
promoting access to White Rose research papers 
   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in Physics of Plasmas.  
 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/10317  
 

 
 
Published paper 
 
Istomin, Y., Pokhotelov, O.A., Balikhin, M.A. (2009) Nonzero electron 
temperature effects in nonlinear mirror modes, Physics of Plasmas, 16 (12), Art 
No.122901 
http://dx.doi.org/10.1063/1.3275787  
 

 

http://eprints.whiterose.ac.uk/10317�
http://dx.doi.org/10.1063/1.3275787�


Nonzero electron temperature effects in nonlinear mirror modes

Ya. N. Istomin∗

Lebedev Physical Institute, Leninsky Prosp., 53, Moscow, 119991, Russia

O. A. Pokhotelov† and M. A. Balikhin‡

Automatic Control and Systems Engineering,

University of Sheffield, Sheffield S1 3JD, United Kingdom

(Dated:)

Abstract

The nonlinear theory of the magnetic mirror instability (MI) accounting for nonzero electron

temperature effects is developed. Based on our previous low-frequency approach to the analysis of

this instability and including nonzero electron temperature effects a set of equations describing

nonlinear dynamics of mirror modes is derived. In the linear limit a Fourier transform of these

equations recovers the linear MI growth rate in which the finite ion Larmor radius and nonzero

electron temperature effects are taken into account. When the electron temperature Te becomes

of the same order as the parallel ion temperature T‖ the growth rate of the mirror instability

is reduced by the presence of a parallel electric field. The latter arises because the electrons

are dragged by nonresonant ions which are mirror accelerated from regions of high to low parallel

magnetic flux. The nonzero electron temperature effect also substantially modifies the mirror mode

nonlinear dynamics. When Te ' T‖, the transition from the linear to nonlinear regime occurred

for wave amplitudes that are only half that which was inherent to the cold electron temperature

limit. Further nonlinear dynamics developed with the explosive formation of magnetic holes, ending

with a saturated state in the form of solitary structures or cnoidal waves. This shows that the

incorporation of nonzero temperature results in a weak decrease of their spatial dimensions of the

holes and increase of their depth.
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I. INTRODUCTION

The diamagnetic or mirror instability (MI), first theoretically predicted by Vedenov and

Sagdeev in Ref. 1, is commonly attributed to the formation of magnetic holes in space

plasmas, such as solar wind, planetary magnetosheaths, in the vicinity of comets, the Io wake

and the magnetospheric ring current. An increasingly large number of observations have

confirmed the existence of the MI in virtually all space plasmas where a proton temperature

anisotropy can be generated by some mechanism2. The MI generated waves are usually

observed in a strongly developed nonlinear state. The study of the nonlinear dynamics

of this instability has been a subject of a great deal of research in recent years3−10. It

should be noted that all previous nonlinear models of the MI were restricted for simplicity

by consideration in the cold electron temperature limit which is valid for magnetosheath

plasmas. The effect of nonzero electron temperature becomes important whenever Te/T‖ =

O(1), where Te is the electron temperature and T‖ is the longitudinal ion temperature. This

situation is typical for the solar wind and even exists in magnetospheric plasma where the

cold electron model may not be considered as appropriate.

The incorporation of a nonzero electron temperature in the MI linear theory was carried

out previously11,12. In these papers it was shown that the nonzero electron temperature effect

can decrease the growth rate and enhance the instability threshold as well as the angle of

wave propagation for the fastest growing mode. Such a modification of the MI is ultimately

due to a longitudinal electric field which arises because the electron pressure gradient builds

up as the electrons are dragged by the circulating ions from high to low parallel magnetic

flux regions.

The incorporation of nonzero electron temperature effects in the nonlinear theory of MI

is the main goal of this paper. This will allow us to apply the results of the nonlinear theory

not only to the large amplitude mirror waves observed in the magnetosheath but also to the

waves observed in other regions of space plasmas (e.g., the ring current).

The paper is organized into the following five sections. In Section II we have derived a

set of equations which describe the nonlinear dynamics of MI in the presence of nonzero

electron temperature effects. The linearization of these equations in the small amplitude

limit is discussed in Section III and the expression for the MI growth rate in the presence

of both nonzero electron temperature and finite ion Larmor radius effects is obtained. The
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temporal evolution of MI and formation of saturated state is analyzed in Section IV. Our

discussion and conclusions are found in Section V.

II. BASIC EQUATIONS

Let us consider a low-frequency wave propagating in a plasma immersed in an external

magnetic field B0. A right-handed Cartesian system of coordinates (x, y, z) whose z-axis is

directed along the ambient magnetic field is accepted.

We start by considering the perpendicular plasma pressure balance condition6,8,9

δp⊥i + δpe

2p0
⊥i

+
1

β⊥

(
1− 3

4(1 + b)2
ρ2

i∇2
⊥

)
b +

b2

2β⊥

= − 1

β⊥

(
1 +

β⊥ − β‖
2

)
∇−2
⊥

∂2

∂s2
b, (1)

where δp⊥i is the deviation of the ion pressure from its unperturbed state p0
⊥i, b = δBz/B0,

δBz the perturbation of the magnetic field along the external magnetic field B0 direction,

β⊥(‖) = 2µ0p
0
⊥(‖)i/B

2
0 the ion perpendicular (parallel) plasma beta, µ0 the permeability of

free space, ρi = vT⊥/ωci the ion Larmor radius in the external magnetic field B0, ωci =

eB0/m the ion cyclotron frequency, e and m the ion charge and mass respectively, vT⊥ =

(2T⊥/m)1/2 the perpendicular thermal ion velocity, T⊥ the perpendicular ion temperature,

δpe the perturbation of the electron pressure, and s the distance along the magnetic field B

direction.

The physical meaning of derivation of Eq. (??) has already been discussed in our previous

paper9. In contrast to Ref. 9, in which consideration was limited by the cold electron

approximation, Eq. (??) includes the variation of the electron plasma pressure δpe, which

for clarity is assumed to be isotropic. Due to their high mobility, the electrons are in

an equilibrium state, i.e. their distribution function fe ∝ exp (−W/Te), where W is the

electron energy W = mev
2
‖/2 + µeB − eΨ, me the electron mass, µe the electron magnetic

moment, v‖ the parallel velocity and Ψ the potential of the electric field. Integrating fe

over (µe, v‖) space one finds that electron density may be described by the Boltzmann law,

i.e. ne = n0 exp (eΨ/Te) and thus the variation of electron pressure is

δpe = n0Te exp

(
eΨ

Te

)
, (2)
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where n0 is the equilibrium plasma number density and Ψ is related to the field-aligned

electric field E‖ by E‖ = −∂Ψ/∂s. The origin of the electric field is the electron pressure

gradient created as electrons are dragged from regions of high to low parallel magnetic flux

regions.

The ion density and the ion perpendicular pressure are given by the following equations

n = B

∫
fdµdv‖, (3)

and

p⊥ = B2

∫
µfdµdv‖, (4)

where f is the ion velocity distribution function, the subscript i is omitted for clarity, B

the magnitude of the total magnetic field, µ = mv2
⊥/2B the ion magnetic moment, and

m the ion mass. For low-frequency oscillations the ion magnetic moment is conserved, i.e.

dµ/dt = 0. Furthermore, v‖(⊥) is the ion velocity along (perpendicular) the magnetic field

lines.

The ion velocity distribution function f(µ, v‖, r), where t is the time and r the guiding

center position vector, in the leading order obeys the drift kinetic equation9

∂f

∂t
+ v‖

∂f

∂s
+ v̇‖

∂f

∂v‖
= 0. (5)

The change in the parallel ion velocity resulting from wave compression, δB‖, and an electric

field, E‖, is given by the adiabatic expression13

v̇‖ ≡
dv‖
dt

= −µB0

m

∂b

∂s
− e

m

∂Ψ

∂s
. (6)

For clarity we have considered the magnetic and electric field perturbations to be described

by harmonic waves in the longitudinal direction, [b(r, t), Ψ(r, t)] ∝ cos(k‖s), |b| < 1 and

|eΨ/Te| < 1. Introducing the new variables, 2ξ = k‖s and ξ̇ =k‖v‖/2, Eq. (??) reduces to

the form9

∂f

∂t
+ ξ̇

∂f

∂ξ
− sin 2ξ

2τ 2

∂f

∂ξ̇
= 0, (7)

where
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τ =

[
m

k2
‖µB0 |b| (1 + eΨ/bµB0)

]1/2

. (8)

The characteristics of Eq. (??) describes the particle motion as a classical nonlinear

pendulum whose period T is of the order 2τ . When particles oscillate faster then the wave

amplitude grows, i.e. when T < γ−1 we have an adiabatic regime. Here γ = ∂ ln b/∂t is

the instability growth rate. In the opposite case (γ−1 < T ) the ions oscillate very slowly in

relation to the growth of the wave amplitude. In this limit one can use a linear approximation

or polynomial expansion in powers of b.

We note that τ depends not only on the wave amplitude b and the electrostatic potential

Ψ but also on the adiabatic invariant µ. Following to Ref. 9 we have introduced the value

µ = µ1 = 4mγ2/B0k
2
‖ |b|−eΨ/bB0 which separates the regions of adiabatic and nonadiabatic

ion motions.

Furthermore, similar to Ref. 9 one finds

n =
B

B0

n0 + B

µ1∫

0

dµdv‖δf, (9)

where δf is the linear perturbation of the ion distribution function given by14

δf = (µB0b + eΨ)

(
1− πγδ(v‖)∣∣k‖

∣∣

)
∂F

mv‖∂v‖
. (10)

For a bi-Maxwellian distribution the ion number density reduces to

n =
B

B0

n0

[
1− T⊥

T‖
b [Φ1(α) + aΦ2(α)]

(
1− π1/2γ∣∣k‖

∣∣ vT‖

)]
, (11)

where vT‖ is the ion parallel thermal velocity,

Φ1(α) = 1− αe−α − e−α, (12)

and

Φ2(α) = 1− e−α. (13)

The parameter α = µ1B0/T⊥ is given by

α =
4γ2m

k2
‖T⊥|b|

− a, (14)
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where a relates the electric potential and magnetic field perturbation, eΨ/T⊥ = ab. Eq. (??)

defines the value of α if 4γ2m/k2
‖T⊥|b| − a > 0. In the case when 4γ2m/k2

‖T⊥|b| − a < 0 the

parameter α is zero. Physically the latter implies that all ions in this case become adiabatic.

It was found that in the saturated state γ → 0 and a > 0.

Taking into account that the electrons are distributed according to the Bolzmann law,

ne = n0(1 + abT⊥/Te), from quasi-neutrality condition n = ne one finds (γ ¿
∣∣k‖

∣∣ vT‖)

a = − Te

T⊥

[
(T⊥/T‖)Φ1(α)− 1

1 + (Te/T‖)Φ2(α)
− (T⊥Φ1(α) + TeΦ2(α))

(T‖ + TeΦ2(α))2

π1/2γ

|k‖|vT‖

]
. (15)

Similarly, the ion pressure is

p⊥i =
B2

B2
0

p0
⊥i + B2

µ1∫

0

µdµ

∞∫

−∞

δf(µ, v‖)dv‖, (16)

or for a bi-Maxwellian distribution

p⊥i =
B2

B2
0

p0
⊥i −

B0

B
bp0
⊥i

T⊥
T‖

[Φ3(α) + aΦ1(α)]

(
1− π1/2γ∣∣k‖

∣∣ vT‖

)
, (17)

where

Φ3(α) = 2− α2e−α − 2αe−α − 2e−α. (18)

With the help of Eq. (??) the variation of the total plasma pressure is found to be

δp⊥
2p0
⊥i

= (1 +
a

2
)b +

b2

2
− b

2

T⊥
T‖

[Φ3(α) + aΦ1(α)]

(
1− π1/2γ∣∣k‖

∣∣ vT‖

)
. (19)

Eqs. (??), (??) and (??) constitute a close set of equations which describe the nonlinear

dynamics of the mirror mode perturbations in a plasma with a nonzero electron temperature.

III. THE SMALL WAVE AMPLITUDE LIMIT

The linear regime of the MI corresponds to the large values of α, i.e. α À 1. Furthermore,

in this limit Φ1(α) → 1, Φ2(α) → 1 and Φ3(α) → 2. Therefore, the quasi-neutrality condition

(??) reduces to

eΨ

T⊥b
= a = − Te

T⊥

[
T⊥ − T‖
Te + T‖

− T‖(T⊥ + Te)

(Te + T‖)2

π1/2γ

|k‖|vT‖

]
. (20)
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which coincides with the corresponding expression of Ref. 12.

It is shown that a takes a nonzero value only when the plasma is anisotropic and the

electron temperature is comparable to the parallel ion temperature. Moreover, in the linear

MI limit the electric field potential varies in anti-phase with the compressional perturbation

of the magnetic field. This may serve as an additional tool for the prime identification of

linear mirror perturbations in experimental data.

The linear variation of the total plasma pressure is found from Eq. (??)

δp⊥
2p0
⊥i

= −bA
(
1 +

a

2

)
+ b

T⊥
T‖

(
1 +

a

2

) π1/2γ∣∣k‖
∣∣ vT‖

, (21)

where A = T⊥/T‖ − 1 is the plasma anisotropy.

Substituting Eq. (??) into Eq. (??) one obtains

δp⊥
2p0
⊥i

= −b

(
T⊥
T‖
− 1−

(
T⊥/T‖ − 1

)2
Te

2T⊥(1 + Te/T‖)

)

+b
(1 + Te/T‖)2 + (1 + Te/T⊥)2

2(1 + Te/T‖)2

T⊥
T‖

π1/2γ∣∣k‖
∣∣ vT‖

. (22)

The physical meaning of the terms on the right-hand side of Eq. (??) are as follows: the

first two terms in the round brackets represent the plasma pressure anisotropy associated

with the ion mirror force whilst the third corresponds to the action of the electrostatic force.

In the linear regime these forces act in opposite directions. Finally the last term corresponds

to the contribution of resonant ions with small parallel velocities.

Substituting Eq. (??) into Eq. (??) one obtains the expression for the growth rate of the

mirror mode which accounts for both nonzero electron temperature and finite ion Larmor

radius effects

γ =

∣∣k‖
∣∣ vT‖

π1/2

T‖
T⊥

2(1 + Te/T‖)2

(1 + Te/T‖)2 + (1 + Te/T⊥)2
∆, (23)

where

∆ = L− 3

4β⊥
k2
⊥ρ2

i −
k2
‖

k2
⊥β⊥

(
1 +

β⊥ − β‖
2

)
, (24)

and
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L =
T⊥
T‖
− 1− 1

β⊥
−

(
T⊥/T‖ − 1

)2
Te

2T⊥(1 + Te/T‖)
≡ A− β−1

⊥ − E. (25)

In the limit when ρi → 0 expression (??) reduces to that which is obtained in Ref. 12.

The incorporation of nonzero electron temperature results in the modification of both the

growth rate and instability threshold. In this case the instability appears when L > 0, i.e.

when A−β−1
⊥ > E. Thus, in the presence of warm electrons the ion anisotropy necessary for

the instability onset is greater than that in the cold electron temperature limit. Moreover,

for a given ion anisotropy the finite electron temperature effects decrease the instability

growth rate. These modifications are ultimately due to the field-aligned electric field which

arises in the presence of nonzero electron pressure11,12. We note that in the limit of no

anisotropy Eq. (??) gives damping not growth.

The maximum growth rate is attained when

(k⊥ρi)
2
max = β⊥

L

3
, (26)

(k‖ρi)
2
max =

β2
⊥

1 + 1
2

(
β⊥ − β‖

) L2

12
. (27)

The expression for the maximum growth rate now becomes

γmax =
ωciβ⊥L2

2
√

3π

(
T‖
T⊥

)3/2 (1 + Te/T‖)2

(1 + Te/T‖)2 + (1 + Te/T⊥)2
. (28)

From Eqs. (??)-(??) it follows that γmax/
∣∣k‖

∣∣
max

vT‖ ∝ L ¿ 1. The latter corresponds

to the so-called “mirror approximation”15. Furthermore, the parameter (k‖ρi)
2
max always

remains smaller than unity. In order to prove this, the equation (??) may be rearranged

using the marginal stability condition L ≈ 0 so that

(k⊥ρi)
2
max =

1

3

[
1− 1

β⊥ (A− E)

]
. (29)

Since the onset of the MI corresponds to β⊥ (A− E) > 1 from Eq. (??) it follows that

(k⊥ρi)
2
max < 1/3. Thus our truncation of the power law expansion of (??) in terms of (k⊥ρi)

2

is justified.
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IV. NONLINEAR EFFECTS

The transition from the linear to the nonlinear regime of MI arises for finite values of

α when µ1 ≥ T⊥/B. Furthermore, Eq. (??) shows that when α À 1 the parameter a is

negative whereas in a strongly nonlinear regime it becomes positive. The reversal of the

sign arises when Φ1(α) = T‖/T⊥ or when (α + 1)e−α = 1 − T‖/T⊥. The actual value of α

when the reversal occurs depends on the plasma anisotropy. The smaller the anisotropy, the

larger the value of α. For moderate values of the ion anisotropy (T‖/T⊥ ' 1/2) the reversal

arises at α ' 1.65.

When Te ' T⊥ the value of a is of the order of unity, and transition from linear to

nonlinear stage (α ' 1) occurs for magnetic perturbation amplitude of

|b| ' |bL| = 2γ2
Lmi/k

2
‖T⊥, (30)

which is half that for the case of cold electrons, Te << T⊥ (cf. Ref. 9).

The latter relation is equivalent to the following differential equation

1

|b|
(

d|b|/dt

|b|
)2

=
k2
‖T⊥
2mi

. (31)

which results in the explosive temporal growth of |b|

|b| = |bL|
(

1− t

t1

)−2

, (32)

where t1 = 2γ−1
L .

Eq. (??) shows that in contrast to the linear regime in which the amplitude grows expo-

nentially, in the nonlinear regime, the amplitude growth becomes explosive. This explosive

solution is valid up to the time when the amplitude approaches the stationary value b = bs,

when t = t1 −∆t, with ∆t given by ∆t = t1(bL/bs)
1/2 << t1.

It is worth mentioning that in the linear limit the electric potential and compressional

magnetic field vary in anti-phase and in the fully developed nonlinear state they are in phase.

Setting γ → 0 and α → 0 in Eq. (??) and using the fact that Φ1(α) → Φ2(α) → Φ3(α) →
0 one finds

δp⊥
2p0
⊥i

=

(
1 +

Te

2T⊥

)
b +

b2

2
. (33)
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Substituting this expression into the perpendicular pressure condition gives

3

4β⊥
ρ2

i∇2
⊥b = (1 +

1

β⊥
+

Te

2T⊥
)b + (

5

2
+

5

2β⊥
+

Te

T⊥
)b2, (34)

which may be rewritten in the dimensionless form as

d2b

dx2
=

3

5

(
1 + β⊥ + βe/2

1 + β⊥ + 2βe/5

)
b +

3

2
b2, (35)

where x = r⊥/ρi[9/20(1 + β⊥ + 2βe/5)]1/2 and βe is the electron beta. In the cold electron

temperature limit, βe → 0, Eq. (??) reduces to the corresponding equation of Ref. 9. The

general solution of Eq. (??) is the so-called cnoidal wave9. In order to understand the basic

influence of nonzero electron temperature effects let us consider the particular solution of

Eq. (??) in the form of solitary wave given by

b = −3

5

(
1 + β⊥ + βe/2

1 + β⊥ + 2βe/5

)
cosh−2

[
(

3

20
)1/2x

]
. (36)

It is easily seen that the nonzero electron temperature shortly decreases the perpendicular

size of the magnetic structure. Furthermore, this effect also slightly increases the depth of

the magnetic hole. With the growth of electron temperature the dimensionless depth of the

magnetic hole varies from −3/5 when βe << β⊥ to −3/4 when βe >> β⊥, i.e. from 60 to

75 percent of the ambient magnetic field.

V. SUMMARY

In this paper, we have presented a study of nonlinear dynamics of the MI in the presence

of nonzero electron temperature effects using direct integration of the drift-kinetic equation

for the ions and a Boltzmann distribution for the electrons. A dynamic model was then

developed which accounts for the field-aligned electric field existing in a system with nonzero

electron pressure. The main characteristic of the present model is the role of the electrostatic

force both in the linear and nonlinear regimes. It was found that in the linear approximation

the electrostatic potential is in anti-phase with the variation of the compressional magnetic

field perturbation. This contrasts with the saturated state in which they are in phase. It

has been found that in the saturated state the nonzero electron temperature effects slightly

decreases the size and increases the depth of the magnetic structure. These changes become
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noticeable only when the electron temperature becomes comparable with the parallel ion

temperature.

Recently further progress in the study of nonlinear MI was carried out16. The authors of

this paper found two different solutions in the form of magnetic humps and holes, resulting

from the wave-wave and wave-particle coupling, respectively born on the same physical

conditions. However, nonzero electron temperature effects were not included in this study.

The model developed in our paper still remains oversimplified. For example, it has been

restricted to the case of isotropic electrons and finite but relatively small amplitudes of the

solitons when |b| < 1 and the Korteweg-de-Vries expansion provides a useful guide for the

construction of the nonlinear equations. The case when δB ∼ B was considered in Ref. 16.

Furthermore, the effect of bistability of mirror modes revealed in recent observations and

discussed in Refs. 7 and 16 was also outside the scope of this current study. However, our

analysis has provided a deeper insight into the physics of the nonlinear dynamics of mirror

modes in high-β space plasmas.
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