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Abstract

Many statistical estimation techniques for high-dimensional or functional
data are based on a preliminary dimension reduction step, which con-
sists in projecting the sample X1, . . . ,Xn onto the first D eigenvectors of
the Principal Component Analysis (PCA) associated with the empirical
projector Π̂D. Classical nonparametric inference methods such as ker-
nel density estimation or kernel regression analysis are then performed
in the (usually small) D-dimensional space. However, the mathematical
analysis of this data-driven dimension reduction scheme raises technical
problems, due to the fact that the random variables of the projected sam-
ple (Π̂DX1, . . . , Π̂DXn) are no more independent. As a reference for fur-
ther studies, we offer in this paper several results showing the asymptotic
equivalencies between important kernel-related quantities based on the
empirical projector and its theoretical counterpart. As an illustration, we
provide an in-depth analysis of the nonparametric kernel regression case.

Index Terms — Principal Component Analysis, Dimension reduction,
Nonparametric kernel estimation, Density estimation, Regression estima-
tion, Perturbation method.

AMS 2000 Classification: 62G05, 62G20.

1 Introduction

Nonparametric curve estimation provides a useful tool for exploring and un-
derstanding the structure of a data set, especially when parametric models are
inappropriate. A large amount of progress has been made in the 90’s in both the
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design and the study of inferential aspects of nonparametric estimates. There
are too many references to be included here, but the monographs of Silverman
[23], Scott [21], Simonoff [24] and Györfi et al. [11] will provide the reader with
good introductions to the general subject area.

Among all the nonparametric methods which have been proposed so far, ker-
nel estimation has gained favor from many data analysts, probably because of
its simplicity to implement and good statistical properties—see for example Si-
monoff [24] for a variety of real data examples which illustrate the power of
the approach. Kernel estimates were originally studied in density estimation
by Rosenblatt [19] and Parzen [17], and were latter introduced in regression
estimation by Nadaraya [15, 16] and Watson [27]. A compilation of the math-
ematical properties of kernel estimates can be found in Prakasa Rao [18] (for
density estimation), Györfi et al. [11] (for regression) and Devroye et al. [6] (for
classification and pattern recognition). To date, most of the results pertaining
to kernel estimation have been reported in the finite-dimensional case, where
it is assumed that the observation space is the standard Euclidean space Rd.
However, in an increasing number of practical applications, input data items
are in the form of random functions (speech recordings, multiple time series,
images...) rather than standard vectors, and this casts the problem into the
general class of functional data analysis. Motivated by this broad range of po-
tential applications, Ferraty and Vieu describe in [8] a possible route to extend
kernel estimation to potentially infinite-dimensional spaces.

On the other hand, it has become increasingly clear over the years that the
performances of kernel estimates deteriorate as the dimension of the problem
increases. The reason for this is that, in high dimensions, local neighborhoods
tend to be empty of sample observations unless the sample size is very large.
Thus, in kernel estimation, there will be no local averages to take unless the
bandwidth is very large. This general problem was termed the curse of dimen-
sionality (Bellman [1]) and, in fact, practical and theoretical arguments suggest
that kernel estimation beyond 5 dimensions is fruitless. The paper by Scott
and Wand [22] gives a good account on the feasibility and difficulties of high-
dimensional estimation, with examples and computations.

In order to circumvent the high-dimension difficulty and make kernel estimation
simpler, a wide range of techniques have been developed. One of the most
common approaches is a two-stage strategy: first reduce the dimension of the
data and then perform—density or regression—kernel estimation. With this
respect, a natural way to reduce dimension is to extract the largest D principal
component axes (with D chosen to account for most of the variation in the data),
and then operate in this D-dimensional space, thereby improving the ability to
discover interesting structures (Jee [12], Friedman [9] and Scott [21], Chapter
7). To illustrate more formally this mechanism, let (F , 〈., .〉, ‖.‖) be a (typically
high or infinite-dimensional) separable Hilbert space, and consider for example
the regression problem, where we observe a set Dn = {(X1, Y1), . . . , (Xn, Yn)}
of independent F × R-valued random variables with the same distribution as a
generic pair (X, Y ) satisfying E|Y | < ∞. The goal is to estimate the regression
function r(x) = E[Y |X = x] using the data Dn. The kernel estimate of the
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function r takes the form

rn(x) =

∑n
i=1 YiK

(

‖x−Xi‖
hn

)

∑n
i=1 K

(

‖x−Xi‖
hn

)

if the denominator is nonzero, and 0 otherwise. Here the bandwidth hn > 0 de-
pends only on the sample size n, and the function K : [0,∞) → [0,∞) is called
a kernel. Usually, K(v) is “large” if v is “small”, and the kernel estimate is
therefore a local averaging estimate. Typical choices for K are the naive kernel
K(v) = 1[0,1](v), the Epanechnikov kernel K(v) = (1− v2)+, and the Gaussian
kernel K(v) = exp(−v2/2).

As explained earlier, the estimate rn is prone to the curse of dimensionality,
and the strategy advocated here is to first reduce the ambient dimension by
the use of Principal Component Analysis (PCA, see for example Dauxois et
al. [5] and Jolliffe [13]). More precisely, assume without loss of generality
that EX = 0, E‖X‖2 < ∞, and let Γ(.) = E[〈X, ·〉X] be the covariance
operator of X and ΠD be the orthogonal projector on the collection of the
first D eigenvectors {e1, . . . , eD} of Γ associated with the first D eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 0. In the sequel we will assume as well that the distribu-
tion of X is nonatomic.

In this context, the PCA-kernel regression estimate reads

rDn (x) =

∑n
i=1 YiK

(

‖ΠD(x−Xi)‖
hn

)

∑n
i=1 K

(

‖ΠD(x−Xi)‖
hn

) .

The hope here is that the most informative part of the distribution of X should
be preserved by projecting the observations on the first D principal component
axes, so that the estimate should still do a good job at estimating r while
performing in a reduced-dimensional space. Alas, on the practical side, the
smoother rDn is useless since the distribution of X (and thus, the projector ΠD)
is usually unknown, making of rDn what is called a “pseudo-estimate”. However,
the covariance operator Γ can be approximated by its empirical version

Γn(.) =
1

n

n
∑

i=1

〈Xi, ·〉Xi, (1.1)

and ΠD is in turn approximated by the empirical orthogonal projector Π̂D on
the (empirical) eigenvalues {ê1, . . . , êD} of Γn. Thus, the operational version
r̂Dn of the pseudo-estimate rDn takes the form

r̂Dn (x) =

∑n
i=1 YiK

(

‖Π̂D(x−Xi)‖
hn

)

∑n
i=1 K

(

‖Π̂D(x−Xi)‖
hn

) .

Unfortunately, from a mathematical point of view, computations involving the
numerator or the denominator of the estimate r̂Dn are difficult, since the random
variables (K(‖Π̂D(x−Xi)‖/hn))1≤i≤n are identically distributed but clearly
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not independent. Besides, due to nonlinearity, the distribution of ‖Π̂D(x−Xi)‖
is usually inaccessible, even when the Xi’s have known and simple distributions.
In short, this makes any theoretical calculation impossible, and it essentially ex-
plains why so few theoretical results have been reported so far on the statistical
properties of the estimate r̂Dn , despite its wide use. On the other hand, we
note that the random variables (K(‖ΠD(x−Xi)‖/hn))1≤i≤n are independent
and identically distributed. Therefore, the pseudo-estimate rDn is amenable to
mathematical analysis, and fundamental asymptotic theorems such that the law
of large numbers and the central limit theorem may be applied.

In the present contribution, we prove that r̂Dn and rDn have the same asymptotic
behavior and show that nothing is lost in terms of rates of convergence when
replacing r̂Dn by rDn (Section 4). In fact, taking a more general view, we offer in
Section 3 a thorough asymptotic comparison of the partial sums

Sn(x) =

n
∑

i=1

K

(

‖ΠD (x−Xi)‖

hn

)

and Ŝn(x) =

n
∑

i=1

K





∥

∥

∥
Π̂D (x−Xi)

∥

∥

∥

hn





with important consequences in kernel density estimation. As an appetizer,
we will first carry out in Section 2 a preliminary analysis of the asymptotic
proximity between the projection operators Π̂D and ΠD. Our approach will
strongly rely on the representation of the operators by Cauchy integrals, through
what is classically known in analysis as perturbation method. For the sake of
clarity, proofs of the most technical results are postponed to Section 5.

2 Asymptotics for PCA projectors

Here and in the sequel, we let (F , 〈., .〉, ‖.‖) be a separable Hilbert space and
X1, . . . ,Xn be independent random variables, distributed as a generic nonato-
mic and centered random X satisfying E‖X‖2 < ∞. Denoting by Γ the co-
variance operator of X, we let ΠD be the orthogonal projection operator on
{e1, . . . , eD}, the set of first D eigenvectors of Γ associated with the (nonnega-
tive) eigenvalues {λ1, . . . , λD} sorted by decreasing order. The empirical version

Γn of Γ is defined in (1.1), and we denote by {ê1, . . . , êD} and {λ̂1, . . . , λ̂D}
the associated empirical eigenvector and (nonnegative) eigenvalue sets, respec-
tively, based on the sample X1, . . . ,Xn. To keep things simple, we will assume
throughout that the projection dimension D is fixed and independent of the
observations (for data-dependent methods regarding the choice of D, see for
example Jolliffe [13]). Besides, and without loss of generality, it will also be
assumed that λ1 > . . . > λD+1. This assumption may be removed at the ex-
pense of more tedious calculations taking into account the dimension of the
eigenspaces (see for instance [14] for a generic method).

The aim of this section is to derive new asymptotic results regarding the em-
pirical projector Π̂D on {ê1, . . . , êD} as the sample size n grows to infinity. Let
us first recall some elementary facts from complex analysis. The eigenvalues
{λ1, . . . , λD} are nonnegative real numbers, but we may view them as points
in the complex plane C. Denote by C a closed oriented contour in C, that is a
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closed curve (for instance, the boundary of a rectangle) endowed with a circu-
lation. Suppose first that C =C1 contains λ1 only. Then, the so-called formula
of residues (Rudin [20]) asserts that

∫

C1

dz

z − λ1
= 1 and

∫

C1

dz

z − λi
= 0 for i 6= 1.

In fact, this formula may be generalized to functional calculus for operators.
We refer for instance to Dunford and Schwartz [7] or Gohberg et al. [10] for
exhaustive information about this theory, which allows to derive integration
formulae for functions with operator values, such as

Π1 =

∫

C1

(zI − Γ)
−1

dz.

Thus, in this formalism, the projector on e1 is explicitly written as a function
of the covariance operator. Clearly, the same arguments allow to express the
empirical projector Π̂1 as

Π̂1 =

∫

Ĉ1

(zI − Γn)
−1 dz,

where Ĉ1 is a (random) contour which contains λ̂1 and no other eigenvalue of
Γn. These formulae generalize and, letting CD (respectively ĈD) be contours

containing {λ1, . . . , λD} (respectively {λ̂1, . . . , λ̂D}) only, we may write

ΠD =

∫

CD

(zI − Γ)−1 dz and Π̂D =

∫

ĈD

(zI − Γn)
−1 dz.

The contours CD may take different forms. However, to keep things simple,
we let in the sequel CD be the boundary of a rectangle as in Figure 1, with a
right vertex intercepting the real line at x = λ1 + 1/2 and a left vertex passing
through x = λD − δD, with

δD =
λD − λD+1

2
.

With a slight abuse of notation, we will also denote by CD the corresponding
rectangle.

Thus, with this choice, CD contains {λ1, . . . , λD} an no other eigenvalue. Lemma
2.1 below, which is proved in Section 5, shows that, asymptotically, this assertion
is also true with {λ̂1, . . . , λ̂D} in place of {λ1, . . . , λD}. In the sequel, the letter
C will denote a positive constant, the value of which may vary from line to line.
Moreover, the notation ‖·‖∞ and ‖·‖2 will stand for the classical operator and
Hilbert-Schmidt norms, which are respectively defined by

‖T ‖∞ = sup
x∈B1

‖Tx‖ and ‖T ‖
2
2 =

∞
∑

p=1

‖Tup‖
2
,

where B1 denotes the closed unit ball of F and (up)p≥1 a Hilbertian basis of

F . It is known (Dunford and Schwartz [7]) that the value of ‖T ‖2 does not
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λD+1 λD λ3 λ2 λ1

δD
1

2

. . .

Figure 1: Oriented rectangle-contour CD, with a right vertex intercepting the
real line at x = λ1 + 1/2 and a left vertex passing through x = λD − δD,
δD = (λD − λD+1)/2.

depend on the actual basis and that ‖·‖∞ ≤ ‖·‖2. The Hilbert-Schmidt norm is
of more generalized use, essentially because it yields simpler calculations than
the sup-norm.

As promised, the next lemma ensures that the empirical eigenvalues are located
in the rectangle CD through an exponential concentration inequality.

Lemma 2.1 For all n ≥ 1, let the event

An =
{

λ̂i ∈ CD, i = 1, . . . , D, and λ̂D+1 /∈ CD

}

.

There exists a positive constant C such that

P(Ac
n) = O (exp(−Cn)) .

Remark that the constants involved in the document depend on the actual di-
mension D and their values increase as D becomes large. To circumvent this
difficulty, a possible approach is to let D depend on n. This is beyond the scope
of the present paper, and we refer to Cardot et al. [4] for some perspectives in
this direction.

We are now in a position to state the main result of the section. Theorem
2.1 below states the asymptotic proximity of the operators Π̂D and ΠD, as
n becomes large, with respect to different proximity criteria. We will make
repeated use of this result throughout the document. We believe however that
it is interesting by itself. For a sequence of random variables (Zn)n≥1 and a
positive sequence (vn)n≥1, notation Zn = O(vn) a.s. means that each random
draw of Zn is O(vn).

Theorem 2.1 The following three assertions are true for all n ≥ 1:
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(i) There exists a positive constant C such that, for all ε > 0,

P

(∥

∥

∥
Π̂D −ΠD

∥

∥

∥

∞
≥ ε
)

= O
(

exp
(

−Cnε2
))

.

(ii) One has
∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
= O

(
√

logn

n

)

a.s.

(iii) One has

E

∥

∥

∥
Π̂D −ΠD

∥

∥

∥

2

∞
= O

(

1

n

)

.

Proof of Theorem 2.1 The proof will be based on arguments presented in
Mas and Menneteau [14]. Using the notation of Lemma 2.1, we start from the
decomposition

Π̂D −ΠD =
(

Π̂D −ΠD

)

1Ac
n
+
(

Π̂D −ΠD

)

1An
. (2.1)

Consequently,

P

(∥

∥

∥Π̂D − ΠD

∥

∥

∥

∞
≥ ε
)

≤ P

(∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
1Ac

n
≥ ε/2

)

+ P

(∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
1An

≥ ε/2
)

.

Observing that
∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
1Ac

n
≤ 21Ac

n
,

we conclude by Lemma 2.1 that

P

(∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
1Ac

n
≥ ε/2

)

≤ P (Ac
n)

= O
(

exp(−nCε2)
)

. (2.2)

With respect to the second term in (2.1), write

(

Π̂D −ΠD

)

1An
= 1An

∫

CD

[

(zI − Γn)
−1

− (zI − Γ)
−1
]

dz

= 1An

∫

CD

[

(zI − Γn)
−1

(Γn − Γ) (zI − Γ)
−1
]

dz.

Let ℓD be the length of the contour CD. Using elementary properties of Riesz
integrals (Gohberg et al. [10]), we obtain

∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
1An

≤ ℓD ‖Γn − Γ‖∞ sup
z∈CD

[∥

∥

∥(zI − Γn)
−1
∥

∥

∥

∞

∥

∥

∥(zI − Γ)
−1
∥

∥

∥

∞

]

1An
.

Observing that the eigenvalues of the symmetric operator (zI − Γ)−1 are the
{

(z − λi)
−1

, i ∈ N⋆
}

, we see that
∥

∥

∥(zI − Γ)
−1
∥

∥

∥

∞
= O(δD). The same bound

is valid taking Γn instead of Γ, when An holds. In consequence,
∥

∥

∥
Π̂D −ΠD

∥

∥

∥

∞
1An

= O (‖Γn − Γ‖∞) . (2.3)
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The conclusion follows from the inequalities (2.1)-(2.2)-(2.3), the inequality
‖Γn − Γ‖∞ ≤ ‖Γn − Γ‖2 and the asymptotic properties of the sequence (Γn −
Γ)n≥1 (Bosq [3], Chapter 4). �

3 Some asymptotic equivalencies

As for now, we assume D > 2 and let

Sn(x) =

n
∑

i=1

K

(

‖ΠD (x−Xi)‖

hn

)

and Ŝn(x) =

n
∑

i=1

K





∥

∥

∥Π̂D (x−Xi)
∥

∥

∥

hn



 .

We note that Sn(x) is a sum of independent and identically distributed random
variables, whereas the terms in Ŝn(x) have the same distribution but are not
independent. In light of the results of Section 2, our goal in this section will be
to analyse the asymptotic proximity between Sn(x) and Ŝn(x) under general
conditions on K and the sequence (hn)n≥1. Throughout, we will assume that
the kernel K satisfies the following set of conditions:

Assumption Set K

(K1) K is positive and bounded with compact support [0, 1].

(K2) K is of class C1 on [0, 1].

These assumptions are typically satisfied by the naive kernelK(v) = 1[0,1](v). In
fact, all the subsequent results also hold for kernels with an unbounded support,
provided K is Lipschitz—we leave to the reader the opportunity to check the
details and adapt the proofs, which turn out to be simpler in this case. For any
integer p ≥ 1, we set

MD,p = D

∫ 1

0

vD−1Kp (v) dv

and, for all x ∈ F and h > 0, we let

Fx(h) = P (ΠDX ∈ BD(ΠDx, h)) ,

where BD(u, h) denotes the closed Euclidean ball of dimension D centered at
u and of radius h. In the subsequent developments, to lighten notation a bit,
and since no confusion is possible, we will write F (h) instead of Fx(h). Observe
that F (h) is positive for µ-almost all x ∈ F , where µ is the distribution of X.
Besides, by decreasing monotonicity, since X is nonatomic, we have

lim
h↓0

F (h) = 0.

When the projected random variable ΠDX has a density f with respect to the
Lebesgue measure λ on RD, then F (h) ∼ γDf(x)hD as h → 0, where γD is a
positive constant, for λ-almost all x (see for instance Wheeden and Zygmund
[28]). Thus, in this case, the function F is regularly varying with index D. We
generalise this property below.

Assumption Set R
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(R1) F is regularly varying at 0 with index D.

Assumption R1 means that, for any u > 0,

lim
s→0+

F (su)

F (s)
= uD.

The index of regular variation was fixed to D in order to alleviate the nota-
tion, but the reader should note that our results hold for any positive index,
with different constants however. In fact this index is directly connected with
the support of the distribution of X. To see this, observe that by fixing the
index to D we implicitly assume that ΠDX fills the whole space of dimen-
sion D. However, elementary calculations show that most distributions in RD,
when concentrated on a subspace of smaller dimension D′ < D, will match
assumption R1 with D′ instead of D. Moreover, representation theorems for
regularly varying functions (see Bingham et al. [2]) show that, under R1, F
may be rewritten as F (u) = uDL (u), where the function L is slowly varying at
0, that is lims→0+ L (su) /L (s) = 1. This enables to consider functions F with
non-polynomial behaviour such as, for instance, F (u) ∼ CuD| lnu| as u → 0+.
Observe also that F (u) is negligible with respect to u2 as soon as D > 2.

We start the analysis with two technical lemmas. Proof of Lemma 3.1 is deferred
to Section 5, whereas Lemma 3.2 is an immediate consequence of Lemma 3.1
and Bennett’s inequality. Its proof is therefore omitted.

Lemma 3.1 Assume that Assumption Sets K and R are satisfied. Then, for
µ-almost all x, if hn ↓ 0,

EK

(

‖ΠD (x−X)‖

hn

)

∼ MD,1F (hn)

and

EK2

(

‖ΠD (x−X)‖

hn

)

∼ MD,2F (hn) as n → ∞.

Lemma 3.2 Assume that Assumption Sets K and R are satisfied. Then, for
µ-almost all x, if hn ↓ 0 and nF (hn)/ lnn → ∞,

Sn(x) ∼ MD,1nF (hn) a.s.

and
ES2

n(x) ∼ [MD,1nF (hn)]
2 as n → ∞.

The following proposition is the cornerstone of this section. It asserts that,
asymptotically, the partial sums Sn(x) and Ŝn(x) behave similarly.

Proposition 3.1 Assume that Assumption Sets K and R are satisfied and that
X has bounded support. Then, for µ-almost all x, if hn ↓ 0 and nF (hn)/ lnn →
∞,

Ŝn(x) ∼ Sn(x) a.s.

and
EŜ2

n(x) ∼ ES2
n(x) as n → ∞.
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Proof of Proposition 3.1 To simplify notation a bit, we let, for i = 1, . . . , n,
Vi = ‖ΠD(x−Xi)‖ and V̂i = ‖Π̂D(x−Xi)‖. Let the events Ei and Êi be defined
by

Ei = {Vi ≤ hn} and Êi =
{

V̂i ≤ hn

}

.

Clearly,

Ŝn(x)− Sn(x)

=

n
∑

i=1

K
(

V̂i/hn

)

−

n
∑

i=1

K (Vi/hn)

=

n
∑

i=1

[

K
(

V̂i/hn

)

−K (Vi/hn)
]

1Êi∩Ei
+

n
∑

i=1

K
(

V̂i/hn

)

1Êi∩Ec

i

−
n
∑

i=1

K (Vi/hn)1Êc

i
∩Ei

.

Therefore
∣

∣

∣Ŝn(x) − Sn(x)
∣

∣

∣

≤

n
∑

i=1

∣

∣

∣K
(

V̂i/hn

)

−K (Vi/hn)
∣

∣

∣1Êi∩Ei
+ C

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

≤ C





∥

∥

∥
Π̂D −ΠD

∥

∥

∥

∞

hn

n
∑

i=1

‖x−Xi‖1Ei
+

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)



 . (3.1)

Consequently, by Lemma 3.2, the result will be proved if we show that
∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

n
∑

i=1

‖x−Xi‖ 1Ei
→ 0 a.s.

and
1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

→ 0 a.s. as n → ∞.

The first limit is proved in technical Lemma 5.1 and the second one in technical
Lemma 5.2.

We proceed now to prove the second statement of the proposition. We have to
show that

EŜ2
n(x)

ES2
n(x)

→ 1 as n → ∞.

Using the decomposition

EU2

EV 2
= 1 +

E [U − V ]
2

EV 2
+ 2

E [V (U − V )]

EV 2
,

and the bound

|E [V (U − V )]|

EV 2
≤

√

E [U − V ]
2

EV 2
,

10



it will be enough to prove that

E

[

Ŝn(x)− Sn(x)
]2

ES2
n(x)

→ 0,

which in turn comes down to prove that

E

[

Ŝn(x)− Sn(x)
]2

n2F 2 (hn)
→ 0,

since ES2
n(x) ∼ [MD,1nF (hn)]

2
by Lemma 3.2.

Starting from inequality (3.1), we obtain

[

Ŝn(x)− Sn(x)
]2

≤ C





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

hn

(

n
∑

i=1

‖x−Xi‖1Ei

)





2

+ C

[

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

]2

. (3.2)

Consequently, the result will be proved if we show that

E





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

(

n
∑

i=1

‖x−Xi‖ 1Ei

)





2

→ 0.

and

E

[

1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

]2

→ 0 as n → ∞.

The first limit is established in technical Lemma 5.3 and the second one in tech-
nical Lemma 5.4. �

The consequences of Proposition 3.1 in terms of kernel regression estimation will
be thoroughly explored in Section 4. However, it has already important reper-
cussions in density estimation, which are briefly sketched here and may serve as
references for further studies. Suppose that the projected random variable ΠDX

has a density f with respect to the Lebesgue measure λ on RD. In this case, the
PCA-kernel density estimate of f—based on the sample (Π̂DX1, . . . , Π̂DXn)—
reads

f̂n(x) =
Ŝn(x)

nhD
n

and the associated pseudo-estimate—based on (ΠDX1, . . . ,ΠDXn)— takes the
form

fn(x) =
Sn(x)

nhD
n

.

11



An easy adaptation of the proof of Corollary 4.1 in Section 4 shows that, under
the conditions of Proposition 3.1,

E

[

f̂n(x)− fn(x)
]2

= O

(

log
(

nh2
n

)

nh2
n

)

.

To illustrate the importance of this result, suppose for example that the target
density f belongs to the class Gp of p-times continuously differentiable functions.
In this context (Stone [25, 26]), the optimal rate of convergence over Gp is
n−2p/(2p+D) and the kernel density estimate with a bandwidth h∗

n ≍ n−1/(2p+D)

achieves this minimax rate. Thus, letting f̂∗
n (respectively f∗

n) be the PCA-kernel
density estimate (respectively pseudo-density estimate) based on this optimal
bandwidth, we are led to

E

[

f̂∗
n(x) − f∗

n(x)
]2

n−2p/(2p+D)
→ 0

as soon asD > 2. Thus, the L2-rate of convergence of f̂
⋆
n towards f⋆

n is negligible
with respect to the L2-rate of convergence of f⋆

n towards f . In consequence,

replacing f̂⋆
n by f⋆

n has no effect on the asymptotic rate. The same ideas may
be transposed without further effort to asymptotic normality and other error
criteria.

4 Regression analysis

As framed in the introduction, we study in this final section the PCA-kernel
regression procedure, which was our initial motivation. Recall that, in this
context, we observe a set {(X1, Y1), . . . , (Xn, Yn)} of independent F ×R-valued
random variables with the same distribution as a generic pair (X, Y ), where X

is nonatomic centered, and Y satisfies E|Y | < ∞. The goal is to estimate the
regression function rD(x) = E[Y |ΠDX = ΠDx] via the PCA-kernel estimate,
which takes the form

r̂Dn (x) =

∑n
i=1 YiK

(

‖Π̂D(x−Xi)‖
hn

)

∑n
i=1 K

(

‖Π̂D(x−Xi)‖
hn

) .

This estimate is mathematically intractable and we plan to prove that we can
substitute without damage to r̂Dn the pseudo-estimate

rDn (x) =

∑n
i=1 YiK

(

‖ΠD(x−Xi)‖
hn

)

∑n
i=1 K

(

‖ΠD(x−Xi)‖
hn

) .

To this aim, observe first that, with the notation of Section 3,

r̂Dn (x) =
Ẑn(x)

Ŝn(x)

and

rDn (x) =
Zn(x)

Sn(x)
,

12



where, for all n ≥ 1,

Ẑn(x) =

n
∑

i=1

YiK





∥

∥

∥Π̂D (x−Xi)
∥

∥

∥

hn





and

Zn(x) =

n
∑

i=1

YiK

(

‖ΠD (x−Xi)‖

hn

)

.

Proposition 4.1 Assume that Assumption Sets K and R are satisfied, that X
has bounded support and Y is bounded. Assume also that rD(x) 6= 0 and rD

is Lipschitz in a neighborhood of x. Then, for µ-almost all x, if hn ↓ 0 and
nF (hn)/ lnn → ∞,

Ẑn(x) ∼ Zn(x) a.s.

and
EẐ2

n(x) ∼ EZ2
n(x) as n → ∞.

Proof of Proposition 4.1 Using the Lipschitz property of rD, we easily
obtain by following the lines of Lemma 3.1 that, at µ-almost all x,

E

[

Y K

(

‖ΠD (x−X)‖

hn

)]

∼ rD(x)F (hn)

and

E

[

Y 2K2

(

‖ΠD (x−X)‖

hn

)]

∼ CF (hn) as n → ∞.

Moreover, for µ-almost all x,

Zn(x) ∼ nE

[

Y K

(

‖ΠD (x−X)‖

hn

)]

a.s.

and

EZ2
n(x) ∼

[

nE

[

Y K

(

‖ΠD (x−X)‖

hn

)]]2

as n → ∞.

The first equivalence is a consequence of Bennett’s inequality and the fact that,
for all large enough n and i = 1, 2,

E

[

|Y |
i
K

(

‖ΠD (x−X)‖

hn

)]

≥ CF (hn) ,

which itself follows from the requirement rD(x) > 0.

Finally, since Y is bounded, an inspection of the proof of Proposition 3.1 reveals
that displays (3.1) and (3.2) may be verbatim repeated with S replaced by Z.
�
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Corollary 4.1 Under the assumptions of Proposition 4.1, for µ-almost all x,
the estimate r̂Dn and the pseudo-estimate rDn satisfy

r̂Dn (x) ∼ rDn (x) a.s. as n → ∞.

Moreover,

E
[

r̂Dn (x)− rDn (x)
]2

= O

(

log
(

nh2
n

)

nh2
n

)

.

Proof of Corollary 4.1 We start with the decomposition

r̂Dn (x)− rDn (x) =
Ẑn(x)

Ŝn(x)

(

1−
Ŝn(x)

Sn(x)

)

+
1

Sn(x)

(

Ẑn(x)− Zn(x)
)

,

which comes down to

r̂Dn (x)− rDn (x)

r̂Dn (x)
=

(

1−
Ŝn(x)

Sn(x)

)

+
Ŝn(x)

Sn(x)

(

1−
Zn(x)

Ẑn(x))

)

.

The first part of the corollary is then an immediate consequence of Proposition
2.1 and Proposition 4.1.

We turn to the second part. Note that Ẑn(x)/Ŝn(x) is bounded whenever
Y is bounded. In consequence, we just need to provide upper bounds for

the terms E

[

1− Ŝn(x)/Sn(x)
]2

and E

[(

Ẑn(x)− Zn(x)
)

/Sn(x)
]2

. Besides,

classical arguments show that the latter two expectations may be replaced by

E

[

Sn(x)− Ŝn(x)
]2

/ES2
n(x) and E

[

Ẑn(x) − Zn(x)
]2

/ES2
n(x), respectively. It

turns out that the analysis of each of these terms is similar, and we will therefore
focus on the first one only. Given the result of Proposition 3.2, this comes down

to analyse E

[

Sn(x) − Ŝn(x)
]2

/ [MD,1nF (hn)]
2 and to refine the bound.

By inequality (3.2), we have

E

[

Sn(x) − Ŝn(x)
]2

n2F 2(hn)
≤ CE





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

(

n
∑

i=1

‖x−Xi‖ 1Ei

)





2

+ C

[

1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

]2

. (4.1)

With respect to the first term, Lemma 5.3 asserts that

E





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

(

n
∑

i=1

‖x−Xi‖1Ei

)





2

= O

(

1

nh2
n

)

.

The second term in inequality (4.1) is of the orderO(log(nh2
n)/(nh

2
n)), as proved

in technical Lemma 5.5. This completes the proof. �
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To illustrate the usefulness of Corollary 4.1, suppose that the regression func-
tion rD belongs to the class Gp of p-times continuously differentiable functions.
In this framework, it is well-known (Stone [25, 26]) that the optimal rate of
convergence on the class Gp is n−2p/(2p+D) and that the kernel estimate with a
bandwidth h∗

n ≍ n−1/(2p+D) achieves this minimax rate. Plugging this optimal
h∗
n into the rate of Corollary 4.1, we obtain

E
[

r̂Dn (x)− rDn (x)
]2

= O
(

n−α
)

,

with α = (2p+D − 2) / (2p+D). This rate is strictly faster than the minimax
rate n−2p/(2p+D) provided α > 2p/ (2p+D) or, equivalently, when D > 2. In
this case,

lim
n→∞

E
[

r̂Dn (x)− rDn (x)
]2

n−2p/(2p+D)
= 0,

and Corollary 4.1 claims in fact that the rate of convergence of r̂Dn towards
rDn is negligible with respect to the rate of convergence of rDn towards rD. In
conclusion, even if r̂Dn is the only possible and feasible estimate, carrying out its
asymptotics from the pseudo-estimate rDn is permitted.

5 Proofs

5.1 Proof of Lemma 2.1

Observe first, since λ̂1 ≥ . . . ≥ λ̂D, that

An =
{

λ̂1 ≤ λ1 + 1/2, λ̂D ≥ λD − δD, and λ̂D+1 < λD − δD

}

.

Therefore

P (Ac
n)

≤ P

(

λ̂1 − λ1 > 1/2
)

+ P

(

λ̂D − λD < −δD

)

+ P

(

λ̂D+1 − λD+1 ≥ δD

)

≤ P

(∣

∣

∣λ̂1 − λ1

∣

∣

∣ ≥ 1/2
)

+ P

(∣

∣

∣λ̂D − λD

∣

∣

∣ ≥ δD

)

+ P

(∣

∣

∣λ̂D+1 − λD+1

∣

∣

∣ ≥ δD

)

.

The inequality

sup
i≥1

∣

∣

∣λ̂i − λi

∣

∣

∣ ≤ ‖Γn − Γ‖2

shifts the problem from |λ̂i − λi| to ‖Γn − Γ‖2. An application of a standard
theorem for Hilbert-valued random variables (see for instance Bosq [3]) leads to

P (‖Γn − Γ‖2 ≥ ε) = O

(

exp

(

−c1
nε2

c2 + c3ε

))

,

for three positive constants c1, c2 and c3. Consequently, for fixed D,

P (Ac
n) = O

(

exp
(

−nCε2
))

,

where C is a positive constant depending on D.
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5.2 Proof of Lemma 3.1

The proof will be based on successive applications of Fubini’s theorem. De-
noting by µD,x,hn

the probability measure associated with the random variable
‖ΠD (x−X)‖ /hn, we may write

EK

(

‖ΠD (x−X)‖

hn

)

=

∫ 1

0

K (v)µD,x,hn
(dv) .

Thus

EK

(

‖ΠD (x−X)‖

hn

)

=

∫ 1

0

[

K (1)−

∫ 1

v

K ′ (s) ds

]

µD,x,hn
(dv)

= K (1)F (hn)−

∫ 1

0

K ′ (s)

∫

[0≤v≤s]

µD,x,hn
(dv) ds

= K (1)F (hn)−

∫ 1

0

F (hns)K
′ (s) ds

= F (hn)

[

K (1)−

∫ 1

0

F (hns)

F (hn)
K ′ (s) ds

]

.

Using the fact that F is increasing regularly varying of order D, an application
of Lebegue’s dominated convergence theorem yields

EK

(

‖ΠD (x−X)‖

hn

)

∼ F (hn)

[

K (1)−

∫ 1

0

sDK ′ (s) ds

]

i.e.,

EK

(

‖ΠD (x−X)‖

hn

)

∼ F (hn)D

∫ 1

0

sD−1K (s) ds as n → ∞.

This shows the first statement of the lemma. Proof of the second statement is
similar.

5.3 Some technical lemmas

In this subsection, for all i = 1, . . . , n, we let Vi = ‖ΠD(x − Xi)‖ and V̂i =
‖Π̂D(x−Xi)‖. The events Ei and Êi are defined by

Ei = {Vi ≤ hn} and Êi =
{

V̂i ≤ hn

}

.

Lemma 5.1 Assume that X has bounded support. Then, for µ-almost all x,
∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

n
∑

i=1

‖x−Xi‖ 1Ei
= O

(
√

logn

nh2
n

)

a.s.

Proof of Lemma 5.1 According to statement (ii) of Theorem 2.1,
∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)
= O

(
√

logn

n3h2
nF

2(hn)

)

a.s.
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Moreover, since X has bounded support, there exists a positive constant M such
that, for µ-almost all x,

n
∑

i=1

‖x−Xi‖ 1Ei
≤ M

n
∑

i=1

1Ei
a.s.

Clearly,
∑n

i=1 1Ei
has a Binomial distribution with parameters n and F (hn)

and consequently, by Bennett’s inequality,

n
∑

i=1

‖x−Xi‖ 1Ei
= O (nF (hn)) a.s.

This completes the proof of the lemma. �

Lemma 5.2 Assume that Assumption Set R is satisfied and X has bounded
support. Then, if hn ↓ 0 and nh2

n/ logn → ∞,

1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

→ 0 a.s. as n → ∞.

Proof of Lemma 5.2 Define κn = Cκ

√

logn
nh2

n

and ηn = κnhn, where Cκ is a

constant which will be chosen later. Observe that

Ei ∩ Êc
i =

[

{hn − ηn < Vi ≤ hn} ∩ Êc
i

]

∪
[

{Vi ≤ hn − ηn} ∩ Êc
i

]

.

Similarly

Êc
i =

{

V̂i > hn

}

=
{

V̂i − Vi > hn − Vi

}

.

Consequently, we may write

n
∑

i=1

1Ei∩Êc

i

≤

n
∑

i=1

1{hn−ηn<Vi≤hn} +

n
∑

i=1

1{Vi≤hn−ηn}∩Êc

i

=

n
∑

i=1

1{hn−ηn<Vi≤hn} +

n
∑

i=1

1{Vi≤hn−ηn,V̂i−Vi>hn−Vi}

≤

n
∑

i=1

1{hn−ηn<Vi≤hn} +

n
∑

i=1

1{V̂i−Vi>ηn}

≤

n
∑

i=1

1{hn−ηn<Vi≤hn} +

n
∑

i=1

1{|V̂i−Vi|>ηn}. (5.1)

By Bennett’s inequality, we have

n
∑

i=1

1{hn−ηn<Vi≤hn} ∼ nP (hn − ηn < V1 ≤ hn) a.s. as n → ∞,

whence

1

nF (hn)

n
∑

i=1

1{hn−ηn<Vi≤hn} ∼
F (hn)− F (hn − ηn)

F (hn)
a.s. (5.2)

17



But, using the fact that F is regularly varying with index D, we may write

1−
F (hn − ηn)

F (hn)
∼ 1− (1− κn)

D
∼ Dκn → 0 as n → ∞. (5.3)

(Note that the value of the index D influences constants only.)

Next, since X has bounded support, at µ-almost all x,

n
∑

i=1

1{|V̂i−Vi|>ηn} ≤
n
∑

i=1

1{‖Π̂D−ΠD‖
∞

‖x−Xi‖>ηn}

≤ n1{‖Π̂D−ΠD‖
∞

>ηn/M} a.s.

for some positive constant M . By statement (i) of Theorem 2.1, we have

P

(∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
≥ ε
)

= O
(

exp
(

−Cnε2
))

.

Therefore,

1

nF (hn)

n
∑

i=1

1{|V̂i−Vi|>ηn} → 0 a.s. (5.4)

whenever
∞
∑

n=1

exp
(

−Cnη2n/M
2
)

< ∞.

Observing that nη2n = C2
κ logn, we see that the summability condition above is

fulfilled as soon as Cκ is large enough.

Combining inequality (5.1) with (5.2)-(5.3) and (5.4), we conclude that

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

→ 0 a.s. as n → ∞.

One shows with similar arguments that

1

nF (hn)

n
∑

i=1

1Ec

i
∩Êi

→ 0 a.s. as n → ∞.

�

Lemma 5.3 Assume that X has bounded support. Then, for µ-almost all x, if
nF (hn) → ∞,

E





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

(

n
∑

i=1

‖x−Xi‖1Ei

)





2

= O

(

1

nh2
n

)

.
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Proof of Lemma 5.3 For i = 1, . . . , n, let Ui = ‖x−Xi‖ 1Ei
−E [‖x−Xi‖1Ei

] ,
and write

E

[

∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

(

n
∑

i=1

‖x−Xi‖1Ei

)]2

≤ 2E

[

∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

n
∑

i=1

Ui

]2

+ 2n2
E
2 [‖x−X‖1E1

]E
∥

∥

∥Π̂D −ΠD

∥

∥

∥

2

∞
.

By Theorem 2.1 (iii),

E

∥

∥

∥Π̂D −ΠD

∥

∥

∥

2

∞
= O

(

1

n

)

,

and, since X has bounded support, for µ-almost all x,

E
2 [‖x−X‖ 1E1

] = O
(

F 2 (hn)
)

.

Consequently,

n2
E
2 [‖x−X‖ 1E1

]E
∥

∥

∥Π̂D −ΠD

∥

∥

∥

2

∞
= O

(

nF 2(hn)
)

.

One easily shows, with methods similar to the ones used to prove (iii) of The-
orem 2.1, that

E

∥

∥

∥Π̂D −ΠD

∥

∥

∥

4

∞
= O

(

1

n2

)

.

Moreover, simple computations lead to

E

[

n
∑

i=1

Ui

]4

= O
(

nF (hn) + n2F 2 (hn)
)

= O
(

n2F 2 (hn)
)

,

when nF (hn) → ∞. Consequently, by Cauchy-Schwarz inequality,

E

[

∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

n
∑

i=1

Ui

]2

= O







1

n



E

[

n
∑

i=1

Ui

]4




1/2






= O (F (hn)) .

Putting all the pieces together, we obtain

E





∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞

nhnF (hn)

(

n
∑

i=1

‖x−Xi‖ 1Ei

)





2

= O

(

1

nh2
n

)

as n → ∞.

�

Lemma 5.4 Assume that Assumption Set R is satisfied and X has bounded
support. Then, if hn ↓ 0 and nh2

n/ logn → ∞,

E

[

1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

]2

→ 0 as n → ∞.
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Proof of Lemma 5.4 The proof is close to the derivation of Lemma 5.2—
almost sure convergence is replaced here by convergence in mean square. There-
fore, we go quickly through it.

Because of (a+ b)2 ≤ 2a2 + 2b2, it is enough to prove that

E

[

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

]2

→ 0

and

E

[

1

nF (hn)

n
∑

i=1

1Ec

i
∩Êi

]2

→ 0 as n → ∞.

We will focus on the first limit only—proof of the second one is similar. With
the notation of Lemma 5.2, by inequality (5.1),

E

[

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

]2

≤ 2E

[

1

nF (hn)

n
∑

i=1

1{hn−ηn<Vi≤hn}

]2

+ 2E

[

1

nF (hn)

n
∑

i=1

1{|V̂i−Vi|>ηn}

]2

, (5.5)

where ηn is a tuning parameter which will be fixed later.

The first term on the right of (5.5) is handled exactly as in Lemma 5.2 and
tends to zero. We just require that ηn = κnhn, with κn → 0.

With respect to the second term, write

E

[

1

nF (hn)

n
∑

i=1

1{|V̂i−Vi|>ηn}

]2

≤ E

[

1

nF (hn)

n
∑

i=1

1{‖Π̂D−ΠD‖
∞

‖x−Xi‖>ηn}

]2

≤ E

[

1

nF (hn)

n
∑

i=1

1{‖Π̂D−ΠD‖
∞

>ηn/M}

]2

≤
1

F 2(hn)
P

(∥

∥

∥Π̂D −ΠD

∥

∥

∥

∞
> ηn/M

)

,

at µ-almost all x and for some positive constant M . Applying finally statement
(i) of Theorem 2.1, we obtain

E

[

1

nF (hn)

n
∑

i=1

1{|V̂i−Vi|>ηn}

]2

= O

(

exp
(

−Cnκ2
n/M

2
)

F 2 (hn)

)

which tends to zero whenever κn = Cκ

√

logn
nh2

n

for a sufficiently large Cδ. �

Lemma 5.5 Assume that Assumption Set R is satisfied and X has bounded
support. Then, if nF (hn) → ∞,

E

[

1

nF (hn)

n
∑

i=1

(

1Ei∩Êc

i

+ 1Ec

i
∩Êi

)

]2

= O

(

log(nh2
n)

nh2
n

)

.

20



Proof of Lemma 5.5 We deal only with the term

E

[

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

]2

,

since the other one may be addressed the same way. At this point, we have to
get sharper into the bounds derived in Lemma 5.4. Let (κn)n≥1 be a positive
sequence which tends to 0, and recall that

Ei ∩ Êc
i

= {Vi ≤ hn} ∩
{

V̂i > hn

}

⊂ {Vi ≤ hn} ∩
{

hn < Vi +
∥

∥

∥

(

Π̂D −ΠD

)

(x−Xi)
∥

∥

∥

}

⊂ {Vi ≤ hn} ∩
[

{hn (1− κn) < Vi} ∪
{∥

∥

∥

(

Π̂D −ΠD

)

(x−Xi)
∥

∥

∥ > κnhn

}]

= {hn (1− κn) < Vi ≤ hn}

∪
[

{Vi ≤ hn} ∩
{∥

∥

∥

(

Π̂D −ΠD

)

(x−Xi)
∥

∥

∥ > κnhn

}]

.

Thus

n
∑

i=1

1Ei∩Êc

i

≤

n
∑

i=1

1{hn(1−κn)<Vi≤hn} +

n
∑

i=1

1{‖(Π̂D−ΠD)(x−Xi)‖>κnhn}1{Vi≤hn},

and therefore
[

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

]2

≤ 2

[

1

nF (hn)

n
∑

i=1

1{hn(1−κn)<Vi≤hn}

]2

+ 2

[

n
∑

i=1

1{‖(Π̂D−ΠD)(x−Xi)‖>κnhn}1{Vi≤hn}

]2

.

(5.6)

Taking expectations and mimicking the method used in the proof of Lemma
5.2, we easily obtain

E

[

1

nF (hn)

n
∑

i=1

1{hn(1−κn)<Vi≤hn}

]2

≤ Cκ2
n. (5.7)

It remains to bound the last term on the right-hand side of (5.6). To this aim,
using the fact that X has bounded support, we may write, for µ-almost all x,

1{‖(Π̂D−ΠD)(x−Xi)‖>κnhn}1{Vi≤hn}

≤ 1{‖Π̂D−ΠD‖
∞

>κnhn/M}1{Vi≤hn}

(for some positive M)

≤ 1Ac
n
1{Vi≤hn} + 1{‖Π̂D−ΠD‖

∞

>κnhn/M}∩An
1{Vi≤hn},
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where the set An is the same as in Lemma 2.1. Clearly, by Cauchy-Schwarz
inequality,

E

[

1Ac
n

(

1

nF (hn)

n
∑

i=1

1{Vi≤hn}

)]2

≤ P
1/2 (Ac

n)E
1/2





(

1

nF (hn)

n
∑

i=1

1{Vi≤hn}

)4




= O (exp (−Cn)) , (5.8)

where the last inequality arises from Lemma 2.1. It remains to bound the term

E

[

1

nF (hn)

n
∑

i=1

1{‖Π̂D−ΠD‖
∞

>κnhn/M}∩An
1{Vi≤hn}

]2

.

We have

E

[

1

nF (hn)

n
∑

i=1

1{‖Π̂D−ΠD‖
∞

>κnhn/M}∩An
1{Vi≤hn}

]2

= E



1{‖Π̂D−ΠD‖
∞

>κnhn/M}∩An

(

1

nF (hn)

n
∑

i=1

1{Vi≤hn}

)2


 .

Using again Cauchy-Schwarz inequality and a bound on the fourth moment of
(1/nF (hn))

∑n
i=1 1{Vi≤hn}, it suffices to bound accurately

P

({∥

∥

∥
Π̂D −ΠD

∥

∥

∥

∞
> κnhn/M

}

∩An

)

≤ P (‖Γn − Γ‖∞ > κnhnC/M)

= O
(

exp
(

−Cnκ2
nh

2
n

))

, (5.9)

where we used the bound (2.3) and statement (i) in Theorem 2.1.

Collecting the bounds (5.6)-(5.7)-(5.8)-(5.9), we finally obtain

E

[

1

nF (hn)

n
∑

i=1

1Ei∩Êc

i

]2

= O
(

κ2
n

)

+O
(

exp
(

−Cnκ2
nh

2
n

))

.

The choice κ∗2
n ≍ exp

(

−Cnκ∗2
n h2

n

)

, i.e.,

κ∗2
n ≍

log
(

nh2
)

nh2
n

leads to the desired result. �
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