duk
dt

= uk−1(t)d − uk(t)d, k ∈ {1, . . . C}, u0 = 1 (3)

with initial condition u(0) corresponding to v(0) = s(w). Notice that G maps, by

definition of λ, P(r) to P(r). To emphasize the dependence from the initial condition,

G(w) will also be denoted by v(s(w), λ(w)).

The following result is that, as m→ +∞, the Markov chain converges in distribu-

tion to a deterministic dynamical system which will be explicited.

Proposition 1 If Wm
0 converges in distribution to w ∈ P(r)

m then (Wm
n )n∈N converges

in distribution to the dynamical system (wn)n∈N given by the recursion

wn+1 = G(wn), n ∈ N

where G is defined by equation (2).

Proof The result is a consequence of the convergence of the transition Pm of the Markov

chain (Wm
n )n∈N as m tends to +∞ to P given by

P (w, .) = δG(w).

It means that, starting from w just before a refreshment time, at the next refreshment

time, the vector of the proportions of urns tends to G(w) when m tends to +∞. The

uniform convergence stated by the following lemma provides the convenient way to

prove Proposition 1.

Lemma 1 For ε > 0,

sup
w∈P(r)

m

Pm(w, {w′ ∈ P(r)
m : ||w′ −G(w)|| > ε}) →

m→+∞
0.
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Proof The idea of the proof is that, starting from w (with drme non empty urns), after

refreshment, the vector of the proportions becomes s(w) defined by

s(w) = (w(0) + w(1), w(2), . . . , w(C), 0)

where the proportion of non empty urns is r − w(1). Then a number τm1 of balls are

thrown in order to reach a state w′ with again drme non empty urns. It has to be

proved that w′ is close to G(w). There are three steps:

Step 1. It can be proved that this number τm1 is deterministic at first order when

m is large, equivalent to λ(w)m, where λ(w) is defined by equation (1). More precisely,

sup
w∈P(r)

m

Pw
(∣∣∣∣τm1m − λ(w)

∣∣∣∣ > ε

)
→

m→∞
0. (4)

By Bienaymé-Chebychev’s inequality, it is enough to prove that

sup
w∈P(r)

m

∣∣∣∣Ew (τm1m
)
− λ(w)

∣∣∣∣ →m→∞ 0 (5)

and

sup
w∈P(r)

m

Varw

(
τm1
m

)
→

m→∞
0. (6)

To see it, use that, starting from w, τm1 has an analytical expression as a sum of

different numbers Yl of balls necessary to hit the (l + 1)th non empty urn. Indeed,

τm1 =

drme−1∑
l=(d−1)∨(drme−w(1)m)

Yl, (7)

where the Yls for l ∈ N are independent random variables with geometrical distributions

on N∗ with respective parameters

al =

l−1∏
j=0

l − j
m− j ,

i.e. P(Yl = n) = (al)
n−1(1 − al), n ≥ 1. By equation (7), as E(Yl) = 1/(1 − al),

denoting a ∨ b = sup(a, b),

Ew
(
τm1
m

)
=

1

m

drme−1∑
l=(d−1)∨(drme−w(1)m)

1

1− al
.

using that, for l ≥ d− 1,(
l − d+ 1

m

)d
≤ al ≤

(
l

m− d+ 1

)d
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it yields

1

m

drme−1∑
l=(d−1)∨(drme−w(1)m)

1

1−
(
l−d+1
m

)d ≤ Ew
(
τm1
m

)

≤ 1

m

drme−1∑
l=drme−w(1)m

1

1−
(

l
m−d+1

)d .
With a change of index in the left-hand side term and denoting m′ = m− d+ 1,

1

m

drme−d∑
l=(drme−w(1)m−d+1)+

1

1−
(
l
m

)d ≤ Ew
(
τm1
m

)

≤ 1

m′ + d− 1

dr(m′+d−1)e−1∑
l=dr(m′+d−1)e−w(1)(m′+d−1)

1

1−
(
l
m′
)d .

A comparison with integrals leads to the following inequalities: On one hand,

Ew
(
τm1
m

)
≤ m′

m′ + d− 1

∫ dr(m′+d−1)e
m′

dr(m′+d−1)e−w(1)(m′+d−1)

m′

dt

1− td
.

The right-hand side of this inequality denoted by fm(w(1)) converges for each w(1) ∈
[0, r] to λ(w) =

∫ r
r−w(1)

dt/(1− td) when m tends to +∞, using that m′/m tends to 1

when m tends to infinity. Moreover, fm is increasing on [0, r]. Thus, by Dini’s theorem,

fm converges uniformly on [0, r] as m tends to +∞. On the other hand,

Ew
(
τm1
m

)
≥ 1

m

drme−d−1∑
l=(drme−w(1)m−d+1)+−1

1

1−
(
l+1
m

)d ≥ ∫
drme−d

m

(drme−w(1)m−d+1)+−1
m

dt

1− td
.

Denoting by gm(w(1)) the previous integral, by the same argument, gm converges

uniformly on [0, r] as m tends to +∞. Using that w(1) ∈ [0, r] when w ∈ P(r)
m , it

proves (5). For (6), as Var(Yl) = al/(1− al)2,

Var(τm1 ) =

drme−1∑
l=drme+w(1)m

al
(1− al)2

Following the same lines,

1

m

drme−d∑
l=(drme−w(1)m−d+1)+

(
l
m

)d(
1−

(
l
m

)d)2
≤ Var(τm1 )

m

≤ 1

m′ + d− 1

dr(m′+d−1)e−1∑
l=dr(m′+d−1)e−w(1)(m′+d−1)

(
l
m′
)d(

1−
(
l
m′
)d)2

.
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But, as t 7→ t/(1− t)2 is increasing on R+, by the same argument as before,

sup
w∈P(r)

m

Var(τm1 )

m
→

m→∞

∫ r

r−w(1)

td

(1− td)2

which proves (6).

Step 2. Using both this first step and Chernoff’s bound provide a natural cou-

pling described as follows. For some fixed w ∈ P(r)
m , consider m urns with empirical

distribution s(w) and define the following random variables: for 1 ≤ i ≤ m, Nm
i (w)

(respectively Ñm
i (w) and N̂m

i (w)) is the number of additional balls in urn i when τm1
(respectively mλ(w) and a Poisson random variable Pλ(w)m with parameter mλ(w) )

new balls are thrown in the m urns. One can construct these variables from the same

sequence of balls (i.e. of i.i.d. uniform on {1, . . . ,m} random variables), meaning that

balls are thrown in the same locations for both operations until stopping. This provides

a natural coupling for the Ni’s, the Ñi’s and the N̂i’s. Let j ∈ {0, . . . , C − 1} be fixed.

Given Wm
0 = w, as j ≤ C − 1, the capacity constraint does not interfere and Wm

1 (j)

can be represented as

Wm
1 (j) =

1

m

j∑
k=0

∑
i∈Imw,k

1{Nm
i (w)=j−k} (8)

where Imw,k is the set of urns with k balls in some configuration of m urns with distri-

bution s(w). The sum over i is exactly the number of urns that contains k balls after

the removing of one ball per urn, and having j balls after new balls have been thrown.

Let also define

W̃m
1 (j) =

1

m

j∑
k=0

∑
i∈Imw,k

1{Ñm
i =j−k},

Ŵm
1 (j) =

1

m

j∑
k=0

∑
i∈Imw,k

1{N̂m
i =j−k}.

By coupling, on the event {Wm
0 = w, |τm1 /m−λ(w)| ≤ ε/3}, the following is true:

card{i,Nm
i (w) 6= Ñm

i (w)} ≤ ε

3
m

thus, on the same event,

|Wm
1 (j)− W̃m

1 (j)| ≤ ε

3
. (9)

Moreover, for δ ∈]0, 1/2[ fixed, on the event {Wm
0 = w, |Pλ(w)m−λ(w)m| ≤ mδ+1/2},

1

m
card{i, Ñm

i (w) 6= N̂m
i (w)} ≤ mδ−1/2

thus, for m enough large (m ≥M0),

|W̃m
1 (j)− Ŵm

1 (j)| ≤ ε

3
. (10)
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To obtain the lemma, it is equivalent to prove that, for each ε > 0,

sup
w∈P(r)

m

Pw
(
||Wm

1 −G(w)|| > ε
)
→

m→∞
0 (11)

where Pw(.) denotes P(.|Wm
0 = w). Since Wm

1 and G(w) are probability measures on

{0, . . . , C}, to get (11), it is sufficient to prove that, for j ∈ {0, . . . , C − 1},

sup
w∈P(r)

m

Pw
(
|Wm

1 (j)−G(w)(j)| > ε
)
→

m→∞
0 (12)

which reduces to prove that

sup
w∈P(r)

m

Pw
(
|Wm

1 (j)−G(w)(j)| > ε,

∣∣∣∣τm1m − λ(w)

∣∣∣∣ ≤ ε

3
,
∣∣Pλ(w)m − λ(w)m

∣∣ ≤ mδ+1/2

)
(13)

tends to 0 when m is large. Indeed, by the first step,

sup
w∈P(r)

m

Pw
(∣∣∣∣τm1m − λ(w)

∣∣∣∣ > ε

3

)
→

m→∞
0.

Moreover,

sup
w∈P(r)

m

Pw
(∣∣Pλ(w)m − λ(w)m

∣∣ > mδ+1/2
)
→

m→∞
0 (14)

because, by standard Chernoff’s inequality, for η > 0,

sup
w∈P(r)

m

Pw
(∣∣Pλ(w)m − λ(w)m

∣∣ ≥ ηλ(w)m
)
≤ exp

(
−η

2λ(w)m

3

)
.

Let η = m−1/2+δ/λ(w). By the previous inequality, as λ(w) ∈ [0, F (r)],

sup
w∈P(r)

m

Pw
(∣∣Pλ(w)m − λ(w)m

∣∣ ≥ mδ+1/2
)
≤ exp

(
− m2δ

3λ(w)

)
≤ exp

(
− m2δ

3F (r)

)
thus it gives equation (14). To prove the quantity given by (13) tends to 0 when m is

large, it is then sufficient to prove that

sup
w∈P(r)

m

Pw
(
|Ŵm

1 (j)−G(w)(j)| > ε
)
→

m→∞
0.

Indeed, let the event {|τm1 /m−λ(w)| ≤ ε/3,
∣∣Pλ(w)m − λ(w)m

∣∣ ≤ mδ+1/2} be denoted

by A. To see it, it is sufficient to write

sup
w∈P(r)

m

Pw
(
|Wm

1 (j)−G(w)(j)| > ε,A
)
≤ sup
w∈P(r)

m

Pw
(
|Ŵm

1 (j)−G(w)(j)| > ε

3
, A
)

+ sup
w∈P(r)

m

Pw
(
|Ŵm

1 (j)− W̃m
1 (j)| > ε

3
, A
)

+ sup
w∈P(r)

m

Pw
(
|Wm

1 (j)− W̃m
1 (j)| > ε

3
, A
)
.
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Because of (9) and (10), the last two terms of the right-hand side of the previous

inequality are null for m ≥M0. Therefore, it is sufficient to prove that

sup
w∈P(r)

m

Pw
(
‖ Ŵm

1 −G(w) ‖> ε
)
→

m→∞
0. (15)

It is the aim of the last step.

Step 3. Let us define the queuing supermarket model without departures. Consider

m queues with capacity C filled by a Poisson process of customers with rate m as

follows: At each customer arrival, d queues are chosen at random and the customer

goes to the lowest loaded queue, to one of them at random if there are several. If the

number of customers at the queue is already C, the new customer is rejected.

Let Xm(t) = (Xm
i (t), 1 ≤ i ≤ m) be the queue length vector process, where Xm

i (t)

is the number of customers at time t at queue i. Let (Wm(t))t∈R+ and (Um(t))t∈R+

be the Markov processes defined by

Wm
k (t) =

1

m

m∑
i=1

1{Xm
i (t)=k}

the proportion of queues with k customers at time t and

Umk (t) =
1

m

m∑
i=1

1{Xm
i (t)≥k}

the proportion of queues with more than k customers at time t. By standard arguments,

it is well-known (see Vvedenskaya et al. [13]) that, if Um(0)→m→∞ u(0), the process

(Um(t))t∈R+ converges to its fluid limit, which is the deterministic process (u(t) =

(uk(t), 1 ≤ k ≤ C) given as the unique solution of the differential system

duk
dt

= udk−1 − u
d
k (1 ≤ k ≤ C), u0 = 1

with initial condition u(0) (see Appendix for a proof) in the following sense: For each

t, ε > 0, k ∈ {0, . . . , C},

P( sup
0≤s≤t

|Umk (s)− uk(s)| > ε) →
m→∞

0.

Moreover denoting by u(x, t) the solution at t with initial condition x and Umk (x, t)

with obvious notations, for each ε > 0, k ∈ {0, . . . , C}, using that λ is bounded for

w(1) ∈ [0, r] and s is bounded on P(r)
m ,

P( sup
w∈P(r)

m

|Umk (s(w), λ(w))− uk(s(w), λ(w))| > ε) →
m→∞

0 (16)

where, by abuse of notation, s(w) denotes the tail vector of s(w). Let G(w) defined by

(2) as u(s(w), λ(w)). Using that, for j ∈ {0, . . . , C − 1}, given Wm
0 = w,

Ŵm
1 (j)−G(w)(j) =

Umj (s(w), λ(w))− uj(s(w), λ(w))−
(
Umj+1(s(w), λ(w))− uj+1(s(w), λ(w))

)
,

equation (16) straightforwardly implies that, for each w ∈ P(r)
m ,

sup
w∈P(r)

m

Pw
(
‖ Ŵm

1 −G(w) ‖> ε
)
≤ P

(
sup

w∈P(r)
m

‖ Ŵm
1 −G(w) ‖> ε

)
→

m→∞
0.

It ends the proof of the lemma.
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The argument to obtain Proposition 1 from Lemma 1 is standard and detailed in [3,

Proposition 1]. It is omitted here.

2.4 Fixed point of the dynamical system

The function

P(r) −→ P(r)

w 7−→ G(w)

being continuous on the convex compact set P(r), by Brouwer’s theorem, it has a fixed

point.

It remains to prove the uniqueness of the fixed point. Recall that, for d = 1, the

proof is based on the interpretation of the fixed point equation

G(w) = w

as the equation

w = µλ(w) (17)

where µλ is the invariant measure of some ergodic Markov chain. This Markov chain

is the queue length at the service completion times of a M/G/1/C queue with deter-

ministic service times equal to 1 with arrival rate λ. The proof of the uniqueness of the

solution of equation (17) is then based on the coupling argument that, if λ ≤ λ′ then

µλ is stochastically dominated by µλ′ (see [3] for details).

Let us try to extend the argument for the case d ≥ 2. For that, let us consider

the following system. Balls arrive according to a Poisson process with rate λm. They

are thrown into m urns with capacity C as follows. Each ball joins the least loaded

urn among a subset of d urns, chosen at random. The ties are resolved uniformly. At

each unit time, one ball is removed from each non-empty urn. It can be proved as in

Proposition 1 that the vector of the proportions of urns with k balls just before time

n converges, when m is large, to a dynamical system

wn+1 = H(wn)

where, for v defined by (3) with initial condition v(0) = s(w),

H(w) = v(λ).

But the argument fails for d ≥ 2. Assume that H(w) = w is the invariant measure

equation of some ergodic Markov chain, i.e., of type wP = w for some transition matrix

P . As H(w) = v(λ),

v(λ) = wP.

From equation (2.3), u1(t) can be computed explicitly. It gives that

v0(t) = 1− F−1(t+ F (r − w(1))

where F (x) =
∫ x
0

dt
1−td is a one-to-one map from [0, 1[ to its image. It means that, for

d ≥ 2, v0(λ) can not be written as
∑C
j=0 P0,jw(j). Thus another way to prove it can

be found and, at this point, the uniqueness of the fixed point is conjectured for d ≥ 2.
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2.5 Identification of the fixed point

If the capacity is infinite, then the parameter λ(w̄) is equal to r. In this case, it is

simple to have the explicit expression of w̄1, which is a good approximation for the

case C = 20/d, say for d = 1 or 2. It is the purpose of this section.

Assume that C = +∞. By definition,

λ(w̄) =

∫ r

r−w̄(1)

dt

1− td

and F (x) =
∫ x
0

dt
1−td defines a one-to-one map from [0, 1[ to its image. Using that

λ(w̄) = r for C = +∞, it can be rewritten

r = F (r)− F (r − w̄(1)),

or

w̄(1) = r − F−1(F (r)− r). (18)

Notice that for d ∈ N, F has an explicit expression. For d = 1, F (x) = − log(1 − x)

which leads (see [3]) to

w̄(1) = (1− r)(er − 1).

Moreover, for d = 2, F (x) = argthx and thus

w̄(1) = r − r − thr

1− rthr
. (19)

In Figure 1, w̄(1) is plotted for d = 1, 2.
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Fig. 1 Limit proportion w̄(1) of counters with value 1 for d = 1, 2, 4.
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2.6 Convergence of invariant measures

A first result is obtained. It is proved in [3, Proposition 2] and recalled here omitting

the proof.

Proposition 2 Let, for m ≥ 1, πm be the stationary distribution of (Wm
n )n∈N. Define

P as the transition on P(r) given by P (w, .) = δG(w). Any limiting point π of (πm)m∈N

is a probability measure on P(r) which is invariant for P i.e. that satisfies G(π) = π.

As noticed in the introduction, the limiting point of πm is not necessarily unique,

because there is not a unique measure π such that G(π) = π. There is one because G

has a unique fixed point thus G(δw̄) = δw̄. But imagine that G has cycles, i.e. that

there exist n ≥ 2 and w1, . . . , wn in P(r) such that

G(wj) = wj+1 (1 ≤ j < n), G(wn) = w1

then π = 1/n
∑n
j=1 δwj is invariant under G. It gives two different limiting points for

πm. A way to prove the convergence of (πm) to δw̄ is to find a Lyapounov function for

G (see [3, Theorem 1] for details). Such a Lyapounov function is exhibited in [3] for

d = 1 and C = 2. It is not investigated here.

2.7 General mice size distribution

The subsection deals with the extension of the previous results to a model with general

size distribution. An approximated model is taken. Indeed, as mice size are short (with

mean close to some units, in real traffic traces, close to 4), an approximated model is

to consider that the packets of the mice are thrown without interleaving with packets

of other mice in the target counters. It means that the packets of the different mice

arrive consecutively in the filter.

The model chosen is thus an urn and ball model where balls are thrown by batches.

The balls in a batch are thrown successively, each ball into the least loaded urn among

d chosen at random in the m urns. Notice that the set of d urns is the same for every

ball of a given batch, but the balls tend to fill these d urns alternatively. The ith

batch is composed with Si balls, where the Sis are independent random variables with

distribution denoted by p. The model generalizes the previous one obtained for mice

of size one (p(1)=1).

This model, which is simple to analyze in the case d = 1 (see [3, Subsection 2.1])

as an extension of the model with mice of size one, becomes much more difficult in

the case d ≥ 2. To our knowledge, the pending queuing system with batch arrivals and

customers joining the shortest queue has never been studied.

3 Experiments

In this section, the proposed algorithm is tested against an ADSL commercial traffic

trace from France Telecom IP backbone network. This traffic trace has been captured

on a Gigabit Ethernet link in October 2003 between 9:00 pm and 10:00 pm. This period

corresponds to a peak activity by ADSL customers (the link load was equal to 43.5%),
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Table 1 Characteristics of the traffic trace considered in experiments

Traces Nb. IP packets Nb. TCP Flows Duration

FT trace 135 844 423 10 474 665 1 hour

its duration is 1 hour and contains more than 10 millions of TCP flows. Some trace

characteristics are given in Table I.

In our experiments, the filter consists of 220 counters (m = 1.05MB) associated to

two independent hashing functions (d = 2). Elephants are here defined as flows with

at least 20 packets (K = 20).
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Fig. 2 Impact of the Supermarket model on the estimation of elephants number , r = 50%,
France Telecom trace

The relative error on the estimated number of elephants, defined as the difference

between the number of detected elephants and the exact number of elephants divided

by the exact number of elephants, is plotted in Figure 2. Two different versions of

the algorithm are considered: The original algorithm developed in [1] and presented

in the introduction and the modified algorithm introduced here. Recall that these two

algorithms use the min-rule (incrementing only smallest counters), but in a different

way: In case of equality, only one counter is incremented at random in the super-

market scheme, whereas the two counters are incremented in the original version of

the algorithm. The proposed alternative algorithm implements the min rule in a more

standard way. It allows to exploit well-known analytical results on the supermarket

model, which is very studied in the literature. In its original version, the fact that each

lowest counter is incremented makes the model more difficult to analyze. Experiments

show that both methods give a good estimation of number of elephants, for the whole

duration of the trace. Moreover, the supermarket version has less missed elephants,

which can be better for some applications.

One can notice that for the modified algorithm, the generated error is higher at the

beginning (when time is less than 10 minutes). This can be explained by the fact that

starting from an empty filter (with all counters at 0), it takes a long time to reach the

filling up threshold (50%) to perform the first refreshment. As a consequence, counters

are high compared to their values in the stationary phase. Indeed it has been checked
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experimentally that, just before the first refreshment, the proportion of counters at C

is up to 10 times higher than in the stationary phase.
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Fig. 3 Relative error on the number of flows with more than x packets, m = 1.05MB ,
r = 50%, France Telecom trace

Once a flow is declared as an elephant by the algorithm, all its new packets are no

more inserted into the filter. They are simply counted in a dedicated memory, where

all catched elephants are registered. By this way, the algorithm can not only identify

and count elephants but also give their size distribution. The relative error on the

complementary cumulative distribution function of elephants size is plotted in Figure

3. One can notice that some small elephants are missed because of the refreshment

mechanism. Whereas the algorithm gives a very good estimation (with a relative error

less than 0.1%)of the number of large elephants (with more than 100 packets).

In Figure 4, the impact of the filling up threshold (r), on the estimation of elephant

number is investigated. The best result is obtained for r = 50%. With smaller values

of r,(r = 40%, 30%), the relative error becomes negative meaning that some elephants

are missed. In fact, the memory size being constant, for smaller values of r, the filter is

refreshed more frequently. So elephants are loosing more packets. On the contrary, for

high values of r, more mice are declared as elephants, and the error generated by the

algorithm consists mainly of false positives in this case. So there is clearly a tradeoff

for the choice of r.

Figure 5 gives the relative error on the estimated number of elephants for different

values of d. The first observation is that, for larger values of d, the algorithm remains

very robust even if the following occurs: A flow is declared elephant if its d associated

counters reach C = 20/d. In a d = 10 version, C is only 2. Nevertheless, in stationary

regime, the algorithm performs better for d = 2. Indeed, it seems on Figure 5 that more

elephants are missed for larger d, generating a higher negative error on the estimation

of number of elephants. The explanation could be the following: Elephant packets are

alternatively incrementing d counters, so when a refreshment occurs, up to d packets

of the elephant are lost at the same time, according to the number of packets already
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transmitted. It implies that, if d is large, then elephants with size close to 20 could be

more easily lost. In the following, d will remain equal to 2.

Figure 6 presents the inter-refreshment time (duration between two successive re-

freshments in terms of number of arriving packets) for the whole traffic trace. It can

be noticed that the stationary phase is reached at the Kth refreshment time. So the

transition phase seems to be rather short, according to experiments. The stationary

inter-refreshment time using the algorithm based on the supermarket model is higher

than the one obtained with the original version of the algorithm. This can be explained

by the fact that, with the supermarket scheme, every arriving packet increments ex-

actly one counter, whereas in the original version, if the two selected counters are equal,

they are both incremented by one. In particular, when they are both null, they will be

both impacted. As a consequence, the proportion of non null counters grows faster and

the filling up threshold r is reached more quickly.



18

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 20  40  60  80  100  120  140  160

Th
e 

re
fre

sh
m

en
t t

im
e

The refreshment rank

Original version of the algorithm
Supermarket model

Fig. 6 Duration of the transition and the stationary phase, r = 50%, France Telecom trace

Figure 6 gives an explanation to the behavior of the algorithms plotted in Figure

2. In the original algorithm, the inter-refreshment time is lower thus more elephants

are missed. The error is thus negative. In the supermarket version, the error is positive

due to false positives.
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Fig. 7 Comparison between rm and the stationary inter-refreshment time τm∞, France Telecom
trace

In Figure 7, the impact of r on the stationary inter-refreshment time τm∞ is inves-

tigated. More precisely τm∞/rm is plotted for various values of r. According to experi-

ments, τm∞ is very close to rm. In fact the refreshment can be seen as removing rm from

the sum S of all counters (decreasing by one all non null counters which are exactly rm

as the refreshment is performed as soon as the filling up threshold r is reached). In the

stationary phase, when m is large, the proportion of counters at i, for i ∈ {0, . . . , C},
is wi at the first order. And just before the next refreshment, rm packets must be

inserted into the filter, to let S have its former value. Packets belonging to elephants

which have been detected are not taken into account. Those packets are very numerous

and they are not inserted into the filter to avoid polluting it. The conclusion is that

τm∞/m is close to r even for C = 10.
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4 Discussion

The performance of the algorithm clearly depends on the filling up r. To have a good

estimation of the number of elephants, r must be around 50%. When r has higher

values, elephants number will be largely overestimated due to false positives. The key

quantity is w̄(i), the stationary proportion of counters at i when m gets large. An

explicit expression for w̄ is not available even if a numerical value could be computed.

Nevertheless, less ambitiously, one can maybe simply find the critical value of r for

which w̄(C) gets non negligible. At least, the impact of r on w̄ is shown here by

simulation.
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Fig. 8 Impact of r on the limit stationary distribution w̄, simulation using only mice with
uniform size distribution of mean 4, m = 2000

Figure 8 (w is written for w̄) is not based on a real traffic trace but on simulation.

The objective here is to evaluate the limit stationary distribution w̄ if we consider

a traffic composed only of mice. The mice mean size is taken equal to four to be

close to the real traffic (This value is deduced from the real traffic trace). Under these

conditions, we obtain a decreasing limit stationary distribution of w̄, when r equals

50%. For a filling up threshold of 90%, counters are very likely to be higher. We can

notice that the main part of counters values is around six and there are many counters

at C. This explains the fact that, with a filling up threshold around 50%, the algorithm

performs better.

The same experiments are now performed on the real traffic trace. Notice that re-

sults plotted on figure 9 are very close to those obtained by simulation on figure 8. One

can deduce that the elephants present in the real traffic trace do not impact too much

the limit stationary distribution w̄. As a consequence, to analyze the performance of

the algorithm, in particular its generated false positives, flows can be reduced to mice.

This is in agreement with the model considered in part II.
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5 Conclusion

In this paper, a new algorithm catching on-line elephants in the Internet is analyzed.

This algorithm is based on Bloom filters with a refreshment mechanism that depends

on the current traffic intensity. It also uses a conservative way to update counters,

called the min-rule. This latter is exactly to increment the lowest counter among a

set of d chosen at random, ties being solved at random, as in the supermarket model

which provides a much lower tail distribution for the counter values. For a model

involving just mice, limit theorems investigate the existence of a deterministic limit

for the empirical distribution of counters values, when the filter size gets large. This

limit can be exploited to adjust the parameters for the algorithm to perform well. The

accuracy of the algorithm and some theoretical results are tested against a traffic trace

from France Telecom and by simulations.
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