
HAL Id: hal-00465793
https://hal.archives-ouvertes.fr/hal-00465793

Preprint submitted on 21 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating types and effects with state monads and
linear logic
Paolo Tranquilli

To cite this version:
Paolo Tranquilli. Translating types and effects with state monads and linear logic. 2010. �hal-
00465793�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50102209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00465793
https://hal.archives-ouvertes.fr

Translating Types and Effects
with State Monads and Linear Logic

Paolo Tranquilli
LIP, ENS Lyon, Université de Lyon

(UMR 5668 CNRS ENS Lyon UCBL INRIA)
Email: paolo.tranquilli@ens-lyon.fr

Abstract—We study a lambda-calculus with
references and a types and effects system. In the
first part of the paper, we translate it into the ordinary
lambda-calculus with products, implementing an
interacting family of state monads localized at sets
of regions. In general the target language must be
endowed with recursive types. However we prove that
the stratification condition on regions, already used
in type and effect systems to assure termination, is
equivalent to completely avoid the use of recursion
in the types used in the translation. We thus obtain
a logical characterization of stratification, and by
simulation we also provide a new proof that it yields
termination. In the second part of the paper we extend
the call-by-value translation of ordinary lambda-terms
in linear logic proof nets to the calculus with references.
This allows for a parallel evaluation of the calculus
that preserves its sequential semantics.

I. Introduction

Mainstream programming paradigms are pervaded with
side effects. The great majority of programs do not simply
calculate a function, but carry out a whole lot of other
actions that may influence the result: interacting with the
user or with other processes, jumping to particular parts of
its code, accessing memory,. . .There is a lot of research in
computer science that goes towards controlling such side
effects. Indeed programs that make large, uncontrolled use
of side effects are harder to understand, verify or optimize.

Among the abstract tools that have been developed to
this end and that are of interest to this work are types and
effects systems [1] and monads [2]. The objective of the
former is to analyze statically side effects by annotating in
some way the ordinary types of programs. A typical way to
analyze memory access is abstract memory into different
entities called regions; then one decorates types with the
set of regions which the typed program can access, possibly
specifying what kind of access it needs. The annotated
types become then informative on what and where can
something happen when calling the function. A suitable
level of abstraction from the actual workings of memory
management allow to carry out a static analysis. For exam-
ple such an approach has been successfully used to analyze
the problem of heap memory deallocation ([3], leading to
the so-called region based memory management).

Monads are a tool directly coming from category theory
which envisages to encapsulate and abstract away the
details of side effects while remaining in a “clean” typed
world. The idea is that a monad T can be seen as a type
constructor modeling a computational paradigm where
(effect-less) values of type A are separated from computa-
tions of type T (A). All the details are left to the monad’s

unit A→ T (A), embedding values into computations, and
its multiplication T 2(A) → T (A), determining how com-
putations should compose, possibly interacting with one
another. Since their inception they made it to be a high-
light of Haskell’s type system and way of programming.

Both approaches rely on a common ground: types as
a tool to study and/or discipline programs. To this end
when it comes to memory access, the typical result is
either allowing effective parallelization (like in the original
type and effect proposal [1]), or ensure type safety (e.g.
no “wrong” data occurs during execution), or allow timely
memory deallocation as already mentioned. However
there is another property that in general type systems
have been studied to deliver: termination, i.e. a certificate
that the program will eventually yield a result.

Until recently this particular aspect has not been much
studied in the presence of side effects involving memory
access, especially when higher order types are possibly
referenced. Indeed it was long known [4] that apart
from the classical way of obtaining a (diverging) fix-point
operator through self application, which is easily forbidden
by types, such a term can be encoded through well-typed
self reference. Using the syntax we will show in Figure 1,
a diverging term can be easily written following this idea:

νr⇐λx. get(r)x. get(r) 〈〉 .

Such a term can be read as “store in the location r the
higher order function that reads from r what it should
do, then apply it”. Indeed, marking as F = λx. get(r)x
the execution yields

νr⇐F. get(r) 〈〉 → ǫr. get(r) 〈〉 , r⇐F

→ ǫr.F 〈〉 , r⇐F → ǫr. get(r) 〈〉 , r⇐F → · · ·

r⇐F is detached in a store accessible from the term. The
ǫr is a feature of our syntax which acts as a place-holder
to garbage-collect values of the store once computation
has ended (more details in section II). Returning to the
self-referencing, divergent term, we can set r to hold
functions of type 1 → 1, and the resulting term will be
typed as 1. We may get a hint as to why the program
loops (but a priori no solution) by annotating types and

seeing that in fact r stores functions 1
{r}
−−→ 1: the set

added to the arrow indicates that functions stored in r
may access r, so circularity may ensue.

Recent works explored the idea of stratification
of regions to avoid such circularities [5], [6] and yield
termination not only for sequential but also for cooperative

multithreading programs. The idea is that one must follow
a precise order when assigning types to regions, which
induces an ordering on regions so that, intuitively, a
region may affect or read only regions that are strictly
smaller. This has a distinct logical scent to it: even more
so when one see their proof technique, which they carry
via reducibility candidates.

In this work we set out to study types and effects from
the logical point of view, and stratification together with
them. We first chose the viewpoint of Girard’s linear
logic (LL [7]=, which has already been employed in the
study of λ-calculus. One of the theoretical notions in LL’s
toolbox are two translations of intuitionistic logic into LL

(also first described in [7]). These two mappings are based
on two different encodings of the intuitionistic arrow
A → B (corresponding via the Curry-Howard proofs-as-
program paradigm to the type of functions from A to B):
!(A⊸ B) and !A⊸ B. The⊸ is the linear arrow, typing
proofs/programs which use their hypotheses exactly once.
The power of duplication is regained (and controlled) via
the exponential modality ! (“off course”). The two trans-
lation then mark two different perspectives: in !(A⊸ B)
we are saying that functions are the duplicable objects,
and thus the values that can be passed around, while in
the other we are saying that being an argument suffices
to be duplicated. Indeed it was shown in [8] that the
two translation are intimately linked with two paradigms
of evaluation of functional programs, respectively call-
by-value and call-by-name. We concentrate on the first,
which is used more often in calculi with references.

The syntax of choice for LL are proof nets, graph-
theoretical representation of proofs that have the
advantage of exposing parallel features of deterministic
and sequential computation. Its recent developments in the
direction of non-deterministic differential extensions [9]
reaching concurrency [10] make this kind of investigation
the ideal launching pad towards extending logical
interpretations of concurrent computation, in the sense of
Curry-Howard. For now we restrain to the sequential case
and leave multithreading for future work: here proof nets
provide for a direct representation of the dependencies
among different parts of the terms by means of wires (we
follow the interaction net paradigm [11]). In particular
effect annotations translate into several wires carrying
around values: if a particular part of the program does not
use a particular region, its wire will run to the next term in
the evaluation order, which will be able to get and process
the value before the preceding term has actually finished.
Sequential semantics is preserved, as any evaluation of
proof nets corresponds to the one of the term.

As it turns out, translating this kind of system is not
a feature exclusive to LL. Though it exposes the parallel
features of effect annotating, the constructions it uses
can still be carried out in the environment of ordinary
λ-calculus. Unsurprisingly, effects correspond exactly
to state monads: annotation simply allows to restrict
the state monads to the memory actually used. We
thus implement a family Te of monads indexed by sets of
regions, where combining a computation Te1

(A→ Te3
(B))

with one in Te2
(A) yields a computation in Te1∪e2∪e3

(B),
i.e. affected regions are clearly summed up during
evaluation. As the state monad can be encoded internally

in types, it turns out that the types assigned to regions in
e are in fact directly referred to in Te(A). If we go back
to the self-referencing type, we obtain the translation

(1
{r}
−−→ 1)◦ = 1 → Tr(1) = 1 → Xr → (Xr × 1), where

Xr is the (translation of) the type assigned to r. . . that is

(1
{r}
−−→ 1)◦ itself! We therefore get for r the recursive type

Xr = 1→ Xr → (Xr×1). These are perfectly fine for type
safety, except they cannot ensure termination. As it turns
out, this unstratified instance is not a case: stratification
is equivalent to providing a type to all regions without
reverting to recursive ones. Stratification is logic.

Outline: In the upcoming section II we introduce
Λreg, the calculus on which we base our work. It is a
deterministic and single threaded variant of the one of [6].
The only different feature it has is local values: the store
works in fact like a stack, and when a value is introduced it
covers what was assigned to that region beforehand, until
the computation in which it is used (and possibly updated)
returns a value. Then the value gets garbage collected and
the previous value is exposed again. What are localized
however are instances of the store, not the regions. We
prove that the type and effect system (stratified or not)
guarantees that a program never locks (Lemma 3): for
example if it requests a value there will be one for him in
the store. We make some comparisons with other calculi.

In section III we implement localized monads in Λ×, the
simply typed λ-calculus with products. We then use them
to completely translate Λreg, proving two results: strat-
ification is equivalent to using simple types without fix-
points of formulae (Proposition 12), and a Λreg terms eval-
uates to a value V iff its translation evaluates too to the
translation of V (Theorem 14). In particular we get a new
proof that stratification yields termination (Corollary 15).

In section IV we pass to LL proof nets. We redefine
the translation, that is essentially what done with Λ×

passed through the call-by-value translation; we then
show simulation (Theorem 23) and that we can follow
any reduction strategy (limited to depth 0) in the proof
net corresponding to a term M : we are guaranteed that
we will find the value of M if there is one (Theorem 24).

In section V we make some final remarks and present
our future objectives.

Notations: We will use multisets (i.e. functions from
a set to natural numbers, the multiplicities) with additive
notation, so that µ1 +µ2 is disjoint union, µ1 ≤ µ2 means
that µ1 is a submultiset of µ2, and µ1 − µ2 is multiset
subtraction. Given a relation →, the notation

∗
−→ is for

the transitive reflexive closure of →.

II. The λ-Calculus with Regions

In this section we present the λ-calculus with regions
we will use for our results.

A. Syntax and Reduction

Figure 1 presents the syntax of terms, stores and
the reduction of their interaction. A ν-step is one re-
ducing a νr⇐V.N subterm. As usual, we associate both
abstractions and applications, i.e. λx, y.M = λx.λy.M and
MN1N2 = (MN1)N2. We also use the imperative notation
M ;N to denote (λd.N)M with d /∈ FV(N).

Syntax

x, y (variables)
r, s (regions)
U, V ::= x | 〈〉 | λx.M (values)
M, N ::= V | MN | νr⇐M.N | ǫr.M

(terms)
| set(r, M) | get(r)

S, T ::= ε | r⇐V | S, T (stores)
E, F ::= [] | EM | V E | set(r, E)

(eval. contexts)
| νr⇐E.M | ǫr.E

Structural congruence for stores
ε, S ≡ S ≡ S, ε, (S1, S2), S3 ≡ S1, (S2, S3)

r⇐U, s⇐V ≡ s⇐V, r⇐U if r 6= s.

Reduction
E[(λx.M)V], S → E[M{V/x}], S,
E[νr⇐U.M], S → E[ǫr.M], r⇐U, S
E[set(r, V)], r⇐U, S → E[〈〉], r⇐V, S
E[get(r)], r⇐U, S → E[U], r⇐U, S
E[ǫr.V], r⇐U, S → E[V], S.

Figure 1. Syntax and reduction of Λreg.

A first abstraction with respect to other calculi with
references is that we do not directly employ true references
that can be passed around. In fact we identify regions
with locations: every region in a given moment provides
only one value. Notice indeed that though there may be
multiple values for r in the store S, as stores are not
commutative in general, there will always be a single
value “on the surface” for a given region: reduction is
completely deterministic.

Stores are therefore functions assigning stacks to
regions. This feature is introduced by the interaction
between νr⇐V , that pushes a value in the store, and the
ǫr it leaves behind. The latter is a helper constructor that
waits until the term it is attached to becomes a value and
then removes the entry from the store possibly revealing
what was assigned to r before. νr/ǫr thus implement
a kind of local entry in the store. However it must not
be confused with a private region (like the PRIVATE

constructor from [1]), as it does not bind r in any way. In
particular any reference to r inside the body of a function
is unaffected by the νr/ǫr reductions and my be evaluated
later to refer to other values of r. Also the value at the
top of the stack can “leak” below after that it has been
destroyed if a function passes it around.

We take the opportunity to present an example using
all the reduction rules in Figure 1 and exposing what
we just wrote. Let tt and ff be λx, y.x and λx, y.y
respectively. Then

νr⇐ tt . get(r)(ν⇐ ff .(λx, y. set(r, x);x) get(r)) 〈〉 〈〉
∗
−→ ǫr. tt(ν⇐ ff .(λx, y. set(r, x);x) get(r)) 〈〉 〈〉 , r⇐ tt
∗
−→ ǫr.(ν⇐ ff .(λx, y. set(r, x);x) get(r)) 〈〉 , r⇐ tt

→ ǫr.(ǫr.(λx, y. set(r, x);x) get(r)) 〈〉 , r⇐ ff, r⇐ tt
∗
−→ ǫr.(ǫr.λy. set(r, ff); ff) 〈〉 , r⇐ ff, r⇐ tt

→ ǫr.(λy. set(r, ff); ff) 〈〉 , r⇐ tt
∗
−→ ǫr. ff, r⇐ ff→ ff .

Notice how the “internal” ff got to be the final result.

e, f (finite sets of regions)

A, B ::= 1 | A
e
−→ B (types)

Γ,∆ ::= x1 : A1, . . . , xn : An (variable context)
R,S ::= r1 : A1, . . . , rn : An (region context)

Typing

R; Γ ⊢ x : A, ∅ R; Γ ⊢ 〈〉 : 1, ∅

R; Γ, x : A ⊢M : B, e

R; Γ ⊢ λx.M : A
e
−→ B, ∅

R; Γ ⊢M : A
e3−→ B, e1 R; Γ ⊢ N : A, e2

R; Γ ⊢MN : B, e1 ∪ e2 ∪ e3

R, r : A; Γ ⊢M : A, e1 R, r : A; Γ ⊢ N : B, e2 ∪ {r}

R, r : A; Γ ⊢ νr⇐M.N : B, e1 ∪ (e2 \ {r})

R, r : A; Γ ⊢M : A, e ∪ {r}

R, r : A; Γ ⊢ ǫr.M : A, e \ {r}

R, r : A; Γ ⊢M : A, e

R, r : A; Γ ⊢ set(r, M) : 1, e ∪ {r}

R, r : A; Γ ⊢ get(r) : A, {r}

R; Γ ⊢M : A, e e (e′

R; Γ ⊢M : A, e′

R;⊢M : A, e ∀r⇐V ∈ S : R;⊢ V : R(r), ∅

R;⊢M,S : A, e

Stratification

∅ ⊢
R ⊢ A

R, r : A ⊢
R ⊢

R ⊢ 1

R ⊢ A R ⊢ B e ⊆ dom(R)

R ⊢ A
e
−→ B

Figure 2. Type and effect system for Λreg.

B. Types, Effects and Stratification

Figure 2 presents all the actors involved in types and
effects inference of Λreg. Notice how effects are cumulative
save for ν/ǫ which effectively erases the effect from, so to
say, the active ones. Notice also how dummy effects can
be freely added. In the same figure we also present the
stratification condition on the region context R, denoted
by R ⊢. The following are basic results on the type system.

Lemma 1.

• if R; Γ ⊢ M : A, e and x /∈ dom(Γ), then
R; Γ, x : A ⊢M, e;

• if R; Γ ⊢ V : A, ∅ and R;x : A,Γ ⊢ M : B, e, then
R; Γ ⊢M{V/x} : B, e;

• if R;⊢ M,S : A and M, S → M ′, S′, then
R;⊢M ′, S′ : A.

States, programs, results: Types allow to forbid
unwanted configurations, like trying to apply a base value
as a function. However memory access provides for other
ways of misbehaving: for example asking for the value in
an empty memory cell, (get(r), ε) or trying to write to an
unallocated slot (set(r, V), ε). In fact the types and effect

system, together with the νr construct we employ, allow
to avoid this kind of situations. We just need to start from
a closed term with no pending effects (i.e. R;⊢M : A, ∅),
provided M does not use any ǫr. Nevertheless in order to
reason inductively on programs and prove their properties
we also need to describe the intermediate states between
the starting program and (hopefully) the value it reaches.
In the following we will do exactly so introducing the
notion of external state, checking on what regions and
how many of them a term must have access to.

The domain dom(S) of a store S is defined as the
multiset of r’s for which there is r⇐V ∈ S. Formally,
dom(ε) = [], dom(r⇐V) = [r] and dom(S, T) =
dom(S) + dom(T). Let ar(M) (the active regions) be
the partial function taking terms to multisets of regions
defined inductively as follows (⊥ stands for undefined).

ar(x) = ar(〈〉) = ar(get(r)) := [] ,

ar(set(r, M)) = ar(M),

ar(MN) :=

ar(N) if M is a value,

ar(M) if M not a value and ar(N) = [],

⊥ otherwise,

ar(λx.M) :=

{

[] if ar(M) = [],

⊥ otherwise,

ar(νr⇐M.N) :=

{

ar(M) if ar(N) = [],

⊥ otherwise,

ar(ǫr.M) = ar(M) + [r] .

What this function does is check how many νr’s were
activated and turned into ǫr’s waiting for an evaluation
to end. Non-definedness marks that something is wrong:
there is an ǫr that could not possibly be generated during
evaluation (for example under a λ).

Definition 2. A state is a pair M, S of a term M and
a store S such that

• M, S is typable with some type and effects A, e,
• ar(M) is defined and ar(M) ≤ dom(S), and
• e ⊆ |dom(S)− ar(M)|.

A state S, M is external if dom(S) = ar(M) (in particular
it has e = ∅). A program is an external state M, ε: in
particular M, ε is a program iff M is closed, typable with
some A, ∅, and not containing any subterm ǫr.N , so that
ar(M) = []. A result is a state V, S whose term is a
value. We call external results V, ε directly values.

While asking that a program do not contain ǫr
constructs may seem sensible, marking it as a helper
constructor used for evaluation but not available for
programming (similar to the *private* constructor of
[1]), the condition on states by means of the “ar” function
might seem a bit awkward. However the stability of
external states (Lemma 3) and the one we will present later
(Lemma 8) indeed characterize external states as exactly
the residuals of programs. Non-external states are needed
to carry out some proofs by induction: intuitively, memory
access operations are always evaluated in an internal state,
otherwise they would fail in retrieving or setting a value.

The following result states that the conditions imposed
on programs/states are stable under reduction and that

they guarantee that either we have divergence or get a
value/result. In particular no deadlock related to memory
occurs: memory access (get(r) and set(r, V)) and deal-
location (εr.V) do not produce “segmentation faults”, i.e.
are always evaluated when there is an r⇐V in the store,
so their reduction is defined. Moreover if M, ε is a program
and evaluates to a result V, S, then it will be necessarily
a value V, ε, i.e. garbage collection will have been done.

Lemma 3. If M,S is a state, then either it is a result
V, S or M, S → M ′, S′ with M ′, S′ a state too. Moreover
dom(S′) − ar(M ′) = dom(S) − ar(M); in particular if
M,S is external so is M ′, S′.

C. Alternatives

In this section we discuss some alternatives for the
syntax, either coming from the literature, or necessary
later in the paper.

1) Subtyping: The reader could notice the lack of
subtyping in our system, as in [1], [6]: we retained just
the possibility to add dummy effects. We will here explain
how this does not really affect the expressiveness (though
it may affect the conciseness of terms when subtyping is
needed).

Subtyping is given by the following inductive definition:

A ≤ A

A′ ≤ A B ≤ B′ e ⊆ f

A
e
−→ B ≤ A′ f

−→ B′

Transitivity follows from a proof by induction. Let ⊢s be
the type system with the same rules done in Figure 2 and
the following one for subtyping:

R; Γ ⊢s M : A, e A ≤ B

R; Γ ⊢s M : B, e

Lemma 4. For every derivation of R; Γ ⊢s M : A, e there
is one of the same assertion where the subtyping rule
appears only under axioms (namely the rules for variable
and for get).

The subtyping rule cannot be completely removed pre-
serving the same assertion M : A. Nevertheless one may
notice that η-expansion allows some form of supertyping:

e.g. we have x : 1
e
−→ 1 ⊢ λy.xy : 1

e′

−→ 1 with e ⊆ e′, with-
out recurring to the explicit subtyping rule but just using
the dummy effects one. However η-expansion behaves very
badly in general with call-by-value, as it may turn a
non-value into a value1. Though η-expansion of values is
acceptable, it does not suffice here. For example, if we want
to cast x : 1 → 1 → 1 to its supertype 1 → 1

e
−→ 1, we

would need to η-expand to λy, z.xyz, in particular expand-
ing xy which is not a value. We thus provide a particular
combination of η and β expansions which do the trick.

Let be the reflexive and compatible closure of

V λx.I(V x), x /∈ FV(V),
get(r) I get(r),

where I = λx.x, the identity. Notice that under non-weak
reduction, the right hand side of reduces to the η-
expansion of the right hand side. Notice also that M M ′

1For example, if M is a diverging term, its η-expansion is a value
and is thus terminating.

implies that M is a value iff M ′ is one too. We extend
also to stores. Finally, by compatibility one easily has that
if M M ′ and V V ′ then M{V/x} M ′{V ′/x}.

Lemma 5. If R; Γ ⊢s M : A, e is derivable, then there is
M ′ with M

∗
 M ′ with R; Γ ⊢M ′ : A, e without subtyping.

Lemma 6. If M M ′ and S S′, then M, S ⇓ V, S0

iff M ′, S′ ⇓ V ′, S′
0 with V V ′ and S′

 S′
0.

The above two lemmas combined together say that
the system without subtyping we presented is expressive
as much as the one with subtyping, modulo doing an
expansion on terms which allows mimicking subtyping by
just adding dummy effects.

2) Reference types: Another feature that might seem
strange to have missing are explicit types for references,
and the possibility to treat references/regions as data,
possibly to be passed between programs, like in [1]. The
language presented in this paper must mainly be seen as a
tool to abstract away some specific features of references,
for example with the objective of proving termination.

In any case given enough expressiveness one can encode
reference types. In fact if we suppose to have an imple-
mentation in λ-calculus of lists and natural numbers (for
example using polymorphic λ-calculus, see the discussion
we make in section V), it is not hard to implement general
references. We here give an informal description of it.

For references of type A, let be given a region r : ListA

(of list type). Then let

newr := λv.(λℓ. set(r, ℓ); length ℓ) get(r)
writer := λn, v. set(r, update get(r)nv),
readr := λn. pick get(r)n,

where the new terms employed (length, update and pick)
are rather self-explanatory. Then new can be interpreted
to assign a value to a new slot in the store and pass a
reference to it (which quite bluntly is the size of the list and
thus the index of the last element inserted in it. Given such
an integer write and read can then update and obtain
the values from the list. The term must only be wrapped
into νr⇐ empty .M , initializing the list to be empty.

3) Storeless reduction: We will here present an
alternative definition of reduction that internalizes stores
and does not use the helper ǫ construct. We will use such
a syntax to define the translation of states into linear
logic proof nets in section IV.

Let ν-evaluation contexts be generated by the same
rules as evaluation contexts (Figure 1), adding however
ν⇐V.E. Given a ν-evaluation context E, let PR(E)
(the private regions of E) be the set of r’s so that E’s
hole is in the scope of a νr. Now given a program M
(in particular without ǫr’s), we define the storeless
reduction M M ′ as:

E[(λx.M)V] E[N{V/x}], E[νr⇐V.U] E[U]

E[νr⇐U.F [set(r, V)]] E[νr⇐V.F [〈〉]]

E[νr⇐U.F [get(r)]] E[νr⇐V.F [V]],

where E and F are ν-evaluation contexts such that
r /∈ PR(F). Intuitively, the νr in νr⇐U.F is the first value
for r whose scope captures the location we are evaluating.
We recall that a ν-step is one that in regular reduction
reduces a νr⇐V.N subterm adding V to the store.

Syntax

U, V ::= x | 〈〉 | λx.M | 〈U, V 〉 (values)
M, N ::= V | MN | π1M | π2M | 〈M, N〉 (terms)
E, F ::= [] | EM | V E | π1E | π2E (eval. contexts)

| 〈E, N〉 | 〈V, E〉

Reduction

(λx.M)V → M{V/x}, πi〈V1, V2〉 → Vi.

Figure 3. Syntax and reduction of Λ×.

X, Y (type variables)
A, B ::= X | 1 | A→ B | A×B (types)
Γ,∆ ::= x1 : A1, . . . , xn : An (variable context)
E,F ::= X1

.
= A1, . . . , Xk

.
= Ak, . . . (systems of eq.)

Typing

Γ ⊢ x : Γ(x) Γ ⊢ 〈〉 : 1

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢ 〈M,N〉 : A×B

Γ ⊢M : A1 ×A2

Γ ⊢ πiM : Ai

Figure 4. Type system for Λ×.

Now we will show how to lift a state to a program that
reduces to it via ν-steps (which, we recall, are those reduc-
ing νr’s), and which will be able to simulate the reduction
of the state via (Lemma 9). It will be then the case
that the lifted program perfectly simulates the evolution
of the state it lifted from by means of storeless reduction.

Definition 7. The lifting (M,S)ν of a state be defined
as M if M = V or M = get(r), and otherwise:

(MN,S)ν :=

{

M(N, S)ν if M is a value,

(M,S)ν otherwise.

(νr⇐M.N, S)ν := νr⇐(M, S)ν .N,

(set(r, M), S)ν := set(r, (M,S)ν)

(ǫr.M, S, r⇐V)ν := νr⇐V.(M,S)ν .

Lemma 8. For every external state M,S, (M,S)ν

is defined and is the unique program such that
(M, S)ν , ǫ

∗
−→M,S using only ν-steps.

Lemma 9. Let (M, S) be an external state.
Then (M,S) → (M ′, S′) with a non-ν-step iff
(M, S)ν

 (M ′, S′)ν . If (M,S) → (M ′, S′) with a
ν-step, then (M,S)ν = (M ′, S′)ν .

III. Types and Effects into Monads

In this section we define the translation of Λreg into
the ordinary λ-calculus with products. As it turns out,
on the type level this corresponds to introducing state
monads [2]. Indeed, the annotated arrow A

e
−→ B will

correspond to the arrow A → Te(B) where Te is a state
monad indexed by the set of regions.

In Figure 3 we show the syntax of such calculus, which
we denote by Λ×. Types and typing rules for Λ× are
shown in Figure 3. As usual, FV(A) denotes the set of
variables appearing in A. For x and y distinct variables

we will write λ〈x, y〉.M to mean λp.(λx, y.M)(π1p)(π2p).
We will denote the generalized product (parenthesized on
the left) by

∏

i∈I Ai, if I has an order associated with it.
We define the empty product as 1, and generalized tuples
by 〈M1, . . . ,Mk+1〉 := 〈〈M1, . . . ,Mk〉, Mk+1〉 for k ≥ 2,
and 〈M〉 := M . The corresponding projections πk

i are
obtained by combining the two projections πi.

As we will want to account also for the unstratified
case, we have also introduced type variables and systems
of equations, which are considered here as functions
(possibly with infinite domain) from some type variables
to non-atomic types, presented as sets of pairs X

.
= E(X).

Given such a system of equations, it can be used to define
recursive types by considering the structural equivalence
≡E generated by X ≡E E(X) for X ∈ dom(E) (i.e. ≡E is
the equivalence relation generated by the context closure
of the equations

.
= appearing in E).

Definition 10. We say that E is solvable if there is an
assignment σE from dom(E) to closed (i.e. variable-free)
types so that for all X ∈ dom(E) we have X ≡E σE(X).

The above is equivalent to asking σE(X) = σE(E(X)),
where σE() is extended on all types as usual, letting
it be the identity on variables outside dom(E) and
proceeding by induction. Notice that if E is solvable, then
FV(E(X)) ⊆ dom(E) for all X ∈ dom(E), the solution
σE is unique, and the quotient by ≡E gives just the
types A with FV(A)∩ dom(E) = ∅, in particular no truly
recursive types (such as X = 1×X) are induced.

A. State Monads

In this section we will implement side effects in Λ× by
using state monads. Let there be a distinguished type
variable Xr for each region r, and let E be a system
of equations on the Xr’s. From now on, types will be
considered modulo E. Let there be also a fixed order on
regions, so that sets of regions are considered presented
according to this order.

Given a finite set e of regions, the type of e-stores
is Pe :=

∏

r∈e Xr. The state monad localized at e is
defined by the type constructor Te(A) = Pe → (Pe × A).
This is the classic state monad, modeling the fact that
a computation will start with a certain state and return
possibly another one together with the result. We just
parametrize it by a finite product of types, indicating to
what values it will have access.

Let us first introduce some Λ× terms working with
stores. Given r ∈ e, we define πe

rM as πk
i M where

k = # e and i is r’s position in e. We generalize to
e = {r1, . . . , rk} ⊆ f by setting πf

e M = 〈πf
r1

M, . . . , πf
rk
〉.

We will now prove some of the main properties of the
terms presented in Figure 5. We call e-stores the values
of type Pe. Given an e-store S and an f -store T then if
e ∩ f = ∅, S + T is defined as the e ∪ f -store given by
joining the two; if e ⊆ f then T |e is the store T restricted
to regions in e. In fact,S + T and T |e are the values of
upde,f ST and πf

e T respectively.

Lemma 11. We have the following properties on the
terms introduced in Figure 5.

• If S : Pe\{r}, V : Xr is a value (so 〈V 〉 is an {r}-

store) and M : Te∪{r}(A) then ne
r V MS

∗
−→ 〈S′, U〉 iff

Monadic structure
let x be M in N := λs.(λ 〈s1, x〉 .Ns1)(Ms),

[M] := λs. 〈s, M〉 .

Derived typing rules

Γ ⊢M : A
Γ ⊢ [M] : Te(A)

Γ ⊢M : Te(A) x : A,Γ ⊢ N : Te(B)

Γ ⊢ let x be M in N : Te(B)

Additional projections

πk
i M :=

M if i = k = 1,

πiM if k = 2,

π2M if i = k > 2,

πk−1
i π1M if i < k and k > 2,

πe
rM := π# e

i , where i is r’s place in e,

πe
fM := 〈πe

rM〉r∈f , if f ⊆ e.

Additional terms

upde,f := λs, t.〈cr〉r∈e∪f with cr =

{

πe
rs if r ∈ e,

πf
r t otherwise,

updr,e := upd{r},e,
g := λx.〈x, x〉,
s := λx, d.〈x, 〈〉〉,

ne
r := λx, p, s.(λ〈s1, v〉.〈π

e∪{r}
e\{r} s1, v〉)(p(updr,e∪{r} xs)),

caste,f :=

{

I if f ⊆ e; otherwise:

λp, s.(λ 〈s1, v〉 .〈upde,f s1s, v〉)(p(πe∪f
e s))

Types of additional terms
⊢ upde,f : Pe → Pf → Pe∪f ,

⊢ g : T{r}(Xr),

⊢ s : Xr → T{r}(1),

⊢ ne
r : Xr → Te∪{r}(A)→ Te\{r}(A),

⊢ caste,f : Te(A)→ Te∪f (A),

Mixing monads
lete,f x be M in N := let x be caste,f M in castf,e N,

Γ ⊢M : Te(A) x : A,Γ ⊢ N : Tf (B)

Γ ⊢ lete,f x be M in N : Te∪f (B)

Figure 5. Implementation of localized state monads.

M(S + 〈V 〉)
∗
−→ 〈S′ + 〈V ′〉, U〉 for some V ′ : Xr.

• If S : Pe∪f , M : Te(A) then caste,f MS
∗
−→ 〈S′, U〉 iff

MS|e
∗
−→ 〈S′|e, U〉 and S′|f\e = S|f\e.

• If S : Pe∪f , M : Te(A), x : A ⊢ N : Tf (B), then

(lete,f x be M in N)S
∗
−→ 〈S′, U〉 iff MS|e

∗
−→ 〈T, V 〉

and N{V/x}(T |f∩e + S|f\e)
∗
−→ 〈S′|f , U〉.

B. Translating the Types

We are now ready to translate Λreg types into Λ×. In
the following we define such a translation, and one taking
region contexts into systems of equations on Λ× types.

1◦ := 1, (A
e
−→ B)◦ := A◦ → Te(B

◦),

∅◦ := ∅, (R, r : A)◦ := R◦, Xr
.
= A◦

x : A ⊢ x : A, ∅ 7→ [x] ⊢ 〈〉 : 1, ∅ 7→ [〈〉]

x : A ⊢M : B, e 7→M ′

⊢ λx.M : A
e
−→ B, ∅ 7→ [λx.M ′]

⊢M : A
e3−→ B, e1 7→M ′ ⊢ N : A, e2 7→ N ′

⊢MN : B, e1 ∪ e2 ∪ e3 7→ lete1,e2∪e3
f be M ′ in

lete2,e3
a be N ′ in fa

⊢M : A, e1 7→M ′ ⊢ N : B, e2 ∪ {r} 7→ N ′

⊢ νr⇐M.N : B, e1 ∪ (e2 \ {r})

7→ lete1,e2\{r} v be M ′ in ne2

r vN ′

⊢M : R(r), e 7→M ′

⊢ set(r, M) : 1, e ∪ {r} 7→ lete,{r} v be M in s v

⊢ get(r) : R(r), {r} 7→ g

⊢M : A, e 7→M ′ e ⊆ e′

⊢M : A, e′ 7→ caste,e′ M ′

R;⊢M : A, ∅ 7→M ′

R;⊢M, ε : A, ∅ 7→ π2(M 〈〉)

Figure 6. The rules defining the translation 7→ from Λreg programs
to Λ×, passing through the localized monadic structure.

As it can be seen, the annotated function type A
e
−→ B

gets translated, in category theoretic terms, to arrows of
the Kleisli category for the monad Te. The region context
just sets a system of equations that equates a variable Xr

with the translation of the type associated with r.
Stratification: We will account for stratification by

showing that via our translation it is equivalent to
avoiding the use of recursive types, as the associated
system of equations is solvable (Definition 10). We
will thus give a strong logical justification as to why
stratification ensures termination, even if the result is not
new: it allows to internalize all in an ordinary λ-calculus.

Proposition 12. R◦ is solvable iff the stratification
condition R ⊢ holds.

In fact, the proof of the above proposition shows how
stratification gives an order in which each indeterminate
of R◦ find its value.

C. Translating the Terms

We will now turn our attention to terms. In the
following we fix a region context R and consider all Λ×

types under the structural equivalence ≡E (possibly as
non-recursive types if, as seen, R is stratified). In Figure 6
we define the translation of Λreg programs (to be more
precise type derivations of programs) to Λ× terms. Notice
in particular that no translation is given for ǫr.M : as we
will prove the simulation of an entire evaluation rather
than a step by step one, this does not pose particular

X,Y (type variables)
A, B ::= X | X⊥ | 1 | ⊥ | A⊗B | A ` B (types)
E,F ::= X1

.
= A1, . . . , Xk

.
= Ak (systems of eq.)

Translation

1• := !1, {r1, . . . , rk}
• :=

k
⊗

i=1

!Xr,

(A
e
−→ B)• := !

(

(A• ⊗ e•)⊸ (e• ⊗B•)
)

,

(∅)• = ∅ (R, r : A)• = R•, Xr
.
= A•

Figure 7. Recursive linear logic types and type and effect translation.

problems. Notice that the translation of a value V typed
with A, ∅ is necessarily [V ′] for a value V ′.

Proposition 13. Let Γ◦(x) := (Γ(x))◦. Then:
• if R; Γ ⊢ M : A, e 7→ M ′ then Γ◦ ⊢ M ′ : Te(A

◦) is
derivable in Λ× modulo ≡R◦ ; in particular programs
M, ε : A, ∅ are mapped to closed terms of type A◦;

• if R;x : AΓ ⊢ M : A, e 7→ M ′ and R; Γ ⊢ V : A, ∅ 7→
[V ′] then R; Γ ⊢M{V/x} : A, e 7→M ′{V ′/x}.

Here follows the main result of this section, stating that
the Λ× term associated with each Λreg term evaluates to
the same result (up to translation).

Theorem 14. If R;⊢M, ε : A, ∅ 7→M ′ is a Λreg program
with its associated M ′ term, then M evaluates to the value
V, ε iff M ′ ∗

−→ V ′ with V 7→ [V ′].

Corollary 15. If R ⊢ is stratified and R;⊢ M, ε then M
terminates to a value.

IV. Types and Effects into Linear Logic

In this section we draw from the intuitions gained from
the translation of Λreg into Λ× to translate Λ× into LL

proof nets. We have two starting points: the translation
of call-by-value λ-calculus [7], [8], and the exponential
isomorphism !(A×B) ∼= !A⊗!B that can be used for pairs.

A. The nets

First of all, in Figure 7 we define LL’s formulae (and pro-
vide already the translation of Λreg types). As usual, the
dual is involutive (A⊥⊥ = A) and defined via De Morgan
laws 1⊥ = ⊥ and (A⊗B)

⊥
= A⊥ `B⊥. The linear arrow

A⊸ B is defined as A⊥`B. For example chasing dualities
on the translation of the arrow with effects we have

(A
{ri}i
−−−→ B)• =

((

(A•)
⊥ `

˙
i ?X⊥

ri

)

`
(
⊗

i !Xri
⊗B•

))

.

Again, in order to be able to translate also in absence
of stratification, we consider systems of equations, and
the induced structural equivalence. Once again, Xr are
special variables marked with regions. The definition of
solvability of such a system is identical to what done in
section III: the only difference is one takes into account
substitution of dual variables. We will present LL proof
nets in the interaction net style [11], and range over them
with letters such as π, σ.

Definition 16. LL nets2 are, intuitively, cells linked with
wires. A net π is thus given by a set of cells, to each of

2We keep the definition informal, for more details the reader is
referred to [12].

11
1

A ⊗ BA ⊗ B

AA

BB

⊗
⊥⊥

⊥
A`BA`B

BB

AA

`

one tensor bottom par

?A?AAA
?

?A?A

?A?A

?A?A

?2

?A?A
?0

!A!AAA

!B1!B1

!Bk!Bk

!B1!B1

!Bk!Bk

!π

dereliction contraction weakening box

Figure 8. The cells of LL, together with their typing rules.

`

⊗
m

−→

?

!

π

e

−→ π

?2!π ?0!π

↓s ↓s

!π

!π

?2

?2 ?0

?0

!

π

!

σ

↓s

!

π

!

σ

?2

?0

s

−→
?0 s

−→
?0

?2 ≡ ?2

?2

?2

≡
?2

?2

?2 ≡
?2

Figure 9. Reduction and equivalence rules of LL.

which a number of disjoint ports and a symbol is assigned;
each port, belonging to a cell or free (i.e. a conclusion)
belongs exactly to one wire, which in fact is a set of two
ports. A net is typed if there is an assignment to directed
wires such that reversing the direction of the wire we get
the dual type, and such that other properties are satisfied.

The graphical representation of cells, together with
their names, their symbols, their number of ports and
how they must be typed are depicted in Figure 8. In
particular exponential boxes can be formally considered
as cells having whole nets as symbols, their contents.

Notice that we chose a planar presentation, i.e. the `
has their premises flipped with respect to ⊗. The depth
of an element in a net is the number of nesting boxes
containing it. In particular depth 0 is outside any box.

Reduction can be defined as usual as a context closure,
once contexts in this graphical setting are defined. Again,
we will skip the details. Roughly, it amounts to finding
a pattern in the net, and replacing it with another net
gluing wires back.

Definition 17. Figure 9 shows the reduction and equiv-

alence rules we employ on LL nets. The m and e (multi-
plicative and exponential) reductions are considered only
at depth 0. The s (structural) reduction is considered at
any depth. We denote simply by → the union of

m
−→,

e
−→

and
s
−→. We say that π is in 0-depth normal form if it

is normal for m and e.

In the definition of normal form we ignore s reductions,
but they are strongly normalizing anyway (Lemma 19).
Equivalences account for inessential differences of
the nets which have no counterpart in models and
from the computational point of view: commutativity
and associativity of contraction, and its commutation
with box borders. Such equivalences where already
studied in literature about explicit substitutions [13],
or for differential nets [14]3. We do not use the syntax
automatically quotienting such equivalences (as in [15]),
as we want to keep the dereliction on box step separate
from structural ones. We need also to use the other
reductions we list in the structural ones: neutrality of
weakening over contraction and pulling weakenings out
of boxes. As usual, a correctness criterion is enforced
on nets to guarantee their good computational behaviour.
One of the most used is the switching acyclicity one [16].

Definition 18. A switching path is a path passing
through adjacent wires at depth 0, which never passes by
two premises of a par or a contraction. A net is switching
acyclic (or a proof net) if it has no switching cycles and
inductively all the box contents are switching acyclic too.

From now on all nets we will consider are implicitly
switching acyclic. We will use the following properties of
proof nets and the reductions we listed.

Lemma 19. In untyped LL (and so also in presence of
recursive types) one has the following properties.

•
s
−→ is strongly normalizing;

• → is confluent;
• π is strongly normalizing for → iff it is weakly so.

B. Translating the Types

While introducing LL types in Figure 7 we also defined
the translation of Λreg types. Now we explain a bit
informally how the translation we presented is related
to the one we gave for Λ× in section III. Let A∗ be the
translation of Λ× types into LL’s ones, defined by

1∗ := !1, X∗ := !X, (A→ B)∗ := !(A∗
⊸ B∗),

(A×B)∗ = A∗ ⊗B∗.

A∗ is in fact the classical call-by-value translation with
pairs added in: seen that all A∗ start with an !, A∗⊗B∗ is
indeed isomorphic to an LL product. Now if we compose
the translation given in section III with this one (before
any system of equations is applied) , we obtain

(A
e
−→ B)◦∗ = (A◦ → Pe → (Pe ×B◦))∗

= !
(

A◦∗
⊸ !(e•⊸ (e• ⊗B◦∗))

)

.

3Here we will skip the subtleties linked to reduction modulo an
equivalence. However the results of Lemma 19 are valid in this
framework.

However we know from the intended behaviour of the
translation that the function taking stores Pe is duplicated
only when part of a function taking actual values: in terms
of monads, it is a computation, not a value. In other words,
the inner ! above is useless to our objective. So we pass to

!(A◦∗
⊸ e•⊸ (e• ⊗B◦∗)) ∼= !

(

(A◦∗ ⊗ e•)⊸ (e• ⊗B◦∗)
)

,

where the uncurrying isomorphism A ⊸ B ⊸ C ∼=
(A ⊗ B) ⊸ C (monoidal closedness) shows that our
translation is essentially the one we presented into Λ×

passed through the call-by-value translation.
The following result has the same statement and proof

of Proposition 12.

Proposition 20. R ⊢ is stratified iff R• is solvable.

C. Translating the Terms

We will define the translation as a mapping M 7→ M◦

between typed terms and nets. Even more explicitly than
we have done before, we will identify a term with its
type derivation. This poses problems of representation: a
type derivation may have dummy variables in the context;
similarly it may also have dummy effects. We sidestep the
problem by considering y : D,Γ(x) ⊢ M : A, e ≡ Γ ⊢ M :
A, e ≡ Γ ⊢, e ∪ {r}, if the center one is derivable. Clearly
similar equivalences will have to be considered on nets also.

Given a term

R;x1 : A1, . . . , xk : Ak ⊢M : B, { r1, . . . , rk }

its translation M• will have the following general form.

M•

B•!Xrk

rk

!Xr1

r1

!Xrk

rk

!Xr1

r1

A•
1

x1

A•
n

xn

(1)

In particular, we have on top a wire for every variable
(labelled with it) and one for every affected region,
“entering” the net. Below there are corresponding
wires for regions, and one for the output on the right.
Informally, a translated term may be seen graphically as a
unit processing a stream (the region wires passing through
it) based on inputs (the variables) and giving out an
output. With this graphical convention in fact the parts of
the net that are evaluated beforehand are always on top.
At times for the sake of space we may also draw proof
nets from left to right rather than from top to bottom.

Given a context Γ (resp. a set of regions e) a wire
labelled by Γ (resp. by e) will stand for multiple wires
labelled by variables in dom(Γ) (resp. regions in e), typed
accordingly. In Figure 10 we show the rules defining the
translation M•. Again, notice that no rule is given for
ǫr.M , like for the Λ× translation. However we use lifting
to extend the translation to all external states by setting
(M, S)• := ((M, S)ν)•. We refer to Definition 7 and the
subsequent results for the definition and the properties of
the lifting (M, S)ν .

First, the upcoming lemma shows that the translation
is “statically” correct: it indeed yields proof nets, that is
switching acyclic nets.

Lemma 21. For every typed term R; Γ ⊢ M : A, e, the
net M• is typed (modulo R•) and switching acyclic.

The following is a standard result when translating
calculi into nets.

Lemma 22 (substitution).

ΓΓ

ΓΓ
ΓΓ

M•

xV •
?2

e
e

s∗
−→ (M{V/x})•.

Now we show the main results of this part of the paper.

Theorem 23 (Simulation). Let M,S be an external state.
Then:

• if M, S = V, ε is a value, then (V, ε)• is in 0-depth
normal form.

• if M, S → M ′, S′ with a non-ν-step then (M,S)•
+
−→

(M ′, S′)• with exactly one dereliction on box step;
• if M,S → M ′, S′ with a ν-step, then

(M, S)• = (M ′, S′)•.

The following theorem finally tells that we can in
fact calculate directly with proof nets: we can reduce in
parallel the net while preserving the sequential semantics
enforced by effects.

Theorem 24. If (M,S)•
∗
−→ π, with π a 0-depth normal

form, then there is a value V such that M, S → V, ε and
π = V •.

An informal example: Let us show the point we made
in the introduction with an informal example. Suppose
we have a state (set(r, V);F)(G get(r))(H get(r)), r⇐U
and F is typed with effects not containing r. Then its
translation will be (omitting U that is erased any way):

rr

F •

G•

H•

?⊗
⊗

?2

?

?2

?

?⊗

?⊗

! V •

Even supposing that the term F is undergoing some heavy
calculations, the translation exposes the fact that the
store containing V can not only interact with the get(r)
in argument position for G (possibly starting computaion
in G, it can be delivered even to H•, even before G’s get
“accepts” to take the value. Wires expose directly what
dependencies are present in the term and where values
can arrive even before the evaluation strategy permits it,
all this while guaranteeing the same final result.

V. Concluding remarks

In this paper we gave a logical account of a λ-calculus
with references, interpreting it as monads in ordinary
λ-calculus and as proof nets in LL. There are some final
points and future perspectives that can be discussed.

yy

M•

Γ e

e

?0 ≡ M•

Γ

e

e

≡ M•

Γ e

e

r

r

x• :=
x

〈〉• :=
!

1

(get(r))• :=

rr

rr

?2

?

(λx.M)•:=

ee

ΓΓ

!

`

⊗

M•

x e
`

M : A
e
−→ B, f,

N : A, f, e ⊆ f :
(MN)•:=

ff

ΓΓ

⊗

N•

M•

e

?

⊗

`

e \ f f

?2
e

(νr⇐M.N)•:=

rr

ΓΓ

rr

N•

!

M•

e \ {r}

?2

?

?0
r e \ {r}

e ∪ {r} (set(r, M))•:=

rr

r
!

1

!

M•

?

?0

e \ {r}

Γ e ∪ {r}

Figure 10. The translation of Λreg programs into proof nets. In the rule for equivalence, y /∈ dom(Γ) and r /∈ e are required. Also, we
suppose that the wire for r is moved to its position in e ∪ {r}.

Polymorphism: Indeed we did not include any
kind of polymorphism in our treatment. However type
polymorphism (generalization to ∀X.A and instantiation
to A[B/X]) can straightforwardly be added to the
type system and does not entail any difficulty in the
translation, though the types of regions need to be closed.
Polymorphism of regions is probably also possible to
handle, but needs some more investigation.

Multithreading: what is lacking the most with respect
to other proposals of calculi (or type systems) is multi-
threading and concurrency. Indeed the starting objective
of this work was to combine call-by-value translation of
λ-calculus together with the communication zones which
were employed in [10] for a bisimulation between (a frag-
ment of) π-calculus and differential nets. Indeed by slightly
generalizing to differential nets and non-determinism the
translation presented in this work and combining it with
elements of [10], one gets a translation of a multithreaded
version of the calculus. However the target nets are very
easily cyclic. For example set(r, get(r))| set(r, get(r)),
which may in general be any two threads cooperatively
updating a shared variable, is (it seems) necessarily cyclic.
No particular computational property can be therefore
entailed, save for simulation. The problem seems to linked
with how logic in general and proof nets in particular
handle dependency. In proof nets dependency (which may
be tracked with switching paths) can never be created.
In particular in set(r, get(r))| set(r, get(r)) there is
a potential dependency of each of the get’s from the
other set, so that from the logical point of view there
is a circular dependency which is somewhat hidden by
prefixing. Indeed also in π-calculus’ translation a simple
process like c(x).c 〈x〉 |c(x).c 〈x〉 is mapped to a cyclic net.

It seems then the only direction for truly using linear
logic with concurrency is either to restrict programs in
order to fall within LL’s scope (such as forbidding processes
like the one pointed above), or rather find a new meaning
to correctness to account for such concurrent behaviours.

References

[1] J. M. Lucassen and D. K. Gifford, “Polymorphic effect systems,”
in POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. New
York, NY, USA: ACM, 1988, pp. 47–57.

[2] E. Moggi, “Notions of computation and monads,” Information
and Computation, vol. 93, no. 1, pp. 55–92, Jul. 1991.

[3] M. Tofte and J.-P. Talpin, “Region-based memory
management,” Inf. Comput., vol. 132, no. 2, pp. 109–176, 1997.

[4] P. J. Landin, “The mechanical evaluation of expressions,” The
Computer Journal, vol. 6, no. 4, pp. 308–320, January 1964.
[Online]. Available: http://dx.doi.org/10.1093/comjnl/6.4.308

[5] G. Boudol, “Fair cooperative multithreading,” in CONCUR,
ser. Lecture Notes in Computer Science, vol. 4703. Springer,
2007, pp. 272–286.

[6] R. M. Amadio, “On stratified regions,” in APLAS, ser. Lecture
Notes in Computer Science, Z. Hu, Ed., vol. 5904. Springer,
2009, pp. 210–225.

[7] J.-Y. Girard, “Linear Logic,” Th. Comp. Sc., vol. 50, pp. 1–102,
1987.

[8] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler, “Call-by-
name, call-by-value, call-by-need and the linear lambda calcu-
lus,” Theor. Comput. Sci., vol. 228, no. 1-2, pp. 175–210, 1999.

[9] T. Ehrhard and L. Regnier, “Differential interaction nets,”
Theor. Comput. Sci., vol. 364, no. 2, pp. 166–195, 2006.

[10] T. Ehrhard and O. Laurent, “Interpreting a finitary pi-calculus
in differential interaction nets,” in CONCUR, ser. Lecture
Notes in Computer Science, L. Caires and V. T. Vasconcelos,
Eds., vol. 4703. Springer, 2007, pp. 333–348.

[11] Y. Lafont, “From proof nets to interaction nets,” in Advances in
Linear Logic, ser. London Mathematical Society Lecture Note
Series, J.-Y. Girard, Y. Lafont, and L. Regnier, Eds., vol. 222.
Cambridge University Press, 1995, pp. 225–247.

[12] L. Vaux, “λ-calcul différentiel et logique classique :
interactions calculatoires,” Thèse de Doctorat, Université
de la Méditerranée, 2007.

[13] R. Di Cosmo, D. Kesner, and E. Polonovski, “Proof nets and
explicit substitutions,” Mathematical Structures in Comp. Sci.,
vol. 13, no. 3, pp. 409–450, jun 2003.

[14] P. Tranquilli, “Intuitionistic differential nets and lambda
calculus,” 2008, theoretical Computer Science, to appear.

[15] V. Danos, “La logique linéaire appliquée à l’étude de divers
processus de normalisation (principalement du λ-calcul),”
Thèse de Doctorat, Université Paris VII, 1990.

[16] V. Danos and L. Regnier, “The structure of multiplicatives,”
Archive for Mathematical Logic, vol. 28, pp. 181–203, 1989.

Proofs

A. The λ-Calculus with Regions

Lemma 1.

http://dx.doi.org/10.1093/comjnl/6.4.308

• if R; Γ ⊢ M : A, e and x /∈ dom(Γ), then
R; Γ, x : A ⊢M, e;

• if R; Γ ⊢ V : A, ∅ and R;x : A,Γ ⊢ M : B, e, then
R; Γ ⊢M{V/x} : B, e;

• if R;⊢ M, S : A and M,S → M ′, S′, then
R;⊢M ′, S′ : A.

Proof: Standard inductions on the height of the
type derivation. For the second point for each axiom
R; Γ′, x : A ⊢ x : A, ∅ one has that Γ′ ⊇ Γ, so an
application of the first point can yield R; Γ′ ⊢ V : A
which thus can replace the axiom. The third point is
also proved by induction, where the case when reducing
(λx.M)V follows from the second point. For memory
access operations subject reduction is straightforward.

Lemma 3. If M, S is a state, then either it is a result
V, S or M, S → M ′, S′ with M ′, S′ a state too. Moreover
dom(S′) − ar(M ′) = dom(S) − ar(M); in particular if
M,S is external so is M ′, S′.

Proof: Suppose M is not a result. Let µ(M, S) :=
dom(S)− ar(M): M, S is a state (resp. an external state)
iff µ is defined (i.e. positive) and contains the effects of M
(resp. if µ(M,S) = [] with no effects). We will show by
induction on M that M,S → M ′, S′ with µ(M ′, S′) =
µ(M, S). Checking that the reduct is typed with the
same effects of M will be omitted as it is guaranteed by
Lemma 1. The cases where there is a subterm of M which
is not a value and should be evaluated are handled simlarly
to the proof of Lemma 4. For example, if M = V N then
N, S is an (external) state and not a result, so N, S →
N ′, S′ and thus M,S → V N ′, S′, an (external) state.

Particular care must only be reserved for M = ǫr.N .
In this case , if N is typed with effects e then ǫr.N will
be with f ⊇ e \ {r}. Now µ(N, S) = µ(ǫr.N, S) + [r], so
e ⊆ f ∪ {r} ⊆ |µ(N, S)| and N, S is a state (necessarily
non-external). By inductive hypothesis N, S → N ′, S′, so
ǫr.N, S → ǫr.N ′, S′ with µ invariant.

Suppose then that M has no direct subterm to
be evaluated. If M = V1V2, then V1 = λx.N as it
must be closed and typed with a function space. Then
M, ε→ N{V2/x}, ε, which and µ cannot have changed as
value substitution leaves ar(N) = [] unchanged, and the
store is the same.

If M = πr⇐V.N then M,S → ǫr.N, S, r⇐V . µ remains
constant as the ǫr balances the new value in the store. If
on the other hand M = ǫr.V , then r ∈ ar(ǫr.V) ≤ dom(S)
and thus S = T, r⇐U and M,S → V, T which is a result
(with µ(V, T) = dom(T) = dom(S)− [r] = µ(M, S)).

Finally, if M = get(r) or set(r, V), then M
must be typed with an effect containing r, so
r ∈ µ(M,S) = dom(S) and the reduction of the two can
take place giving in fact a result. The domain of the store
and the inexistent active regions remain unchanged.

Lemma 4. For every derivation of R; Γ ⊢s M : A, e there
is one of the same assertion where the subtyping rule
appears only under axioms (namely the rules for variable
and for get).

Proof: Standard induction on the size of the starting
inference. By size we take the number of non-subtyping
rules, and we assume all adiacent subtyping rules are

merged together into one. Supposing the inference ends
with a subtyping rule, the proof is split by cases on the
rule immediately preceding it. If the subtyping rule can
be pushed up on the premises, the inductive hypothesis
yields the result. The only interesting cases are application
and abstraction. Omitting R and Γ, one transforms the
inferences in the following way.

⊢s M : A
e3−→ B, e1 ⊢s N : A, e2

⊢s MN : B, e1 ∪ e2 ∪ e3

⊢s MN : C, e1 ∪ e2 ∪ e3
7→

⊢s M : A
e3−→ B, e1

⊢s M : A
e3−→ C, e1 ⊢s N : A, e2

⊢s MN : C, e1 ∪ e2 ∪ e3

δ...
x : A ⊢s M : B, e

⊢s λx.M : A
e
−→ B, ∅

⊢s λx.M : A′ e′

−→ B′, ∅

7→

δ′...
x : A′ ⊢s M : B′, e

x : A′ ⊢s M : B′, e′

⊢s λx.M : A′ e′

−→ B′, ∅

where δ′ is δ where all axioms introducing x : A are turned
into ones introducing A′ followed by a subtyping rule giv-

ing x : A (as A′ e′

−→ B′ ≥ A
e
−→ B implies A′ ≤ A). Then δ′

has the same size of δ and inductive hypothesis applies.

Lemma 5. If R; Γ ⊢s M : A, e is derivable, then there
is M ′ with M

∗
 M ′ with R; Γ ⊢ M ′ : A, e without

subtyping.

Proof: One starts by applying Lemma 4 to get an
inference where subtypings are just below axioms. Then
for every B ≤ C let FB,C [] be the one-hole context (not
an evaluation one) defined inductively by FB,B [] := [] and

F
B

e
−→C,D

f

−→E
[] := λy.(λz.FC,E [z])([]FD,B [y]),

with y and z fresh. Then by induction on the subtyping
one sees that x : B ⊢ FB,C [x] : C, ∅ and x

∗
 FB,C [x].

Now substituting every variable occurrence x in M
(resp. every get(r) occurrence) with FB,C [x] (resp. with
(λx.FB,C [x]) get(r)) where B is its type in the context at
the moment of introduction, (resp. the type of r) and C
the one after any subtyping following its introduction, we
get an M ′ with M M ′ and the same type under the ⊢
inference.

Lemma 6. If M M ′ and S S′, then M,S ⇓ V, S0

iff M ′, S′ ⇓ V ′, S′
0 with V V ′ and S′

 S′
0.

Proof: First suppose M,S ⇓ V, S0 and let us reason
by induction on the length of the normalization. If M is
itself a value we are done. Let us split by cases otherwise.
All cases where M is not the redex fired immediately are
handled by the compatibility of .

If M = set(r, U) and ǫr.U we are easily done, as both
sides reduce in just one step.

If S = r⇐U, T and M = get(r), then S′ = r⇐U ′, T ′

with U U ′, and M ′ is either get(r), or I get(r). In both
cases after one or two step we get to U ′ and we are done.

If M = (λx.M1)V1 → M1{V1/x} then M ′ = V ′
2V ′

1
where V1 V ′

1 , and either V ′
2 = λx.M ′

1 with M1 M ′
1,

or V ′
2 = λy.I((λx.M ′

1)y) with M ′
1 = M1 (and in particular

M1 M ′
1). In any case by inductive hypothesis, as

M ′
1{V

′
1/x} M1{V1/x} ⇓ V (turning the store S into

S′), we have M ′
1{V

′
1/x} ⇓ V ′ as by the thesis. In both

cases we conclude: in particular in the latter one we have
S′, V ′

2V ′
1 → S′, I((λx.M ′

1)V1)
∗
−→ S′

0IV ′ → S′
0V .

For the if part, the reasoning follows in reverse the
steps taken for the only if part.

Lemma 8. For every external state M,S, (M, S)ν

is defined and is the unique program such that
(M, S)ν , ǫ

∗
−→M,S using only ν-steps.

Proof: By induction on M . If (M,S)ν = M we notice
that S = ε (as ar(M) = []) and we are done. If M = V1N2

with V1 a value, then N2, S is an external state, and by
inductive hypothesis N2, S ← (N2, S)ν , ε by expanding
νr’s. Then as N1(N2, S)ν , ε → N1N2, S we are done.
The other case for application, for νr⇐N1.N2 and for
set(r, M) are similar. For M = ǫs.N , it must be the case
that S = T, s⇐V (as s ∈ ar(M) = dom(S)). As N, T is
an external state inductive hypothesis gives (N, T)ν , ε →
N, T by ν-steps. Then (M,S)ν = νs⇐V.(N, T)ν ,
apart from being defined, has the desired property:
νs⇐V.(N, T)ν , ε→ ǫs.(N, T)ν , s⇐V

∗
−→ ǫs.N, T, s⇐V .

Uniqueness follows from the fact if two programs reduce
to the same external state M, S just by ν-steps, then such
reductions must be exaclty the same: their number is the
cardinality of S, the position of reduced νr’s are marked
by ǫr’s in M , and the values assigned by the reduced νr’s
are determined by their order in S.

Lemma 9. Let (M,S) be an external state.
Then (M,S) → (M ′, S′) with a non-ν-step iff
(M, S)ν

 (M ′, S′)ν . If (M, S) → (M ′, S′) with a
ν-step, then (M, S)ν = (M ′, S′)ν .

Proof: Let E[R] = M with E a regular evaluation
context and R the redex fired in the reduction. Then
there is a ν-context Eν such that Eν [R] = (M,S)ν , and
such that Eν differs from E by having νr’s in place of
ǫr’s. Moreover if S′ is the sequence of r⇐V obtained
from each context νr⇐V.F building Eν , starting from the
hole up, we see that S′ = S (all this is easily shown by
induction on E). In particular the first r⇐V in S for any
given r is characterized by having Eν = E′[νr⇐V.E′′]
with r /∈ PR(E′′). In fact such construction can also be
reversed: every ν-context F such that (M,S)ν = F [R]
with R a redex turns to a regular context F ǫ by stripping
all ν’s, so both sides of the equivalence are valid.

B. Types and effects into Monads

Lemma 11. We have the following properties on the
terms introduced in Figure 5.

• If S : Pe\{r}, V : Xr is a value (so 〈V 〉 is an {r}-

store) and M : Te∪{r}(A) then ne
r V MS

∗
−→ 〈S′, U〉 iff

M(S + 〈V 〉)
∗
−→ 〈S′ + 〈V ′〉, U〉 for some V ′ : Xr.

• If S : Pe∪f , M : Te(A) then caste,f MS
∗
−→ 〈S′, U〉 iff

MS|e
∗
−→ 〈S′|e, U〉 and S′|f\e = S|f\e.

• If S : Pe∪f , M : Te(A), x : A ⊢ N : Tf (B), then

(lete,f x be M in N)S
∗
−→ 〈S′, U〉 iff MS|e

∗
−→ 〈T, V 〉

and N{V/x}(T |f∩e + S|f\e)
∗
−→ 〈S′|f , U〉.

Proof: For ne
r V MS, it reduces to F (M(S + 〈V 〉))

where F = λ〈s1, v〉.〈π
e∪{r}
e\{r} s1, v〉. This reduces to some

F 〈S′ + 〈V ′〉 , U〉 iff M(S + 〈V 〉) evaluates to that value,
and then F 〈S′ + 〈V ′〉 , U〉

∗
−→ 〈S′, U〉.

caste,f MS follows similarily: it reduces to
(λ〈s1, v〉.upde,f s1S, v)(MS|e), which goes to
〈S′|e + S|f\e, U〉 iff MS|e evaluates to 〈S′|e, U〉.

The third point comines the expected behaviour
of the implemented let construct with the
one for cast. Indeed (lete,f x be M in N)

∗
−→

(λ〈s1, x〉. castf,e Ns1)(caste,f MS), which by the above

reduces to castf,e N{V/x}(T + S|f\e) iff MS|e
∗
−→ 〈T, V 〉,

and it will then reduce to 〈S′, U〉 iff N{V/x}(T +
S|f\e)|f = N{V/x}(T |e∩f + S|f\e) will also.

Proposition 12. R◦ is solvable iff the stratification
condition R ⊢ holds.

Proof: Let Ξ denote either R ⊢ A or R ⊢, and let
|Ξ| be defined by |R ⊢ | :=

∑

r∈dom(R)(1 + |R(r)|) and
|R ⊢ A| := |R ⊢ |+ |A|, with the size | . | defined on types
as usual. Resoning by induction on |Ξ|, we show that Ξ
is derivable iff R◦ is solvable and FV(A) ⊆ dom(R◦), if A
is present. Let us reason by cases on Ξ.

Ξ = R ⊢ 1: inductive hypothesis yields that R ⊢ iff R◦

solvable. As FV(1) = ∅ and R ⊢ iff R ⊢ 1 we are done.
Ξ = R ⊢ A

e

−→ B: Ξ is derivable iff R ⊢ A, R ⊢ B
and e ⊆ dom(R), with the latter equivalent to ∀r ∈ e :
Xr ∈ dom(R◦). Then inductive hypothesis gives that Ξ is
derivable iff R◦ is solvable and FV((A

e
−→ B)◦) = FV(A)∪

FV(B) ∪ {Xr | r ∈ e } ⊆ dom(R◦).
Ξ = R ⊢ : if R = ∅ there is nothing to prove, as

both ends of the equivalence are always true. Otherwise
suppose first that R ⊢ is derivable, so that R = R0, r : A
and R0 ⊢ A. By inductive hypothesis (as |R0, r : A ⊢ | =
|R0 ⊢ A|+1) R◦

0 is solvable and FV(A◦) ⊆ dom(R◦
0), which

entails that σR◦

0
(A◦) is closed. Assigning such a value to

Xr gives then a solution for R◦.
Let us start on the other hand with R◦ solvable. Take

then a region r ∈ dom(R) so that σR◦(R(r)◦) is maximal
in size, and consider R0 to be R restricted to dom(R)\{r}.
Now we see that Xr /∈ FV(R(s)◦) for all s ∈ dom(R): if it
was the case, then σR◦(R(s)◦) would contain σR◦(R(r)◦)
as a proper subformula, which would violate maximality.
This entails on one side that σR◦ provides a solution also
for R◦

0, once restricted to its domain; on the other that
FV(R(r)◦) ⊆ dom(R◦) \ {Xr} = dom(R◦

0). By inductive
hypothesis we conclude that R0 ⊢ R(r), from which R ⊢
can be inferred.

Proposition 13. Let Γ◦(x) := (Γ(x))◦. Then:
• if R; Γ ⊢ M : A, e 7→ M ′ then Γ◦ ⊢ M ′ : Te(A

◦) is
derivable in Λ× modulo ≡R◦ ; in particular programs
M, ε : A, ∅ are mapped to closed terms of type A◦;

• if R;x : AΓ ⊢ M : A, e 7→ M ′ and R; Γ ⊢ V : A, ∅ 7→
[V ′] then R; Γ ⊢M{V/x} : A, e 7→M ′{V ′/x}.

Proof: Straightforward induction on the derivation,
using the derived typing rules shown in Figure 5. The

equivalence ≡R◦ is used with set and get, to equate A◦ to
Xr if r : A ∈ R. For the point about substitution, it suffices
to see that replacing all axioms x : A ⊢ x : A 7→ [x] with
⊢ V : A 7→ [V ′] gives exactly what needed in the end.

Theorem 14. If R;⊢M, ε : A, ∅ 7→M ′ is a Λreg program
with its associated M ′ term, then M evaluates to the
value V, ε iff M ′ ∗

−→ V ′ with V 7→ [V ′].

Proof: Given a Λreg store S (typed according to R)
and a set of regions e ⊆ |dom(S)|, there is a unique
partition of S = S1, S2 so that |dom(S1)| = e and S1 is
made by singletons (in a way, dom(S1) is e). Let us define
te(S) as the translation of such an S1 into a Λ× e-store:
for each r⇐Vr ∈ S1 (Vr is uniquely determined by r)
we have that R;⊢ Vr : R(r), ∅ 7→ [V ′

r] for some Λ× value
V ′

r : R(r)◦ = Xr, so we define te(S) as 〈V ′
r 〉r∈e. Clearly

te(ε) = 〈〉; moreover if e ⊆ f then tf (S) = te(S)|f .
Now we will prove that every Λreg state M, S with

R;⊢ M : A, e 7→ M ′ evaluates to a result V, S′ iff
M ′ te(S) evaluates to 〈T, V ′〉 with T = te(S

′) and
R;⊢ V : A, ∅ 7→ [V ′] (recall that by the condition imposed
on states e ⊆ |dom(S)|). In particular for a program
M, ε this amounts to saying that M evaluates to V iff
M ′ 〈〉

∗
−→ 〈〈〉 , V ′〉 with V 7→ [V ′], which is what requested.

Proof of only if: We will proceed by induction on
the length of the reduction of M,S: for the base case
in which M is already a value then the only difference
with the expected result is that the type derivation might
have added effects in the end, i.e. e 6= ∅. Supposing no
consecutive rules adding effects are used, this amounts
to having M ′ = cast∅,e [V ′] with M : A, ∅ 7→ [V ′]. Then

M ′ te(S)
∗
−→ 〈te(S), V ′〉 which is what required.

For the inductive step we again settle first the case
where the last rule of the derivation of M just adds
effects, M ′ = caste′,e M ′′ with R;⊢ M : A, e′ 7→ M ′′.
Then Lemma 11 reduces the problem to M 7→ M ′′,
with the same starting term as before. Now we go on
depending on the shape of M .

M = N1N2: M ′ = lete1,e2∪e3
f be N ′

1 in lete2,e3
a be

N ′
2 in fa. As M,S evaluates, then N1, S

∗
−→ λx.N3, S

′′,
N2, S

′′ ∗
−→ U, S′′′ and N3{U/x}, S′′′ ∗

−→ V, S′, all with
reductions strictly shorter than the global one (as the
sum must include also the β-reduction). So inductive
hypothesis gives N ′

1 te(S)|e1

∗
−→ 〈te(S

′′)|e1
, [λx.N ′

3]〉 with
N3 7→ N ′

3 and N2 te(S
′′)|e2

→ ∗〈te(S
′′′)|e2

, [U ′]〉 with
U 7→ [U ′]. By Proposition 13 N3{U/x} 7→ N ′

3{U
′/x},

so a third application of inductive hypothesis yields that
N ′

3{U
′/x} te(S

′′′)|e3

∗
−→ 〈te(S

′)|e3
, V ′〉 with V 7→ [V ′].

Applying two times Lemma 11 gives what needed.
M = νr⇐N1.N2. We will have a reduction

N1, S
∗
−→ V1, S

′′, then a reduction of N2, r⇐V1, S
′′ ∗
−→

V, r⇐V2, S
′. A value for r must remain in the store

because of Lemma 3, so that we have the final step
ǫr.V, r⇐V2, S

′ → V, S′. By inductive hypothesis we get
N ′

1 te(S)|e1

∗
−→ 〈te(S

′′)|e1
, V ′

1〉 and N ′
2 te2∪{r}(r⇐V1, S

′′) =

N ′
2(te2\{r}(S

′′) + 〈V1〉)
∗
−→ 〈te2\{r}(S

′) + 〈V ′
2〉, V

′〉.
Then applying two times Lemma 11 yields first that
ne2

r V ′
1N ′

2 te(S
′′)|e2\{r}

∗
−→ 〈te(S

′)|e2\{r}, V
′〉 and then that

the let construction of M ′ gives that M ′ te(S)
∗
−→

〈te(S
′), V ′〉, all with V 7→ [V ′].

M = set(r, N) (with N 7→ N ′): then N, S
∗
−→ U1, S

′′

and with a further step M,S′′ ∗
−→ 〈〉 , r⇐U1, T

′′ where in
fact S′′ = r⇐U2, T

′′ (Lemma 3). By inductive hypoth-
esis we obtain N ′ te(S)

∗
−→ 〈te\{r}(T

′′) + 〈U ′
2〉, U

′
1〉 with

Ui 7→ U ′
i . Now as sU ′

1U
′
2

∗
−→ 〈U ′

1, 〈〉〉 Lemma 11 for the
let construction yields M ′ te(S) = (lete,{r} v be N ′ in

s v) te(S)
∗
−→ 〈te\{r}(T

′′) + 〈U ′
1〉, 〈〉〉 = 〈te(S

′), 〈〉〉, and
〈〉 7→ [〈〉].

M = get(r): then S = r⇐V, T (with V 7→ [V ′]) and
M,S → V, S and M ′ t{r}(S) = gV ′ → 〈V ′, V ′〉 and we
are done.

Proof of if: In fact the opposite direction retraces
exactly the same steps, only doing an induction on the
length of the reduction of M ′ te(S) and using the opposite
directions of the equivalences of Lemma 11.

C. Types and effects into linear logic

Lemma 19. In untyped LL (and so also in presence of
recursive types) one has the following properties.

•
s
−→ is strongly normalizing;

• → is confluent;
• π is strongly normalizing for → iff it is weakly so.

Proof: The reduction
s
−→ is strongly normalizing by the

finite developments theorem, which with equivalences has
been shown in [14]. It follows with a quick check that

s
−→

is confluent. Now m and e are trivially strongly confluent,
and the three strongly commute with one another (e.g.
e
←

s
−→ ⊆

s=
−−→e), so the three together are confluent.

For strong normalization, there is a proof with a slightly
different syntax in

D. de Carvalho, M. Pagani, and L. Tortora de
Falco, “A semantic measure of the execution time
in linear logic,” 2008, to appear on Theoretical
Computer Science.

One can alternatively show it by introducing a counter
increasing at every m or e reduction, which cannot
decrease at s ones. Here one proves that reduction is still
confluent, and conclude: the counter of the normal form
bounds the number of total e or m steps that can be done,
and there cannot be an infinite number of s steps either.

Lemma 22 (substitution).

ΓΓ

ΓΓ
ΓΓ

M•

xV •
?2

e
e

s∗
−→ (M{V/x})•.

Proof (sketch): After noticing that values are always
boxes, the proof follows by induction. Equivalence on con-
ractions commuting with box borders are needed to make
the trailing contractions enter boxes in the λx.M case.

Theorem 23 (Simulation). Let M, S be an external
state. Then:

• if M, S = V, ε is a value, then (V, ε)• is in 0-depth
normal form.

• if M, S → M ′, S′ with a non-ν-step then (M,S)•
+
−→

(M ′, S′)• with exactly one dereliction on box step;
• if M, S → M ′, S′ with a ν-step, then

(M, S)• = (M ′, S′)•.

Proof: The first and the last points are straightforward
from the definition. For the second we show that if
M N then M• +

−→ N• with exactly one dereliction on
box reduction, and conclude by Lemma 9.

First notice that ν-evaluation contexts translate to
proof net contexts with the hole at depth 0. Moreover
we can prove that if r /∈ PR(F []) then the context
(νr⇐V.F [])• is of the form

rr
!V ◦

ω

i.e. the translation of V is directly available to the hole.
This follows from the definition of ν-evaluation contexts:
all the parts of the term the during the translation would
be on top (or on the left) of the hole are necessarily
values. In particular the effect r is present in them only
as a wire (via the ≡ relation). The only exception would
be another νr⇐U , which would interrupt it, but it is
explicitly forbidden by r /∈ PR(F). We can thus suppose
such part of the net when carrying out the cases.

Indeed it suffices now to reduce each case separately,
employing Lemma 22 for the (λx.M)V reduction.

Theorem 24. If (M, S)•
∗
−→ π, with π a 0-depth normal

form, then there is a value V such that M,S → V, ε and
π = V •.

Proof: By Lemma 19 (M, S)• is strongly normalizing
for the 0-depth reduction we employ. So in particular
applying Theorem 23 we obtain that (M, S)• normalizes
to V • (as M, S cannot make infinite ν-steps). Unicity of
0-depth normal form entails π = V •.

	Introduction
	The Lambda-Calculus with Regions
	Syntax and Reduction
	Types, Effects and Stratification
	Alternatives
	Subtyping
	Reference types
	Storeless reduction

	Types and Effects into Monads
	State Monads
	Translating the Types
	Translating the Terms

	Types and Effects into Linear Logic
	The nets
	Translating the Types
	Translating the Terms

	Concluding remarks
	References
	Proofs
	The Lambda-Calculus with Regions
	Types and effects into Monads
	Types and effects into linear logic

