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A NOTE ON INTEGER FACTORIZATION USING LATTICES

ANTONIO VERA

CNRS/INRIA/NANCY-UNIVERSITÉ

Abstract. We revisit Schnorr’s lattice-based integer factorization algorithm,
now with an effective point of view. We present effective versions of Theorem 2
of [11], as well as new properties of the Prime Number Lattice bases of Schnorr
and Adleman.
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1. Introduction

Let N ≥ 1 be a composite integer that we want to factor. The congruence of
squares method consists of finding x, y ∈ Z such that

(1) x2 ≡ y2 mod N

with x 6≡ ±y mod N , and factor N by computing gcd(x+y,N). Although this is a
heuristic method, it works pretty well in practice and one can show under reasonable
hypotheses (see [3, page 268, remark (5)]) that for random x, y satisfying (1), one
has x 6≡ ±y mod N with probability ≥ 1/2. This report considers an algorithm
based on this philosophy, namely Schnorr’s algorithm [11], whose outline is given
in figure 1.

Call B-smooth an integer free of prime factors > B, and let pi be the i-th prime
number. Fix some d ≥ 1 and suppose that N is free of prime factors ≤ pd. The
core computational task of the algorithm consists in finding d+ 2 integer quartets
(u, v, k, γ), with u, v pd-smooth, k coprime with N , and γ ∈ N \ {0}, solutions of
the Diophantine equation

(2) u = v + kNγ .
1
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(1) Receive input number N to be factored.
(2) Set the dimension d and the constant C of the lattice Sp(d, C), and form

the extended prime number list P = {p0, p1, . . . , pd} where p0 = −1 and
the rest is the usual sequence of the first d prime numbers. Perform trial
division of N by the primes of P . If N is factored, return the factor.

(3) Using the lattice described in section 2, construct a list of at least d + 2
pairs (ui, ki) ∈ N× Z such that ui is pd-smooth with

ui =
d
∏

i=0

p
ai,j

i , ai,0 = 0,

and
|ui − kiN | ≤ pd.

(4) Factorize ui − kiN , for i ∈ J1, d+ 2K over P to obtain

ui − kiN =
d
∏

i=0

p
bi,j
i .

(5) Put ai = (ai,0, . . . , ai,d) and bi = (bi,0, . . . , bi,d).
(6) For every nonzero c = (c1, . . . , cd+1) ∈ {0, 1}d+1 solution of

d+1
∑

j=0

ci(ai + bi) = 0 mod 2

do
(a) Put

x =

d+2
∏

j=1

p
∑d+2

i=1
ci(ai,j+bi,j)/2

j mod N,

and

y =

d+2
∏

j=1

p
∑d+2

i=1
ciai,j

j mod N.

(b) If x 6= ±y mod N then return gcd(x+ y,N) and stop.

Figure 1. Outline of Schnorr’s algorithm

By design, Schnorr’s algorithm is only able to find solutions where k is pd-smooth
and γ = 1 (Adleman’s variant can yield, in principle, solutions with γ > 1). We
look for pairs (u, k) of pd-smooth numbers satisfying the inequality

(3) |u− kN | ≤ pd,

and we build solutions out of these pairs by setting v = u − kN : the inequality
guarantees the pd-smoothness of v. This search is lattice-based, and it involves
lattice reduction and lattice enumeration algorithms.

Although in 1987 de Weger [4] had already applied lattice reduction to the ef-
fective resolution of Diophantine equations of the form (2), it was Schnorr who
first applied it to factorization, in 1993 [11]. In 1995, Adleman [1] used Schnorr’s
approach to propose a reduction (not completely proved) from integer factorization
to the search of a shortest nonzero vector in a lattice. Schnorr’s algorithm was
successfully implemented by Ritter and Rössner in 1997 [10].

In this report, we improve a result of [11] by recycling a result of Micciancio
[9, Prop. 5.10]. This result may be useful (cf. remark 4) to show the existence of
solutions to (2). In addition, we provide explicit computations of the volumes and
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the Gram-Schmidt Orthogonalizations of the involved lattices and lattice bases,
respectively.

The road map is the following. First, in section 2, we introduce the lattice
framework of Adleman, and we explain how can we solve the Diophantine equation
(2) by searching short vectors in Adleman’s lattice. Later in the same section, we
explain the original approach of Schnorr, by particularizing Adleman’s approach.
Afterwards, in section 3 we give some properties of the Prime Number Lattices
of Schnorr and Adleman. Finally, in section 4, we provide our conclusions and
perspectives.

2. Detecting solutions

In this section we present the approaches of Adleman and Schnorr to solving (2)
using lattices. We start by the approach of Adleman, which considers a search for
short vectors. We show a sufficient condition to solving inequality (3). Then we
present the approach of Schnorr, which considers a search for close vectors, and
which can be seen as a particular case of Adleman’s. We show a corresponding
sufficient condition to solving (3).

2.1. Coding a candidate solution. Let z ∈ Z
d+1 be a vector with negative last

coordinate. To this vector we associate a candidate solution to (2) in the following
way

(4) u =

d
∏

zi>0,i≤d

pzii , k =
∏

zi<0,i≤d

p−zi
i and γ = |zd+1|.

Note that u and k are coprime. We would like to have candidate solutions providing
an actual solution with high probability, that is, we want v = u−kNγ to be probably
pd-smooth. Now we will describe a way to find such candidate solutions.

2.2. Making smoothness probable : the Prime Number Lattice of Adle-

man. Define Adleman’s p-norm Prime Number Lattice Ap by the columns of the
basis matrix

Ap =











p
√
ln p1 0 0 0

0
. . . 0 0

0 0 p
√
ln pd 0

C ln p1 · · · C ln pd C lnN











,

where C > 0 is an arbitrary constant, which can depend on N . The vector z ∈ Z
d+1

satisfies

Apz =













z1
p
√
ln p1
...

zd
p
√
ln pd

C
(

∑d
i=1 zi ln pi + zd+1 lnN

)













and

||Apz||pp =
d
∑

i=1

|zi|p p
√

ln pi
p
+ Cp

∣

∣

∣

∣

∣

d
∑

i=1

zi ln pi − |zd+1| lnN
∣

∣

∣

∣

∣

p

,

and considering that this vector codes a candidate solution, we have

||Apz||pp =
d
∑

i=1

|zi|p ln pi + Cp| lnu− ln(kNγ)|p

and hence

||A1z||1 = lnu+ ln k + C| ln u− ln(kNγ)|.



4 ANTONIO VERA

We have the following theorem in the case of the 1-norm.

Theorem 1. Let C > 1 and z ∈ Z
d+1, with γ = |zd+1| and zd+1 < 0. Then,

whenever

(5) ||A1z||1 ≤ 2 lnC + 2σ ln pd − γ · lnN,

we have

|u− kNγ | ≤ pσd .

Proof. Just use lemma 1 (in the appendix) with ε = 2 lnC +2σ ln pd− γ · lnN . �

Remark 1. The requirement zd+1 < 0 is just needed to obtain a valid candidate
solution. It does not reduce the space of solutions in any way, since a lattice is
an additive group: for each vector of nonzero last coordinate, either itself or its
opposite will have a strictly negative last coordinate.

Remark 2. When σ = 1 and z satisfies (5), we necessarily have a solution to the
original equation (2). In addition, when σ > 1 is not too big, we can be quite
optimistic about the pd-smoothness of v = u − kNγ , and hence on obtaining a
solution too.

Remark 3. In order to factor N , one will typically search for (short) vectors A1z

satisfying (5) for some σ not too big, and then reconstruct from z the candidate
solution to (2), testing afterwards if it really constitutes a solution. In that case,
the solution is stored, until we collect d+ 2 of them.

Remark 4. Together with some extra knowledge on the properties of γ for z satisfy-
ing (5) (see remark 6), theorem 1 could be useful to prove the existence of solutions
to inequality (3) and hence to equation (2), since we have explicit estimates on
the length of a short nonzero vector of A1, thanks to Minkowski’s theorem for the
1-norm. See Siegel [13, Theorem 14].

Remark 5. Obtaining an analog of theorem 1 for the Euclidean norm could be very
useful, since this norm has better properties and it is the usual norm for lattice
algorithms.

2.3. A similar approach : the Prime Number Lattice of Schnorr. The
Prime Number Lattice of Schnorr Sp is generated by the columns of the basis
matrix

(6) Sp =











p
√
ln p1 0 0

0
. . . 0

0 0 p
√
ln pd

C ln p1 · · · C ln pd











.

The vector

(7) t =











0
...
0

C lnN











is the target vector of a close vector search in Sp, which replaces the short vector
search of Adleman’s approach. Schnorr’s algorithm considers vectors z ∈ Z

d, to
which it associates the candidate solution (u, k, γ) to (3) with u and k defined
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exactly as in (4), and γ = 1. We have

Spz− t =











z1
p
√
ln p1
...

zd
p
√
ln pd

C(
∑d

i=1 zi
p
√
ln pi lnN)











,

and hence

||Spz− t||pp =

d
∑

i=1

|zi|p ln pi + Cp

∣

∣

∣

∣

∣

d
∑

i=1

zi ln pi − lnN

∣

∣

∣

∣

∣

p

.

The following theorem is the analog of theorem 1.

Theorem 2. Let C > 1 and z ∈ Z
d. Hence, if

(8) ||S1z− t||1 ≤ 2 lnC + 2σ ln pd − lnN,

then

|u− kN | ≤ pσd .

Proof. Just use lemma 2 with ε = 2 lnC + 2σ ln pd − lnN . �

Remark 6. In order to factor N , we should look for vectors of S1 close to t. The
main idea is that vectors satisfying (8) for some σ ≥ 1 not too big are more likely to
provide candidate solutions which in turn will provide solutions to (2). Adleman’s
approach has the apparent advantage of having a larger search space, hence having a
greater potential for finding solutions. In practice, this seems to be a disadvantage,
since the solutions to (2) seem to be exactly those coming from Schnorr’s approach
too. Hence, in Adleman’s approach one seems to search for many candidates that
do not provide solutions. This could be related to the fact that the target vector
t does not belong to the real span of S1: if the component of t in the orthogonal
complement of the span of S1 is sufficiently big, any short vector in Adleman’s
lattice A1 having nonzero last coordinate must have a last coordinate of absolute
value equal to 1, hence leading to the same solutions as Schnorr’s lattice (see [9,
Chapter 4, Lemma 4.1] for a related discussion).

Remark 7. A great algorithmic advantage of the approach of Schnorr over that
of Adleman is that the choice of the basis can be essentially independent of the
number N . For example, this will be the case if C depends only on the size of N .
This has the very important implication of allowing a precomputation on the basis
(for example an HKZ reduction) valid for all numbers of some fixed size.

Remark 8. Proving the existence of solutions to (8) seems harder in this case, since
one needs a bound on the covering radius, which is less well understood than the
first minimum.

Remark 9. Just as in the case of Adleman, obtaining an analog of theorem 2 for
the Euclidean norm could be very useful. First attempts at finding this analog were
stopped by involved computations.

3. Some properties of the Prime Number Lattices

We present some useful computations which extend those given by Micciancio
and Goldwasser [9, Chapter 5, section 2.3].
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3.1. Volumes of the Prime Number Lattices. Here we provide closed forms
for the volumes of the p-norm Schnorr and Adleman lattices. This generalizes
Proposition 5.9 of [9], which considers only p = 2.

Remark 10. Recall that the volume of the lattice generated by the columns of a
(not necessarily full rank) basis matrix B is

vol(L(B)) =
√

|det(BT ·B)|,

which is exactly det(B) when B has full rank.

Theorem 3. The volume of the p-norm Adleman lattice Ap, whose basis is

Ap =











p
√
ln p1 0 0 0

0
. . . 0 0

0 0 p
√
ln pd 0

C ln p1 · · · C ln pd C lnN











is given by

vol(Ap) = C lnN ·
d
∏

i=1

p
√

ln pi.

Furthermore, the volume of the p-norm Schnorr lattice Sp, whose basis is

Sp =











p
√
ln p1 0 0

0
. . . 0

0 0 p
√
ln pd

C ln p1 · · · C ln pd











,

is given by

vol(Sp) =

√

√

√

√1 + C2

d
∑

i=1

(ln pi)2−2/p ·
d
∏

i=1

p
√

ln pi.

Proof. The case of Ap is trivial, as the basis matrix is lower triangular. Let us
consider the case of Sp. It is easy to see that the volume of Sp is a multilinear
function of the columns of Sp. Hence, factoring out p

√
ln pi, i ∈ J1, dK from the i-th

column, we obtain

vol(Sp) =
√

| det(ST
p Sp)| =

√

| det(ŜT
p Ŝp)| ·

d
∏

i=1

p
√

ln pi,

where Ŝp is of the form (11) (see lemma 3 in the appendix) with

xi = C · (ln pi)1−1/p.

Lemma 3 implies that

√

| det(ŜT
p Ŝp)| =

√

√

√

√1 +

d
∑

i=1

(C(ln pi)1−1/p)2 =

√

√

√

√1 + C2

d
∑

i=1

(ln pi)2−2/p,

which concludes the proof. �
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3.2. Explicit Gram-Schmidt Orthogonalization. Here we give explicit expres-
sions for the coefficients of the Gram-Schmidt Orthogonalization (GSO) of the set
{b1, . . . ,bd, t} of columns of Sp, augmented by the target vector t (or, equivalently,
of the set of columns of Ap).

Theorem 4. Consider the columns {bi}di=1 of Schnorr’s Prime Number Lattice
basis (6), as well as the target vector t defined in (7). The Gram-Schmidt Orthog-
onalization of {b1, . . . ,bd, t} involves the quantities

Dj = 1 + C2

j
∑

i=1

(ln pi)
2−2/p 1 ≤ j ≤ d

and is given by

(b⋆
k)i =



















−C2 ln pk(ln pi)
1−1/p

Dk−1
i < k

(ln pk)
1/p i = k

0 k < i < d+ 1
C ln pk

Dk−1
i = d+ 1

and

(t⋆)i =

{

−C2(lnN)(ln pi)
1−1/p

Dd
i < d+ 1

C(lnN)
Dd

i = d+ 1
.

The corresponding Euclidean norms satisfy

||b⋆
k||22 = (ln pk)

2/p Dk

Dk−1
||t⋆||22 =

(C lnN)2

Dd
.

Furthermore, the projection t on the span of {b1, . . . ,bd}, which is the effective
target vector for the close vector search of Schnorr’s algorithm, is given by

(t− t⋆)i =

{

C2(lnN)(ln pi)
1−1/p

Dd
i < d+ 1

C(lnN)(Dd−1)
Dd

i = d+ 1
.

Proof. The matrix having {b1, . . . ,bd, t} as columns is of the form (12) (see lemma
4 in the appendix) with

xi =
p
√

ln pi, yi = C · ln pi 1 ≤ i ≤ d,

and
yd+1 = C lnN.

Hence, using lemma 4, we directly obtain the theorem. �

Remark 11. The explicit value of ||t⋆||2 can be used to better understand the search
for close vectors of Schnorr’s algorithm. This is a consequence of the fact that t

does not belong to the span of {b1, . . . ,bd}.

4. Conclusions and perspectives

Using an idea of Micciancio, we presented partial but rigorous results advancing
towards an effective reduction from factorization to the search of short or close
lattice vectors in the Prime Number Lattice of Adleman or Schnorr, respectively.
These results, valid only for the 1-norm, improve over those of Schnorr [11, Theorem
2] by getting rid of asymptotically vanishing terms. Proving similar results for the
Euclidean norm may be very useful, since it has much better properties than the
1-norm and it is the natural choice for lattice algorithms1.

1Although recently, in [12, Theorem 2], Schnorr restated [11, Theorem 2] in the context of the
Euclidean norm, this is essentially a generic restatement valid for every p-norm, p ≥ 1, which still
involves asymptotic terms.
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Furthermore, we provided new properties of the Prime Number Lattices and
their usual bases (in p-norm, p ≥ 1), extending those of Micciancio [9, Chapter 5,
Section 2.3]. These properties could be useful to better understand the close vector
search which takes place at the core of Schnorr’s algorithm.

The next step of this work is to understand the distribution of lattice elements
providing solutions to (3) or even (2), in order to choose on a well-grounded basis
between enumeration algorithms ([7, 5]) and random sampling algorithms ([6], [8]),
in the context of an effective implementation.

4.1. Acknowledgements. Thanks to Damien Stehlé for regular discussions and
encouragement, as well as for many pointers to the relevant literature. Thanks to
Guillaume Hanrot for useful discussions.
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Appendix A. Underlying lemmas

A.1. Lemmas used in section 2. The following two lemmas are elementary gen-
eralizations of a result of Micciancio [9, Prop. 5.10].

Lemma 1. Let C > 1 and let z ∈ Z
d+1 have negative last coordinate of module

γ = |zd+1| ≥ 1, satisfying

||A1z||1 ≤ ε.

Hence, we have

|u− kNγ | ≤ N
γ
2

C
· exp

(ε

2

)

.

Proof. The proof is essentially the same of Proposition 5.10 of [9]. We maximize
|u− kNγ | subject to the constraint

(9) ||A1z||1 ≤ ε.

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/proof003.html#DetSumI_AB_p
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Since

||A1z||1 = lnu+ ln k + C| ln u− ln(kNγ)|,
the constraint (9) is symmetric in u and kNγ , and we can suppose without loss of
generality that u ≥ kNγ . Now, the constraint (9) can be rewritten as

(C + 1) · lnu− (C − 1) · ln k ≤ ε+ Cγ · lnN,

which implies

u ≤ k
C−1

C+1 ·N
Cγ
C+1 · exp

(

ε

C + 1

)

.

Replacing this maximal value for u in the objective function we get

(10) k
C−1

C+1 ·N
Cγ
C+1 · exp

(

ε

C + 1

)

− kNγ .

Now, we optimize this last expression as a function of k. Differentiating (10) with
respect to k we obtain

(

C − 1

C + 1

)

· k− 2
C+1 ·N

Cγ
C+1 · exp

(

ε

C + 1

)

−Nγ

and hence the maximum is reached in the point

k =

(

C − 1

C + 1

)
C+1

2

·N−
γ
2 exp

(ε

2

)

.

The maximum of the original function is hence

(

C − 1

C + 1

)
C−1

2

·N γ
2 · exp

(ε

2

)

·
(

2

C + 1

)

and as2

(

C − 1

C + 1

)
C−1

2

·
(

2

C + 1

)

≤ 1

C

for C > 1, we conclude that

|u− kNγ | ≤ N
γ
2

C
· exp

(ε

2

)

,

as wished. �

Lemma 2. Let C > 1 and let z ∈ Z
d satisfying

||S1z− t||1 ≤ ε.

Hence,

|u− kN | ≤
√
N

C
· exp

(ε

2

)

.

Proof. Just take γ = 1 in the proof of lemma 1. �

2When x > 1, the function f(x) =
(

x−1

x+1

)
x−1

2
(

2x

x+1

)

is monotonically decreasing, with

f(0+) = 1.
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A.2. Lemmas used in section 3. The following are general lemmas, maybe of
independent interest. Lemma 4 could find an application in the context of knapsack
lattice bases.

Lemma 3. The volume of the lattice L generated by the columns of the matrix

(11) B =















1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1
x1 x2 · · · xd















satisfies

vol(L) =
√

det(BTB) =

√

√

√

√1 +
d
∑

i=1

x2
i .

Proof. We use Sylvester’s determinant theorem (see for example [2]), which states
that for every A ∈ R

m×n and B ∈ R
n×m,

det(Im +AB) = det(In +BA),

where Ik is the k × k identity matrix. Writing the matrix B by blocks, and com-
puting the associated Gram matrix, we obtain

B =

[

Id
xT

]

BTB = Id + x · xT ,

and hence, using Sylvester’s theorem,

vol(L)2 = det(BTB) = det(Id + x · xT ) = det(I1 + xT · x) = 1 +

d
∑

i=1

x2
i ,

as wished. �

Lemma 4. The Gram-Schmidt Orthogonalization of the columns {v1, . . . ,vd+1}
of a nonsingular square matrix

(12)















x1 0 0 0 0
0 x2 0 0 0

0 0
. . . 0 0

0 0 0 xd 0
y1 y2 · · · yd yd+1















can be specified in function of its entries and the quantities

Kj = 1 +

j
∑

i=1

(

yi
xi

)2

1 ≤ j ≤ d, K0 = 1,

by

(13) (v⋆
k)i =



















−
(

yk

Kk−1

)

·
(

yi

xi

)

i < k

xk i = k
0 k < i < d+ 1
yk

Kk−1
i = d+ 1

for k ≤ d, and by the same expression considering only the i < k and i = d + 1
cases, when k = d+ 1. The Euclidean norms satisfy

(14) ||v⋆
k||2 = x2

k

Kk

Kk−1
, ||v⋆

d+1||2 =
y2d+1

Kd
,
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and the Gram-Schmidt coefficients are

(15) µk,j =
vk · v⋆

j

v⋆
j · v⋆

j

=
yk · yj
x2
jKj

, 1 ≤ j < k ≤ d+ 1.

Proof. The proof of (13) is carried out by induction. The result is clearly true for
k = 1. Suppose that it holds for v⋆

1 , . . . ,v
⋆
k−1 for some k ∈ J2, d+ 1K. Let us show

that it still holds for v⋆
k. First, observe that for 1 ≤ j < k ≤ d+ 1,

vk · v⋆
j = (vk)d+1 · (v⋆

j )d+1 = yk
yj

Kj−1

and

||v⋆
j ||22 = v⋆

j · v⋆
j =

j−1
∑

i=1

(

yi
xi

)2

·
(

yj
Kj−1

)2

+ x2
j +

(

yj
Kj−1

)2

=

(

yj
Kj−1

)2

·
(

1 +

j−1
∑

i=1

(

yi
xi

)2
)

+ x2
j

=
y2j

Kj−1
+ x2

j

= x2
j

(

1 +
(yj/xj)

2

Kj−1

)

= x2
j

(

Kj−1 + (yj/xj)
2

Kj−1

)

= x2
j

Kj

Kj−1
,

which entails

(16) µk,j =
vk · v⋆

j

v⋆
j · v⋆

j

=
yk · yj
x2
jKj

.

Now, let i ∈ J1, k − 1K. By the definition of the Gram-Schmidt process, we have

(v⋆
k)i = (vk)i −

k−1
∑

j=1

µk,j · (v⋆
j )i

= 0−
k−1
∑

j=i

µk,j · (v⋆
j )i

= −µk,i · (v⋆
i )i −

k−1
∑

j=i+1

µk,j · (v⋆
j )i

= −
(

ykyi
x2
iKi

)

· xi −
k−1
∑

j=i+1

(

yk · yj
x2
j ·Kj

)

·
(

− yiyj
xiKj−1

)

= −yk

(

yi
xi

)





1

Ki
−

k−1
∑

j=i+1

(

yj
xj

)2
1

Kj−1Kj





= −yk

(

yi
xi

)





1

Ki
−

k−1
∑

j=i+1

(

1

Kj−1
− 1

Kj

)





= − yk
Kk−1

(

yi
xi

)

,
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as we wanted. Now, when i = k ≤ d,

(v⋆
k)k = (vk)k −

k−1
∑

j=1

µk,j · (v⋆
j )k

= xk −
k−1
∑

j=1

µk,j · 0

= xk,

as we wanted. When k < i ≤ d, we have

(v⋆
k)i = (vk)i −

k−1
∑

j=1

µk,j · (v⋆
j )i

= 0−
k−1
∑

j=1

µk,j · 0

= 0

as wished. Finally, when i = d+ 1 we obtain, for every k ∈ J2, d+ 1K,

(v⋆
k)d+1 = (vk)d+1 −

k−1
∑

j=1

µk,j · (v⋆
j )d+1

= yk −
k−1
∑

j=1

(

ykyj
x2
jKj

)

·
(

yj
Kj−1

)

= yk



1−
k−1
∑

j=1

(

yj
xj

)2
1

Kj−1Kj





= yk



1−
k−1
∑

j=1

(

1

Kj−1
− 1

Kj

)





= yk

(

1−
(

1

K0
− 1

Kk−1

))

=
yk

Kk−1
,

since K0 = 1. Hence, (13) is proved, both in the 1 ≤ k ≤ d and the k = d+1 cases,
as specified in the statement of the lemma. As a consequence of the computations
preceding (16), properties (14) and (15) are also proved, except for the Euclidean
norm of v⋆

d+1, which is given by

||v⋆
d+1||22 =

(

yd+1

Kd

)2

·
(

1 +

d
∑

i=1

(

yi
xi

)2
)

=
y2d+1

Kd
.

The proof of the lemma is now complete. �
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