
HAL Id: inria-00466220
https://hal.inria.fr/inria-00466220

Submitted on 23 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Authorisation Policies for Event-based Task
Delegation

Khaled Gaaloul, Ehtesham Zahoor, François Charoy, Claude Godart

To cite this version:
Khaled Gaaloul, Ehtesham Zahoor, François Charoy, Claude Godart. Dynamic Authorisation Poli-
cies for Event-based Task Delegation. The 22nd International Conference on Advanced Information
Systems Engineering - CAiSE’10, Jun 2010, Hammamet, Tunisia. �inria-00466220�

https://hal.inria.fr/inria-00466220
https://hal.archives-ouvertes.fr

Dynamic Authorisation Policies for Event-based
Task Delegation

Khaled Gaaloul, Ehtesham Zahoor, François Charoy, and Claude Godart

LORIA - Nancy University - UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

kgaaloul@loria.fr, zahoor@loria.fr, charoy@loria.fr, godart@loria.fr

Abstract. Task delegation presents one of the business process security
leitmotifs. It defines a mechanism that bridges the gap between both
workflow and access control systems. There are two important issues re-
lating to delegation, namely allowing task delegation to complete, and
having a secure delegation within a workflow. Delegation completion and
authorisation enforcement are specified under specific constraints. Con-
straints are defined from the delegation context implying the presence of
a fixed set of delegation events to control the delegation execution.
In this paper, we aim to reason about delegation events to specify dele-
gation policies dynamically. To that end, we present an event-based task
delegation model to monitor the delegation process. We then identify rel-
evant events for authorisation enforcement to specify delegation policies.
Moreover, we propose a technique that automates delegation policies us-
ing event calculus to control the delegation execution and increase the
compliance of all delegation changes in the global policy.

Keywords: Workflow, task, delegation, policy, event calculus.

1 Introduction

The pace at which business is conducted has increased dramatically over recent
years, forcing many companies to re-evaluate the efficiency of their business pro-
cesses. The restructuring of organisational policies and methods for conducting
business has been termed ”Business Process Re-engineering” [1]. These refined
business processes are automated in workflows that ensure the secure and effi-
cient flow of information between activities and users that constitute the business
process. Workflows aim to model and control the execution of business processes
cross organisations. Typically, organisations establish a set of security policies,
that regulate how the business process and resources should be managed [2].

In previous work, we argued that business processes execution are determined
by a mix of ad-hoc as well as process-based interactions. This highly dynamic
environment must be supported by mechanisms allowing flexibility, security and
on-the-fly shift of rights and responsibilities both on a (atomic) task level and on
a (global) process level [3]. To address those issues, we present a task delegation
approach as a mechanism supporting organisational flexibility in workflow man-
agement systems, and ensuring delegation of authority in access control systems

[4]. However, most of the work done in the area of business process security does
not treat delegation in sufficient details. On one hand, Atluri et al. presented the
Workflow Authorisation Model (WAM) that concentrates on the enforcement of
authorisation flow in the domain of workflow security [5]. WAM remains static
in time and poor in terms of delegation constraints within a workflow. On the
other hand, existing work on access control systems do not consider dynamic
enforcement of authorisation policies [6].

Moreover, a secure task delegation model has to separate various aspects of
delegation within a workflow, where the interactions between workflow invariants
(e.g., users, tasks and data) are triggered by delegation events. These delegation
events will imply appropriate authorisation requests from access control systems.
At present, responses arising from access control requests are stateless such that
a response is given to an access request depending on predefined policies during
the planning phase. If, however, this response changes due to a policy adaptation
for delegation, no mechanism currently exists that allows the new response to be
generated in the authorisation policy dynamically. Currently, when delegating
a task, often the reasoning behind this is dependent on transient conditions
called events. When one of these conditions changes during execution, our access
policy decision may change. We do believe that delegation events define dynamic
constraints for authorisation policies that should not be neglected in advanced
security mechanisms supporting delegation.

The scope of the paper is to investigate the potential of delegation events to
ensure a secure task delegation within a workflow. Securing delegation involves
the definition of authorisation policies which are compliant with the workflow
policy. In order to tackle these problems we need to address two important
issues, namely allowing the delegation task to complete, and having a secure
delegation within a workflow. Allowing task delegation to complete requires a
task model that forms the basis of what can be analysed during the delegation
process within a workflow. Secure delegation implies the controlled propagation
of authority during task execution. Based on specific events, we define delegation
policies in an automatic manner. In order to control the delegation behaviour
and to specify its authorisation policies dynamically, we gather relevant events
that will define both the task execution path and the generated policies for the
delegation of authority. Using Event Calculus (EC), we will present a technique
to monitor the delegation execution. Afterwards, we will briefly discuss the event
calculus formalism to generate delegation policies, and finally, we explain how
generated policies will change dynamically in response to task delegation events.

The remainder of this paper is organised as follows. Section 2 presents a
workflow scenario to motivate our work. In section 3, we give an overview of our
approach to reason about events to specify authorisation policies for delegation.
In section 4, we present our task delegation model and explain how events will
control its execution. Section 5 focuses on security requirements for delegation
and its authorisation policy specifications using EC. In section 6, we motivate our
technique to support delegation automation. Section 7 discusses related work.
Finally, we conclude and outline several topics of potential future work.

2 Motivating Example: A Use Case Requiring Delegation
Policies Integration

To understand the motivation of our research, we present a real world processes
from an e-government case study requiring delegation. Mutual Legal Assistance
(MLA) defines a workflow scenario involving national authorities of two Euro-
pean countries. Here we describe the MLA process part in the Eurojust organi-
sation A. Users with roles Prosecutor and Assistant are assigned to execute the
MLA process and activities that are part of the process are represented as tasks
(see Figure 1).

In this scenario, the task ”Translate Documents” T3 is originally only ac-
cessible by the user member of role Prosecutor, a fact defined in the workflow
policy. We define a workflow policy as a level of defining access to task resources.
We denote P an authorisation policy for the MLA process. This task is a long-
running task and is expected to take 5 working days to complete. The Prosecutor
is unavailable to execute this task due to illness, and will delegate it to a sub-
ordinate involved in the MLA process. Assistant is a subordinate to Prosecutor
in the organisational role hierarchy. During delegation, the policy P is updated
so that user with role Assistant is now allowed to complete task T3. To that
end, he issues an access control request to the policy P to grant the access, and
executes the task T3. As such, users with roles Prosecutor and Assistant are
here the delegator and the delegatee, respectively.

The authorisation policy P needs to reflect the new requirements for dele-
gation. In order to derive a delegation policy from the existing policy, we have
to specify additional authorisation rules to support delegation, where a rule
defines the policy decision effect (e.g., Permit, Deny). Considering a user-to-
user delegation, we motivated that such delegation is done in ad-hoc manner,
thereby supporting a negotiation protocol. We consider negotiation as a funda-
mental step for delegation. It involves all the principals (delegator and delegatee)
and negotiation specifications (e.g., time, evidence). Our intention is to envisage
a wide-ranging request that gives flexibility for the delegation request. Subse-
quently, such specifications have to be included in the delegation policy to define
specific conditions to validate the policy decision effect.

Returning to our example, the delegator Prosecutor sends a delegation re-
quest for all users members of role ”Assistant”. This defines a push delegation
mode, where a delegatee is chosen dynamically based on the negotiation step.
An acceptance of delegation inquires a new access control enforcement in the
existing policy, thereby adding a new authorisation rule for the delegatee under
defined conditions (i.e., time) and/or obligations (i.e., evidence) agreed between
the delegation principals. The Prosecutor may need to review all the transla-
tions done by his Assistant for validation. Validation is done based on evidence
defined during negotiation. Evidence can be related to the language of trans-
lated documents or the number of translated documents within 5 day. To that
end, an authorisation rule permitting the access (e.g, read, write, execute) to the
legal document in the MLA Information Service, is constrained by an obligation
allowing to investigate whether evidence were satisfactorily met. If however, evi-

Fig. 1. MLA delegation scenario

dence are not satisfied, a revoke action may be triggered including a deny result
for the previous policy effect.

In traditional access control frameworks no mechanism exists that would sup-
port such delegation constraints. Delegation constraints are meant to automate
delegation policies from existing policy specifications. Accordingly, it is not pos-
sible to foresee a deny rule for revocation during the policy definition. Moreover,
a manual review of the current access control rights and task executions is costly,
labor intensive, and prone to errors. With an automated mechanism, when the
policy changes to reflect delegation, the delegation policy will be derived auto-
matically based on specific facts related to the delegation process. A delegation
process defines a task delegation life cycle within the existing process. It is en-
riched with additional constraints to be compliant with the organisational poli-
cies. Organisational policies establish a set of security policies, that regulate how
the business process and resources should be managed. Delegation constraints
will inquire the need to support specific interactions that would be automatically
captured, and specified in the delegation policies for appropriate actions. We do
believe that such interactions are intermediate states in the delegation process
driven by specified events to control the delegation behaviour within a workflow.

3 The Proposed Framework

The scope of the paper is to investigate the potential of delegation events to
ensure a secure task delegation within a workflow. Securing delegation involves
the definition of authorisation policies which are compliant with the global pol-
icy of the workflow. Therefore, these delegation events will imply appropriate
authorisations on the delegatee side for further actions as well as contain spe-
cific constraints for those actions (e.g., mode, time, evidence). In order to tackle
these problems we need to address two important issues, namely allowing the
delegation task to complete, and having a secure delegation within a workflow.
To that end, we introduce a delegation model that forms the basis of what can
be analysed during the delegation process in terms of monitoring and security.

The monitoring of task delegation is an essential step to ensure delegation
completion. A delegated task goes through different states to be terminated.
States depends on generated events during the delegation life cycle. Events such
as revoke or cancel are an integral part of the delegation behaviour. Revoking
a task may be necessary when a task is outdated or an access right is abused.
Moreover, additional events such as validate may be required when a delegation
request is issued under a certain obligation where the delegatee has to perform
specific evidence to validate the task execution. For instance, the delegation of
T3 can generate evidence related to the number of translated documents within
a period of 5 day. Subsequently, evidence validation will be an important step
in the delegation process. Dealing with that, we came up with an event-based
task delegation model (TDM) that can fulfill all these requirements. Our model
aspires to offer a full defined model supporting all kind of task delegation for
human oriented-interactions [3].

Additionally, we consider task delegation as an advanced security mechanism
supporting policy decision. We define an approach to support dynamic delega-
tion of authority within an access control framework. The novelty consists of
reasoning on authorisation based on task delegation events, and specifying them
in terms of delegation policies. When one of these events changes, our access pol-
icy decision may change implying dynamic delegation of authority. Existing work
on access control systems remain stateless and do not consider this perspective.
We propose a task delegation framework to support automated enforcement of
delegation policies. Delegation policies are defined from existing policy and are
specified from triggered events. For instance, T3 evidence are not satisfied and
the validation will trigger the event revoke for the delegatee. T3 is not anymore
authorised to be executed by the delegatee. In this case, another rule has to be
integrated in policy with an effect of deny for the authorisation.

In order to control the delegation behaviour and to specify its authorisation
policies in an automated manner, we gather specific events that will define both
the task execution path and the generated policies for the delegation of author-
ity. Using Event Calculus, we will present a technique to monitor the delegation
execution. Afterwards, we will briefly discuss the event calculus formalism to gen-
erate delegation policies, and finally, we explain how generated policies change
dynamically in response to task delegation events.

4 Task Delegation Model (TDM)

In this section, we present our task delegation model to monitor the delegation
execution. Our model is based on events that covers different aspects of dele-
gation. It defines how delegation request is issued and then executed depending
on delegation constraints. The idea is to offer a technique to monitor delegation
execution based on the triggered events. Using Event Calculus, we can foresee
the delegation behaviour within its process.

4.1 Introduction to TDM

First, we present a detailed model of task execution that illustrates the delegation
process. The task life cycle is based on additional events. The figure below depicts
a state diagram of our TDM from the time that a task is created through its
final completion, cancellation or failure. It can be seen that there are series of
potential states that comprise this process. A task, once created, is generally
assigned to a user. The assigned user can choose to start it immediately or to
delegate it. Delegation depends on the assignment transition, where the assigned
user has the authority to delegate the task to a delegatee in order to act on his
behalf.

Fig. 2. Task delegation model

Our model is based on events that covers different aspects of delegation. It
defines how a delegation request is issued. Pull mode assumes that a delegator
has at his disposal a pool of delegatees to be selected to work on his behalf. Push
mode assumes that a delegator is waiting for an acceptance from a potential
delegatee [4]. Moreover, delegation of privileges can be classified into grant or

transfer [7]. A grant delegation model allows a delegated access right (privileges)
to be available for both delegator and delegatee. As such, the delegator is still
having the control to validate or revoke the task, and the delegatee to execute
it. However, in transfer delegation models, the ability to use a delegated access
right is transferred to the delegatee; in particular, the delegated access right is
no longer available to the delegator. There is no validation required and the task
is terminated (complete/fail) by the delegatee.

Each edge within the diagram is prefixed with either an S or U indicating
that the transition is initiated by the workflow system or the human resource
respectively, with (u1,u2) ∈ U where U is a set of users, u1 the delegator and u2
the delegatee. In the following, we define a task delegation relation as follows:

Definition 1. We define a task delegation relation RD = (t,u1,u2,DC), where
t is the delegated task and t ∈ T a set of tasks that composes a workflow, and
DC the delegation constraints.

For instance, delegation constraints can be related to time or evidence specifi-
cations. Moreover, a role hierarchy (RH) defines the delegation relation condition
in a user-to-user delegation. Returning to the example, the delegation relation
(T3,Prosecutor,Assistant,(RH,5 days)) ∈ RD.

4.2 Modelling task delegation in event calculus

Background and motivations: The proposed approach for the representation
of task delegation process relies on the Event Calculus (EC) [8]. The choice of EC
is motivated by several reasons for delegation. Actually, given the representation
of the task delegation model, policies and the corresponding events that trigger
policy changes specified in the EC, an event calculus reasoner can be used to
reason about them.

Event Calculus is a logic programming formalism for representing events and
is being widely used for modeling different aspects such as flexible process design,
monitoring and verification [9]. It comprises the following elements:A is the set of
events (or actions), F is the set of fluents (fluents are reified1), T is the set of time
points, and X is a set of objects related to the particular context. In EC, events
are the core concept that triggers changes to the world. A fluent is anything
whose value is subject to change over time. EC uses predicates to specify actions
and their effects. Basic event calculus predicates used for modelling the proposed
framework are:

– Initiates(e, f, t) - fluent f holds after timepoint t if event e happens at t.
– Terminates(e, f, t) - fluent f does not hold after timepoint t if event e hap-

pens at t.
– Happens(e, t) is true iff event e happens at timepoint t.

1 Fluents are first-class objects which can be quantified over and can appear as the
arguments to predicates.

– HoldsAt(f, t) is true iff fluent f holds at timepoint t.
– Initially(f) - fluent f holds from time 0.
– Clipped(t1, f, t2) - fluent f was terminated during time interval [t1, t2].
– Declipped(t1, f, t2) - fluent f was initiated during time interval [t1, t2].

The reasoning modes provided by event calculus can be broadly categorised
into abductive, deductive and inductive tasks. In reference to our proposal, given
a TDM and authorisation policies one may be interested to find a plan for task
delegation, that allows to identify what possible actions (policy changes) will
result from the task delegation and may opt to choose the optimal plan in terms
of minimal policy changes, this leads to the ”abduction reasoning”. Then, one
may also be interested to find out the possible effects (including policy changes)
for a given set of actions (a set of events that will allow task delegation), this
leads to the choice of ”deduction reasoning” and using the event calculus is thus
twofold.

The event calculus models discussed in this paper are presented using the
discrete event calculus language [10] and we will only present the simplified
models that represent the core aspects. In the models, all the variables (such as
task, time) are universally quantified and in case of existential quantification, it
is represent with variable name within curly brackets, {variablename}.

Event calculus based model: The basic entities in the proposed model are
tasks. In terms of discrete event calculus terminology they can be considered
as sorts, of which instances can be created. Then, each task can be in different
states during the delegation execution. In reference to the task delegation model
presented earlier (see Figure 2), the possible task states include Initial, Assigned,
Delegated, Completed and others. As task states change over time, they can
thus be regarded as fluents in event calculus terminology. Further, the state
change is governed by a set of actions/events and in relation to task delegation
model, the task state changes from Initial to Assigned as a result of assign
event occurring. Finally the task delegation model introduces a set of orderings,
such as the state of a task cannot be assigned, if it is not created earlier. In
reference to event calculus model, we will introduce a set of axioms to handle
these dependencies. The event calculus model below introduces the fluents, basic
events and dependency axioms:

sort task
fluent Initial(task), Assigned(task), Delegated(task), Started(task)...

event Create(task)
[task, time] Initiates(Create(task), Initial(task) ,time).
event Assign(task)
[task, time] Initiates(Assign(task), Assigned(task) ,time).
[task, time1] Happens(Assign(task), time1) → {time2} HoldsAt(Initial(task), time2)
& time1 > time2

Fig. 3. Event calculus based task delegation model

The event calculus model presented above, first defines sort and fluents that
marks the different task states. Then we define an event Create(task), and an
Initiates axiom that specifies that the fluent Initial(task) continues to hold after
the event happens at some time. Similarly, we define the event/axiom for the
assignment event and fluent. We further introduce an axiom that specifies that
in order to assign some task at time1, that task must already be created and thus
in Initial state at time2, and time1 is greater than time2. In a similar fashion,
we can define events and associated Initial axioms for the complete TDM model,
space limitations restrict us to discuss them further.

For the basic event calculus model above, the solutions (plans) returned
by the reasoner may also include the trivial plans which does not enforce the
delegation and directly start or abort the task once assigned. In order to give the
user ability to choose the delegation mode once the task is assigned (see Figure
2), we enrich the model to include the following axioms:

[task, time] !Happens(Abort(task), time).
[task, time] !Happens(Start(task), time).
[task, time] !Happens(PullDelegate(task), time).

Fig. 4. Delegation mode choice

The event calculus model above, specifies that the task does not either Start,
Abort or requires PullDelegation once assigned (and thus the only option for
the reasoner is to conclude that the model requires a PushDelegation mode).
We can similarly restrict the delegation permission (Grant/Transfer), once the
task is in the WaitingCompletion state.

5 Authorisation Policies for TDM

In this section, we analyse security requirements that need to be taken into ac-
count to define delegation policies based-events. Additional requirements such
as pull/push mode and grant/transfer type may be a source to a policy change
during delegation. Using Event Calculus, we present a technique capable of com-
puting and generating new policy rules automatically.

5.1 Building policies for delegation

We define delegation transitions as events ruling delegation behaviour. The inter-
nal behaviour is based on events defined in our TDM, and may be a source to a
policy change, thereby requiring the integration of additional authorisation rules.

Definition 2. We define a policy P = (target,rule,C), where target defines
where a policy is applicable, rule is a set of rules that defines the policy decision
result, and C the policy constraints set that validates the policy rule. A delega-
tion policy is a policy PD = (targetD,ruleD,CD), where targetD = RD, ruleD ⊆
rule and CD ⊂ C and CD = DC

⋃
events.

A policy rule may include conditions and obligations which are used to iden-
tify various conditions or cases under which a policy may become applicable.
Based on the result of these rules different policies can become applicable. We
define a rule as a tuple (effect,condition,obligation), where effect returns the pol-
icy decision result (permit, deny), condition defines the delegation mode (push,
pull) and obligation checks evidence. In the following, we analyse security re-
quirements that need to be taken into account in a push mode to define dele-
gation policy rules based on our TDM (see Figure 2). We present a table that
gathers specific events for push delegation and analyse them in terms of policy
rules. Adding rules in the workflow policy will ensure the delegation of authority,
thereby adding the required effect (permit, deny) to the delegation policy rules
(see Table 1).

Table 1. Push delegation policy rules-based events

Delegation Events Push Delegation Adding Policy Rule
Grant Transfer

u1:delegate X X No add

u2:accept X X Add rules based on execution type

u1:cancel X X No add

u2:execute/Grant X (Permit,Push,Grant:Evidence)

u2:execute/Transfer X (Permit,Push,Transfer:NoEvidence)

u1:validate X No add

u1:revoke X (Deny,Push,Grant)

u2:fail X (Deny,Push,Transfer)

u2:complete X No add

Returning to the example, we can observe a dynamic policy enforcement
during delegation. Initially, T3 is delegated to the Assistant u2 and the delegation
policy for T3: PD = (RD,Permit,(Push,5 days)) (see Table 1/u2:execute/Grant).
In the meanwhile, the Prosecutor u1 is back to work before delegation is done
and is not satisfied with the work progress and would revoke what was performed
by his assistant so far. The Prosecutor is once again able to claim the task and
will revoke the policy effect (permit) for the Assistant. The event revoke will be
updated in the policy, and a deny rule is then updated in the policy. Thus, the
delegation policy for T3 needs to generate a new rule and the delegation policy is
updated to: PD = (RD,Deny,(Push,Grant)) (see Table 1/u1:revoke). Note that
the generated rule depends on the RD relation to check access rights conflicts.
We determined access rights granting based on the current task status and its
resources requirements using a task-based access control model for delegation
presented in previous work [3]. Our access control model ensures task delegation
assignments and resources access to delegatees corresponding to the global policy
constraints.

5.2 Modelling delegation policies in event calculus

In order to model the delegation policy rules-based events, we introduce new
sorts called effect, condition, obligation to the event calculus model for the table

defined above and specify instances of each sort to be the possible effects, con-
ditions and obligations. Possible effects include Deny and Permit results, and
conditions define the Push and Pull mode. The possible instances for obliga-
tions include Grant, Transfer, Evidence and NoEvidence which are constraints
related to delegation type and mode. We further add an action AddRule(effect,
condition, obligation) and corresponding axiom and enrich the model to specify
the policy changes as a result of events (see Figure 5).

sort task, effect, condition, obligation
effect Permit, Deny condition Push, Pull obligation Grant, Transfer, ..

fluent RuleAdded(effect, condition, obligation)
event AddPolicyRule(effect, condition, obligation)
[effect, condition, obligation, time]
Initiates(AddPolicyRule(effect, condition,obligation),
RuleAdded(effect, condition, obligation) ,time).

;policy change
[task, time] Happens(PushDelegateAcceptExecuteGrant(task), time) →
Happens(AddPolicyRule(Permit, Push, Evidence), time)
[task, time] Happens(PushDelegateAcceptFailTransfer(task), time) →
Happens(AddPolicyRule(Deny, Push, Transer), time)

Fig. 5. Delegation policy

The policy change axioms presented above specify that once certain actions
happen, they cause policy change and thus we add a new rule to the global
policy. The name of actions/events depicts their invocation hierarchy, PushDel-
egateAcceptExecuteGrant is the execute event with a grant permission once the
PushDelegation request has been accepted by a delegatee and has to be validated
before completion (see Table 1).

6 Delegation Automation

In this section, we motivate our event-based approach supporting delegation au-
tomation. Automation is necessary for both the task completion and the policy
specification. Reasoning on delegation events using Event Calculus offers a solu-
tion to foresee the delegation execution and increase the control and compliance
of all delegation changes.

6.1 Benefits

Through this paper, we motivated the event-based approach for monitoring and
securing task delegation. We observed that based on specific assumptions we are
able to control any delegation request. We defined different valid orders of execu-
tions for delegation. The order of executions are computed automatically based
on events. Events can distinguish between the order of execution by checking
the delegation mode and type. For instance, an execution expects a validation
transition if and only if we are in a grant delegation.

Additionally, we defined a technique to specify delegation policies automati-
cally. By reasoning on specific events, we are able to address the policy stateless
issue. We can compute delegation policies from triggered events during task ex-
ecution. Policy automation offers many benefits. Actually, it reduces efforts for
users and administrators. Administrator efforts can be related to processes def-
inition and policies specification. Moreover, it increases control and compliance
of all delegation changes. Subsequently, a delegation request is accomplished
under constraints which are compliant to the global policy. For instance, time
constraint has to be taken into account when granting a temporal access for
delegation (i.e.,T3 deadline in Figure 2).

6.2 Reasoning

In our study, we utilise the Discrete Event Calculus Reasoner (DECReasoner2)
for performing automated commonsense reasoning using the event calculus, a
comprehensive and highly usable logic-based formalism. It solves problems effi-
ciently by converting them into satisfiability (SAT) problems.

The event calculus based on the task delegation model and policy specifica-
tions can be used to reason about the delegation process. As we discussed earlier,
the reasoning task can either be abductive or deductive. For the abductive rea-
soning, a plan is sought for the specified goal. In reference to our proposal, the
goal is to have either the task in completed, cancelled or failed state, so we add
the goal [task] HoldsAt(Completed(task),15) | HoldsAt(Failed(task),15) | Hold-
sAt(Cancelled(task),15) to the event calculus model presented above and add an
instance of the delegated task T3. The invocation of the event calculus reasoner
will then give us a set of possible solutions (called plans) for achieving the goal.
Let us first consider the case, when the chosen delegation mode is PushDelega-
tion with the grant of permissions to the delegatee, the event calculus reasoner
returns the plan as follows.

The execution plan follows the delegation of T3 described in the use case. It
shows the action that need to be taken for delegation and most importantly, it
shows the possible policy changes as a result of delegation. Steps from 1 to 11
depicts the delegation process execution. Having a push mode as a condition, we
derive the relevant rules to add in the policy. For instance, step 8 and 9 show
when a delegatee request the task T3 for execution. Delegatee acceptance went
through the ”WaitingDelegation”, ”WaitingAcceptance” and ”WaitingComple-
tion” states (see Figure 2). Based on those events, we deduce that an authorisa-
tion rule is added at this stage under a certain obligation (evidence validation),
and finally a task validation complete the delegation execution (see steps 10 and
11 in Figure 6).

All the defined axioms using the DECReasoner language can be given to the
reasoner for finding a solution (if exists) to support policy changes, which auto-
matically orients these axioms into delegation rules. Then, given as inputs the
specification of the conditions and obligations expressed when adding rules (us-

2 For more details: http://decreasoner.sourceforge.net/

1389 variables and 7290 clauses
relsat solver
1 model
—
model 1:
0 Happens(Create(T3), 0).
1 +Initial(T3).
2 Happens(Assign(T3), 2).
3 +Assigned(T3).
4 Happens(PushDelegate(T3), 4).
5 +WaitingDelegation(T3).
6 Happens(PushDelegateAccept(T3), 6).
7 +WaitingCompletion(T3).
8 Happens(PushDelegateAcceptExecuteGrant(T3), 8).
Happens(AddPolicyRule(Permit, Push, Evidence), 8).
9 +RuleAdded(Permit, Push, Evidence).
+WaitingValidation(T3).
10 Happens(PushDelegateAcceptExecuteGrantValidate(T3), 10).
11 +Completed(T3).
—
;DECReasoner execution details
0 predicates, 0 functions, 12 fluents, 20 events, 90 axioms
encoding 3.1s - solution 0.7s - total 5.8s

Fig. 6. Delegation plan

ing EC), the generated plan by the reasoner shows that either the authorisation
rules result in a permit or a deny decision3.

In concrete policy changes, there are two possible scenarios. The first sce-
nario is the integration of a new authorisation policy because the conjectures
(conditions or obligations) are valid. The second one concerns cases correspond-
ing to an overriding of this rule to a deny result. Note that, we can leverage
the trace of DECReasoner to give all necessary information (events, fluents and
timepoints) to help designer (policy administrator) to detect policies problems
in the deployed process. Finally, the event calculus model can further be en-
riched to ensure minimal policy changes in the execution plans using auditing
techniques. Space limitations restrict us to discuss them further.

7 Related Work

The Workflow Authorisation Model (WAM) presents a conceptual, logical and
execution model that concentrates on the enforcement of authorisation flows in
task dependency and transaction processing [5]. In addition, Atluri et al. dis-
cussed the specification of temporal constraints in a static approach, which is

3 For space reasons, verification results and encoding details can be found at
http://webloria.loria.fr/∼kgaaloul/caise2010/DelegReasoner.rar

not sufficient to support workflow security in general and task delegation in
particular. This is due to workflows needing a more dynamic approach to syn-
chronise the flow of authorisations during the workflow execution. The Workflow
Authorisation Model does not discuss the order of operation flow such as our
task delegation process. In a workflow, we need to investigate the delegation con-
trol in different aspects such as tasks, events and data by leveraging delegation
constraints to support authorisation policies.

Role-based Access Control (RBAC) is recognised as an efficient access control
model for large organisations. Most organisations have some business rules re-
lated to access control policy [11]. In [12, 13], authors extend the RBAC96 model
by defining some delegation rules. They proposed a flexible delegation model
named Permission-based Delegation Model (PBDM), where users may want to
delegate a piece of permission from a role [13]. However, neither RBAC nor
PBDM support offer a suitable solution to support task delegation constraints.
We do believe that constraints such as Push/Pull mode or Grant/Transfer privi-
leges are essential for delegation and have an impact on the security requirements
during policies specification [3].

The eXtensible Access Control Markup Language (XACML) is an XML-
based, declarative access control policy language that lets policy editors specify
rules about who can do what and when. Policies comprising rules, possibly re-
stricted by conditions, may be specified and targeted at subjects, resources and
actions. Subjects, resources, actions and conditions are matched with informa-
tion in an authorisation request context using attribute values and a rich set
of value-matching functions. The outcome or effect of a policy evaluation may
be Permit, Deny, NotApplicable or Indeterminate. In [14], Seitz and Firozabadi
added new structured data-types to express chains of delegation and constraints
on delegation using XACML. The main result of their research is an adminis-
trative approach that does not support ad-hoc delegation and lacks of explicit
support for task delegation constraints.

8 Conclusion and Future Work

Providing access control mechanisms to support dynamic delegation of authority
in workflow systems, is a non-trivial task to model and engineer. In this paper
we have presented problems and requirements that such a model demands, and
proposed a technique for delegation to specify delegation policies automatically.
The motivation of this direction is based on a real world process from an e-
government case study, where a task delegation may support changes during
execution. Delegation policies may change according to specific events. We de-
fined the nature of events based on task delegation constraints, and described
their interactions with policies decisions. When relevant events occur, we define
how delegation will behave and how policy rules change dynamically in response
to this change. Using Event Calculus formalism, we implemented our technique
and deployed a use case scenario for task delegation ensuring the required au-
thorisation policy changes.

The next stage of our work is the implementation of our framework using
XACML standard. We propose an extension supporting task delegation con-
straints with regards to the XACML conditions and obligations specifications.
Future work will look also at enriching our approach with additional delega-
tion constraints supporting historical records. Delegation history will be used to
record delegation that have been made to address administrative requirements
such as auditing.

References

1. K. Venter and M. S. Olivier. The delegation authorization model: A model for
the dynamic delegation of authorization rights in a secure workflow management
system. In CCITT Recommendation X.420 (Blue Book), 2002.

2. A. Vijayalakshmi and W. Janice. Supporting conditional delegation in secure
workflow management systems. In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 49–58, New York, NY,
USA, 2005. ACM.

3. K. Gaaloul and F. Charoy. Task delegation based access control models for work-
flow systems. In I3E 2009: Proceedings of Software Services for e-Business and
e-Society, 9th IFIP WG 6.1 Conference on e-Business, e-Services and e-Society,
Nancy, France, September 23-25, 2009., volume 305 of IFIP. Springer, 2009.

4. K. Gaaloul, P. Miseldine, and F. Charoy. Towards proactive policies supporting
event-based task delegation. The International Conference on Emerging Security
Information, Systems, and Technologies, 0:99–104, 2009.

5. V. Atluri, W. Huang, and E. Bertino. An execution model for multilevel seccure
workflows. In Proceedings of the IFIP WG11.3 Eleventh International Conference
on Database Security, pages 151–165, London, UK, 1998. Chapman & Hall, Ltd.

6. E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and enforcing access
control policies for xml document sources. World Wide Web, 3(3):139–151, 2000.

7. J. Crampton and H. Khambhammettu. Delegation in role-based access control. In
Proceedings of the Computer Security - ESORICS 2006, 11th European Symposium
on Research in Computer Security, Hamburg, Germany, September 18-20, 2006,
Lecture Notes in Computer Science, pages 174–191. Springer, 2006.

8. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Comput., 4(1):67–95, 1986.

9. E. Zahoor, O. Perrin, and C. Godart. A declarative approach to timed-properties
aware Web services composition, INRIA internal report 00455405, February 2010.

10. E. T. Mueller. Commonsense Reasoning. Morgan Kaufmann Publishers Inc., CA,
USA, 2006.

11. R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

12. E. Barka and R. Sandhu. Framework for role-based delegation models. In ACSAC
’00: Proceedings of the 16th Annual Computer Security Applications Conference,
page 168, Washington, DC, USA, 2000. IEEE Computer Society.

13. X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible delegation model in RBAC. In
SACMAT ’03: Proceedings of the eighth ACM symposium on Access control models
and technologies, pages 149–157, New York, NY, USA, 2003. ACM Press.

14. L. Seitz, E. Rissanen, T. Sandholm, B. Firozabadi, and O. Mulmo. Policy admin-
istration control and delegation using xacml and delegent. In 6th IEEE/ACM In-
ternational Conference on Grid Computing (GRID 2005), November 13-14, 2005,
Seattle, Washington, USA, Proceedings, pages 49–54, 2005.

