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Abstract—In this paper, a new algorithm estimating the num-
ber of active flows in a data stream is proposed. This algorithm
adapts the HyperLogLog algorithm of Flajolet et al to the data
stream processing by adding a sliding window mechanism. It has
the advantage to estimate at any time the number of flows seen
over any duration bounded by the length of the sliding window.
The estimate is very accurate with a standard error of about
1.04/

√
m (the same as in HyperLogLog algorithm). As the new

algorithm answers more flexible queries, it needs an additional
memory storage compared to HyerLogLog algorithm. It is proved
that this additional memory is at most equal to 5mln(n/m) bytes,
where n is the real number of flows in the sliding window. For
instance, with an additional memory of only 35kB, a standard
error of about 3% can be achieved for a data stream of several
million flows. Theoretical results are validated on both real and
synthetic traffic.

Index Terms—flow; sliding window; hashing; counting

I. INTRODUCTION

We address in this paper the problem of estimating online
the number of distinct elements in a massive data stream.
This problem has several interesting applications in the fields
of traffic engineering and networks security. In fact, some
attacks, such as worm propagation or Denial of Service can
be detected by supervising the number of active flows [1]. A
flow is a sequence of packets defined by the classical 5 tuple
composed of the source and destination addresses, the source
and destination port numbers together with the protocol type.
A sudden increase in the number of active flows should be
quickly identified by the network administrator as it is very
likely to be related to an attack. Due to the huge amount of
data at a very high bit rate (40 Gb/s in OC-768) in actual
internet traffic, scalable algorithms are required. They have
to operate fast, using a limited small memory. Under these
constraints, it is unrealistic to have an exact counting because
it clearly needs a memory size proportional to the number
of active flows. Some probabilistic algorithms [2], [4], [6]
have been developed to estimate the number of flows with
an acceptable standard error of few percents. They only
require a sublinear memory and are well adapted to online
traffic analysis. Based on hashing functions, probabilistic
algorithms are simple to implement and quick enough to
could deal with the huge traffic bit rate. Moreover, they

treat data in only one pass. To infer the estimate, some
of these algorithms rely on bit pattern observables in the
binary representation of the hashed values. For instance, in
LogLog algorithm [4], Durand and Flajolet are interested in
the bit pattern “0R1”. They show that the highest position
of the leftmost 1-bit is closely related to the total number
of observed flows. A similar bit pattern observable is used
in Probabilistic Counting algorithm [2]. A second kind of
observables is called order statistics observables. For instance,
MinCount algorithm [6] is based on the smallest hashed value.

All these algorithms presented above are designed to
perform on a static set of data. It means that they can simply
estimate the total number of flows for a given fixed traffic. So
they can not be applied to an infinite data stream. Moreover,
for many network applications, we are mostly interested in
traffic characteristics in the near past (few minutes ago for
attacks detection). A natural way to adapt these algorithms
to data stream is to use sliding window. Among all the
presented algorithms, only the MinCount algorithm has a
sliding window version with a detailed analysis (see [3]). The
objective is to be able to answer the following query at any
time “How may distinct flows have been seen over the last
w unit of time?” for any duration w smaller than the time
window W .

In this paper, a sliding window adaptation is proposed for
the last version of the LogLog algorithm called HyperLogLog
[5]. This algorithm requires a memory of only mln2ln2(n/m)
bits, where n is the real number of flows, to estimate the
number of flows with a standard error of about 1.04/

√
m.

More details about the HyperLogLog algorithm are given in
section II. The proposed Sliding HyperLogLog algorithm is
presented in section III. In particular we show that we maintain
the same accuracy as in the original version (HyperLogLog),
with an additional small required memory. In practice, with an
additional memory of only 35kB, a standard error of about 3%
can be achieved for a data stream of several million flows. The
Sliding HyperLogLog algorithm is tested and validated against
synthetic and real traffic in section IV.



II. RELATED WORK

The proposed algorithm is an adaptation of the
HyperLogLog algorithm to the data stream processing.
The objective of the HyperLogLog algorithm is to estimate
the cardinality of a given multiset S. A multiset is defined as
a set, where an element can be repeated. This algorithm is
mainly based on the following pattern “0R1” in the binary
representation of the hashed values. More precisely, after
hashing all the elements of the multiset, the highest position
of the leftmost 1-bit is denoted by R. Notice that R is an
order and duplication insensitive observable. The cardinality
of S is then deduced from R via a stochastic averaging
process (see Figure 1). This latter mechanism consists in
splitting S in m buckets, based on the first b bits in the
binary representation of the hashed values, where m = 2b.
The objective is to process the buckets independently and to
compute an average of R, in order to have a more accurate
estimation of the multiset cardinality.
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Fig. 1. The stochastic averaging process in the HyperLogLog Algorithm

The pseudo-code of the HyperLogLog algorithm is given
below:

Algorithm HyperLogLog (m = 2b buckets)
Initialize m registers, R[1], ..., R[m] to 0;
For A ∈ S do

- set x := h(A);
- set j := the bucket’s label (given by the first b bits of x);
- set R[j] := max(R[j], ρ(x)), where ρ(x) is the leftmost

1-bit position of x truncated of its first b bits;
Compute Z := (

∑m
j=1 2

−R[j])−1, it is the harmonic mean of
2R[j];
return E := αmm

2Z
with αm := (m

∫∞
0

(log2(
2+u
1+u ))

mdu)−1.

III. DESCRIPTION OF THE SLIDING HYPERLOGLOG
ALGORITHM

To adapt the HyperLogLog algorithm to the data stream
context, some additional time information must be maintained.
In fact, the objective is to estimate at any time t the number
of distinct flows seen over the last w unit of time, for any
duration w smaller than the time window W . A possible

solution is to perform the HyperLogLog algorithm on the
packets received in the concerned duration. But this naive
solution implies an exhaustive storage of the packets received
over the last time window because we have no a priori
information about w and t. So this is clearly an unscalable
solution. The algorithm we propose aims to maintain a short
list of packets. A packet consists of a pair < ti, Ri >, where
the ti is the arrival time of the packet and Ri is the position
of the leftmost 1-bit in the binary representation of the
hashed value associated to this packet. The idea is to store
only packets that are useful to the computation of the crucial
parameter R, which is the biggest value of Ri. A packet is
stored only if it is a possible maximum over a future window
of time. The list of stored packets is called List of Future
Possible Maxima (LFPM). It is updated in the following way:

For each received packet < tk, Rk > do
- Delete old packets (packets with ti < tk −W ) from the

list LPFM
- Delete packets with Ri ≤ Rk from the LPFM
- Add < tk, Rk > to the LPFM

This simple update mechanism is analogous to the one used
in [3].
An example of a LPFM is given in Figure 2
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Fig. 2. Example of a List of Future Possible Maxima (LFPM)

The stochastic averaging process consisting of splitting the
packets into m buckets, in HyperLogLog algorithm, remains
unchanged. It means that we maintain one LPFM per bucket.
Each list is updated independently. To estimate, at a time t,
the number of flows received over the last w units of time,
we first extract the LPFM packets with a timestamp≥ t− w.
Then we compute the highest Ri among those packets. These
operations are performed separately for each bucket. The
harmonic mean and the estimate of the number of flows are
the same as in HyperLogLog algorithm.

A. The accuracy of the algorithm

The update mechanism of the LPFM has no impact on
the computation of R. It is simply an efficient method that
allows us to compute exactly R at any time t and over any
duration w. It has the advantage to store only a short list
of packets. As the rest of the algorithm is unchanged, it is



clear that adding the sliding window has no impact on the
accuracy of the HyperLogLog algorithm. It means that the
Sliding HyperLogLog algorithm gives the same estimate as
the HyperLogLog algorithm applied on the packets received
in [t− w, t].
One can conclude that the standard error on the estimate given
by the Sliding HyperLogLog algorithm is of about 1.04/

√
m.

Notice that the Sliding LogLog algorithm outperforms the
Sliding MinCount algorithm [3], which has a higher standard
error of about 1.3/

√
m.

B. The memory usage

In the HyperLogLog algorithm, the total used memory is
given by the m registers R[i], fori ∈ [1,m]. Thus the required
memory equals mln2ln2(n/m) bits, where n is the real
number of flows. As explained before, to design an algorithm
adapted to data stream, we need to store more details about
the traffic. The required memory in the Sliding HyperLogLog
algorithm is given by the size of the m lists of possible future
maxima (LPFM), that we denote Ltot

n . More precisely, a LPFM
has Ln packets, where a packet is a pair < ti, Ri > . As Ri

depends on the number of flows n, the size of the list also
depends on this parameter.
In practice we need a 4 byte timestamp, Ri can be stored on 1
byte for a data stream of several million flows. Therefore the
size of the total used memory in bytes equals 5 Ltot

n . Ltot
n can

be given by the following equation Ltot
n = m E(Ln), where

E(Ln) is the mean size of the LPFM in packets. To conclude,
the Sliding HyperLogLog algorithm requires a memory of
5 m E(Ln) bytes.
To estimate E(Ln), we compare the proposed algorithm to
the Sliding MinCount algorithm [3]. This latter algorithm is
based on an order statistics observable which is the smallest
hashed value. The main difference between the two algo-
rithms is the update mechanism of the LPFM. In the Sliding
MinCount algorithm, a packet is remains in the LPFM if its
associated hashed value Hi is smaller than the hashed value
of the current received packet Hk. However in the Sliding
HyperLogLog algorithm, the condition concerns Ri and Rk

which represent the position of the leftmost 1-bit. Notice that
these two conditions are not independent. In fact Ri > Rk

implies Hi < Hk. However, we can have Hi < Hk and
Ri = Rk. For instance one can take Hi = 0010010 and
Hk = 0010110. Thus the packet < tk, Hk > is maintained
in the list for the Sliding MinCount algorithm and is deleted
from the LPFM in the Sliding HyperLogLog algorithm. So
the mean size of the LPFM, E(Ln) is clearly smaller in the
Sliding HyperLogLog algorithm. In [3] Fusy et al show, using
a classical result in combinatorics, that when n gets large,
E(Ln) → ln(n/m). Such result is difficult to establish for
the Sliding HyperLogLog algorithm, as the same tools are not
adapted in our context. However, as the LPFM is smaller, we
can at least state that for the Sliding HyperLogLog algorithm,
ln(n/m) becomes an upper bound to E(Ln), when n gets
large.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, the Sliding HyperLogLog algorithm is
validated using two kinds of data. First, we simulate a
generic data stream. It can be seen as a synthetic traffic,
where elements represent packets. Second, a real traffic trace
issued from campus networks is considered. For both cases,
the objective is to count the number of flows over a sliding
time window. Recall that the Sliding HyperLogLog algorithm
allows us to estimate at any time the number of distinct flows
that have been seen over the last w unit of time, for any w
smaller than the time window W .

A. The accuracy of the algorithm

We focus here on the performance of the algorithm in
terms of the accuracy of the estimation of the number of flows.

Synthetic traffic
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Fig. 3. Estimation of the number of active flows in a logical window, on a
synthetic traffic

First, we consider a simple case, where a flow consists of
only one packet. So the traffic is only composed of packets
belonging to distinct flows. We simulate a data stream of 5
millions packets. The time window W is taken equal to 1
million packets. Every 100 packets, we answer the following
query: “How many flows have been seen among the last 1
million received packets?”. The estimated number of flows
is plotted in Figure 3. It is compared to the real value (1
million in this case). One can notice that the error on the
estimation of the number of flows is most often within the
theoretical bound of 3.25% (= 1.04/

√
m, m being equal

to 1024). It sometimes slightly exceeds this value. So the
experiments are in agreement with the intuition that adding
the sliding window mechanism does not affect the accuracy
of the original HyperLogLog algorithm.

Real traffic



The same experiments are performed on a traffic trace issued
from campus networks: “Abilene” trace. This traffic trace has
been captured in June 2004. It was found at the URL:
http ://pma.nlanr.net/Traces/Traces/long/ipls/3
Some characteristics of this trace are given in the following
table:

TABLE I
CHARACTERISTICS OF ABILENE TRAFFIC TRACE

Nb. IP packets Nb. TCP Flows Duration

42 939 465 1 389 805 8 minutes
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Fig. 4. Estimation of the number of active flows in a sliding time window

In Figure 4, a physical time window W is considered. It
is taken equal to 10 seconds. Every second, we estimate the
number of distinct flows received over the last 10 seconds.
The number of buckets, m, equals 1024. Experimental results
show that the error on the estimation of the number of flows
is close to its expected value. Notice that unlike the simulated
traffic, the real number of flows over the last 10 seconds is
variable, but it does not vary too much.

A logical time window is used in Figure 5. Time is here
computed as the number of received packets. We consider the
same query as for the synthetic traffic: “How many flows have
been seen among the last 1 million received packets?”. This
query is asked every 100, 000 packets. One can simply check
that experimental results are in agreement with theory.

B. The cost of the algorithm

The main advantage of the Sliding HyperLogLog algorithm
consists of the capacity to cope with a data stream of any
duration. Moreover, it can answer a query with a variable
duration w (bounded by the time window W ). To provide these
options, it needs additional ressources compared to the original
version: the HyperLogLog algorithm. The major difference
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Fig. 5. Estimation of the number of active flows in a logical window

between these two algorithms is the presence of the List of
Future Possible Maxima (LFPM) in Sliding HyperLogLog
algorithm. The total used memory is given by the size of the m
LFPM, referred to as Ltot

n in Section III. Recall that we have
one LFPM per bucket. The execution time of the algorithm
also depends on the size of the LFPM, as all elements of this
list are updated for each received packet.

Figures 6 and 7 show the evolution of Ltot
n for respectively

synthetic and Abilene traffic. According to experiments, Ltot
n

has a small variance.

 5400

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 1  1.5  2  2.5  3  3.5  4  4.5  5

si
ze

 o
f t

he
 m

 L
F

P
M

packets number (million)

m=1024, W=1M packets

size of the m LFPM

Fig. 6. Size of the list LFPM, Synthetic traffic

In figures 8 and 9, the distribution of the LFPM, Ln, is
plotted. One can notice that Ln takes small values for both
synthetic and Abilene traffic, with a respective average of 5
and 3. This difference can be explained by the fact that the
number of flows in a time window is not the same in both
cases. For the synthetic traffic it is given by the number of
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Fig. 7. Size of the list LFPM, Abilene traffic

packets in a time window : 1 million flows, and for abilene
traffic, there is about 45, 000 flows in a time window of 10
seconds.
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Fig. 8. The distribution of the size of the list LFPM, Synthetic traffic

In Figures 10 and 11, the mean size of the LFPM, E(Ln),
is plotted for different values of m, for respectively synthetic
and Abilene traffic. E(Ln) is compared to the theoretical
asymptotic (when the total size of flows n is very large) mean
size of the LFPM in the Sliding MinCount algorithm presented
in [?]. For synthetic traffic n equals 1 million and for Abilene
traffic, n is given by the real number of flows in a time window
of 10 seconds. It is supposed here to be constant (equal to
45, 000) as it has a very small variance. One can notice that
E(Ln) is almost usually smaller than the asymptotic mean
equal to ln(n/m). So experimental results confirm the fact that
Sliding HyperLogLog needs a smaller memory than Sliding
MinCount algorithm. Moreover, as the LFPM is updated in
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the same way for both algorithms, a smaller LFPM implies a
shorter updating time.
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Fig. 10. Impact of m on the mean size of the list LFPM, using a synthetic
traffic

As mentionned in Section III, Ln represents the number
of elements in the LFPM. An element consists of a pair
< ti, Ri >, Ri is encoded in ln2ln2(n/m) bits in Sliding
HyperLogLog algorithm. However for Sliding MinCount al-
gorithm, Ri corresponds to the hashed value which needs
ln2(n/m) bits. We can conclude that the total memory size
is smaller in Sliding HyperLogLog algorithm. This latter has
also a better accuracy than Sliding MinCount algorithm, with
a relative error of 1.04/

√
m instead of 1.3/

√
m.

The total execution time of the two algorithms can not be
compared because the updating time of the LFPM is certainly
shorter for Sliding HyperLogLog algorithm, but this algorithm
has an additionnal processing step which consists of deducing
Ri from the hashed value for every received packet. In the
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Fig. 11. Impact of m on the mean size of the list LFPM

Sliding MinCount algorithm, the hashed value is directly used
to update the LFPM. So we have clearly a tradeoff between
the execution time and the memory usage.
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