
HAL Id: inria-00468231
https://hal.inria.fr/inria-00468231

Submitted on 1 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Driven analysis and synthesis of textual concrete
syntax

Pierre-Alain Muller, Frédéric Fondement, Franck Fleurey, Michel
Hassenforder, Rémi Schnekenburger, Sébastien Gérard, Jean-Marc Jézéquel

To cite this version:
Pierre-Alain Muller, Frédéric Fondement, Franck Fleurey, Michel Hassenforder, Rémi Schnekenburger,
et al.. Model Driven analysis and synthesis of textual concrete syntax. Software and Systems Modeling,
Springer Verlag, 2008, 7 (4), pp.423–442. �10.1007/s10270-008-0088-x�. �inria-00468231�

https://hal.inria.fr/inria-00468231
https://hal.archives-ouvertes.fr

Model-Driven Analysis and Synthesis of Textual
Concrete Syntax

Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel
Hassenforder2, Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

1 IRISA / INRIA Rennes
Rennes, France

{pierre-alain.muller, jean-marc.jezequel}@irisa.fr

2 Université de Haute-Alsace, MIPS
Mulhouse, France

{frederic.fondement, michel.hassenforder}@uha.fr

3 SINTEF
Oslo, Norway

franck.fleurey@sintef.no

4 CEA, LIST
Gif-sur-Yvette, France

{remi.schneckenburger, sebastien.gerard}@cea.fr

Abstract. Meta-modeling is raising more and more interest in the field of
language engineering. While this approach is now well understood for defining
abstract syntaxes, formally defining textual concrete syntaxes with meta-models
is still a challenge. Textual concrete syntaxes are traditionally expressed with
rules, conforming to EBNF-like grammars, which can be processed by compiler
compilers to generate parsers. Unfortunately, these generated parsers produce
concrete syntax trees, leaving a gap with the abstract syntax defined by meta-
models, and further ad-hoc hand-coding is required. In this paper we propose a
new kind of specification for concrete syntaxes, which takes advantage of meta-
models to generate fully operational tools (such as parsers or text generators).
The principle is to map abstract syntaxes to textual concrete syntaxes via
bidirectional mapping-models with support for both model-to-text, and text-to-
model transformations.

1 Introduction

Meta-languages such as MOF [1], Ecore [2], Emfatic [3], KM3 [4] or Kermeta [5],
model interchange facilities such as XMI [6] and tools such as Netbeans MDR [7] or
Eclipse EMF [2] can be used for a wide range of purposes, including language
engineering. While meta-modeling is now well understood for the definition of
abstract syntax, formal definition of textual concrete syntax is still a challenge, even

2 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

though concrete syntax definition is considered as an important part of meta-modeling
[8].

Being able to parse text and transform it into a model, or being able to generate

text from a model are concerns that are being paid more and more attention in
industry. For instance Microsoft with the DSL Tools [9] or Xactium with XMF
Mosaic [10] in the domain-specific language engineering community, are two
industrial solutions for language engineering that involve specifications used for the
generation of tools such as parsers and editors. A new OMG standard, MOF2Text
[11], is also being developed regarding concrete-to-abstract mapping. Although this
paper focuses on textual concrete syntaxes, it is worth noticing that there are also
research activities about modeling graphical concrete syntax [12] [13].

The aim of the research presented in this paper is to reduce the gap between the

fields of grammars and meta-models. We propose a new kind of specification for
concrete syntaxes, which takes advantage of meta-models to generate fully
operational tools (such as parsers or text generators). The principle is to map abstract
syntaxes whose structure is known in advance to concrete syntaxes via bidirectional
mapping-models with support for both model-to-text, and text-to-model
transformations.

Abstract
Syntax Spec
(Metamodel)

Model

«conformsTo»
Code Generator

Templates

Code

Text
Processor

Grammar

Semantic
analysis

Intermediate
tree

«conformsTo»

«conformsTo»

Metalanguage
(e.g. MOF, Kermeta)

«conformsTo»

Figure 1: Typical concrete syntax definition and tooling

Figure 1 provides an overview of a typical usage and definition of concrete

syntaxes for meta-model-based languages. Abstract syntax is modeled by a meta-
model. A language sentence is a model, which is an instance of the concepts defined

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 3

in the meta-model, as depicted by the «conformsTo» relationship. Dashed arrows
represent dependencies while bold arrows represent data flow. Grayed items represent
artifacts that are at the modeling level (e.g. a language sentence - M1 in the MDA
terminology [1]), and white items are data necessary to define a language (i.e. the
specification for a language - M2 in the MDA terminology). The figure shows a
typical solution to manage textual concrete syntax. Usually, this specification is
divided into two different parts: producing textual representation from a model, or
producing a model from textual representation. To produce textual representation,
code generators often instantiate text templates while visiting the model, see for
example the AndroMDA tool [14]. Each text template states how a given concept
should be rendered in text. To produce models from texts, the usual way is to rely on
compiler technologies. Compiler compilers (e.g. the ANTLR tool [15]) create text
processors from a grammar. The result is an intermediate tree as a trace of rules
triggered to recognize text. Further hand-coded programs need to visit those
intermediate trees to translate them into models. One of the drawbacks of that scheme
is that both ways (from model-to-text – i.e. synthesis – and from text-to-model – i.e.
analysis) have to be kept consistent. As a side effect, when a change occurs in
concrete syntax, one needs to update code generation templates, grammar, and
semantic analysis accordingly. Moreover, code generation technologies are not well
suited for concrete syntax representation. Those technologies emerged for producing
code from models, regardless whether target code was actually a representation for
another language.

Metalanguage
(e.g. MOF, Kermeta)

Textual
Concrete
Syntax

(Metamodel)

Textual
Concrete

Syntax Spec.

Abstract
Syntax Spec.
(Metamodel)

Model Text

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»

Reversible
Text

Processor

Figure 2: Unifying analysis and synthesis specifications

As shown in Figure 2, we propose in this paper to have a unique specification both

for analyzing and synthesizing text, thus reducing the number of maintenance points
and simplifying the task of developing semantic analysis. The goal here is limited to

4 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

representing a model of a given language into concrete syntax of that same language,
so that we do not need as much flexibility as depicted in Figure 1, in which generated
code could belong to another language. Indeed, the goal is not to cross the boundaries
of languages. Some technologies (such as model transformations) are currently
extensively studied (e.g. see [16]), improved and developed regarding transforming a
model (sentence) of a given language into a model (sentence) of another language
(exomorphic transformations). We have the feeling that it is a better approach to work
at the model level rather than at the concrete syntax level to compile languages, since
the concern of concrete syntax is not vital in the context of compiling language, and
since one could benefit from dedicated technologies as promoted by MDE-like
technologies. As an example, one should rather transform his/her UML model into a
Java model, which conforms to the Java meta-model, further rendered in text using
the Java concrete syntax, instead of directly generating Java code. If the target
concrete syntax evolves (as it happens when new keywords appear), code generation
has to be maintained while a model transformation that works at the abstract syntax
level would still be valid. To specify such a reversible textual concrete syntax
specification, we propose a new (DSL) modeling language to put into relation text
structures and a meta-models. Driven by specifications written in such a language,
automated tools can produce models by analyzing texts, or represent models in textual
forms. In this paper, we define such a language by stating its abstract syntax in the
form of a meta-model. Of course, such a new meta-model may be used to provide a
concrete syntax to itself (see section 5.2).

The material presented in this paper is an evolution of a previous work which was
limited to textual concrete syntax synthesis [17]. The ideas presented in this paper
were validated by two prototype implementations: TCSSL tools and Sintaks. The
TCSSL tools [18] were developed in the software laboratory of the French Atomic
Commission (CEA, LIST). They provide a pretty printer for rendering a model as
structured text, and they generate a compiler compiler specification for building a
model from a text. Sintaks [19] (which stands for syntax in Breton, a Celtic language)
has been developed in the context of the Kermeta project [20]. Kermeta is an
executable DSL (Domain Specific Language) for metamodeling, which can be used to
specify both abstract syntax and operational semantics of a language. Altogether,
Kermeta, TCSSL Tools and Sintaks provide a comprehensive platform for model-
driven language engineering.

An important point in our approach, and a major difference to the grammarware

approach, is that the structure of the abstract syntax (i.e. the meta-model) is known
before concrete syntax. This basically means that the abstract syntax does not depend
on the structure of the concrete syntax. To the contrary, the description of the concrete
syntax depends on the structure of the abstract syntax.

The paper is organized as follows: after this introduction, section 2 examines some

related works, section 3 motivates our proposal; section 4 presents our meta-model for
concrete syntax, and explains the mechanics which are behind. Section 5 presents two
examples which illustrate the way concrete syntax can be modeled and associated to

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 5

models of the abstract syntax. Section 6 briefly discusses implementation of the
prototypes and finally section 7 draws some general conclusions, and outlines future
works.

2 Related works

Many of the concepts behind our work take their roots in the seminal work
conducted in the late sixties on grammars and graphs and in the early eighties in the
field of generic environment generators. One example is Centaur [21] that, when
given the formal specification of a programming language (syntax and semantics),
produces a language-specific environment.

The issue of representing information in structured text has been described

extensively in the context of compiler construction, in works such as generative
grammars [22], attributed grammars [23], Backus-Naur Form (BNF) [24], and
Extended BNF (EBNF) [25]. Those results are used by compiler compilers, i.e.
programs that take EBNF-like grammars as input, and which generate programs able
to analyze texts conforming to grammars. Well known examples of such compiler
compilers include Lex/Yacc [26] and ANTLR [15]. A thorough description of
compiler construction may be found in [27].

Pratt’s pair grammars [28] make two reversible context-free grammars match so

that, when one rule describing the source language is recognized, the corresponding
rule of the target language is executed. Source and target languages can indifferently
be graphs (using a context free graph grammar) or texts. Thus, by matching rules, this
approach makes it possible to put in correspondence a graph with a text in a
bidirectional way. A model is a kind of graph, so the approach can be applied to make
a model match a text (as in [29] where the model is actually a graphical
representation). To apply such an approach in the domain of models, one would first
need to describe the graph grammar for the considered model. Further on, all non
terminal rules should be rewritten to target structured text. However, in our approach,
the model structure is already provided as a meta-model. Therefore, we rather propose
a single specification that states how a reversible context-free grammar can directly
match a meta-model. An important point in our approach is that the structures of the
abstract and of the concrete syntax are not necessarily similar.

AntiYacc [30] is an example of generating texts from models, and shares a lot of
ideas with our approach. It uses a grammar which extends EBNF and is described by
a meta-model as well. The AntiYacc approach may be seen as more flexible than ours
(e.g. it features powerful expressions for model querying) but it addresses only half of
the problem. Despite its name, there is no seamless way to transform the abstract-to-
concrete specification into a concrete-to-abstract specification that could be used by a
tool like Yacc.

6 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

XMI (XML Metadata Interchange) [6] provides an example of a reversible
mapping between models and texts. The primary goal of XMI is to offer a standard
way of serializing models, mainly for model interchange between tools. Hence, the
concrete syntax of XMI is hard to read and cannot be used on a large scale by humans
for creating models. A major strength of XMI is its compatibility with XML tools
(most notably XML parsers). HUTN (Human Usable Textual Notation) [31] is a
standard for deriving human-friendly generic concrete syntaxes from meta-models.
HUTN syntax is much easier to read than XMI; however it cannot be fully
customized. Our work is close to HUTN, but in a more general context, as we support
user-defined concrete syntax. In the end, HUTN is a good use-case for Sintaks.

There is currently a lot of interest in the modelware community about establishing

bridges between so-called technological spaces [32]. For instance M. Wimmer and G.
Krammler have presented a bridge from grammarware to modelware [33], whereas
M. Alanen and I. Porres discuss the opposite bridge from modelware to
grammarware, in the context of mapping MOF meta-models to context-free
Grammars [34]. A. Kunert goes one step further and generates a model parser once
the annotated grammar has been converted to a meta-model [35]. The Textual Editing
Framework (TEF) [36] is a recent approach that makes possible to define textual
concrete syntaxes. The tool can translate the specification into a parser that includes
semantic analysis. The generated parser can be used in background by the Eclipse
IDE, which is automatically customized by the framework for the described language.
TCS (Textual Concrete Syntax) [37] is another example of bi-directional bridge,
based on a DSL for specification of concrete syntax.

While a grammar could be considered as a meta-model, the inverse is not

necessarily true, and an arbitrary meta-model cannot be transformed into a grammar
[38]. Even meta-models dedicated to the modeling of a given concrete syntax (such as
HUTN presented earlier) may require non-trivial transformations to target existing
grammarware tools. We discuss some of these issues in previous work, where we
have experimented how to target existing compiler compilers to generate a parser for
the HUTN language [39]. A similar experience, turning an OMG specification (OCL)
into a grammar acceptable by a parser generator [40] has been described by D.
Akehurst and O. Patrascoiu.

As we have seen, the issue of transforming models into texts, and texts into models

has been addressed mostly as two different topics. In this paper, we explore a
bidirectional mapping by defining a meta-model for the specification of textual
concrete syntax in a context where abstract syntax is also represented by meta-
models. The transformations described in this paper (from model-to-code, and from
code-to-model) are symmetric, and their effect can be reversed by each other. In the
context of this paper, we call analysis the process of transforming texts into models,
and synthesis the process of transforming models into texts.

We are experimenting with a new way of building tools for programming

languages (such as compilers or IDEs) by using meta-models which embed results

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 7

from the language theory directly in the modelware space. The novel contribution of
this research is combining the specification of the two approaches (text-to-model and
model-to-text) in a single approach, i.e., inconsistencies between text-to-model
transformations and model-to-text transformations are avoided that way.

3 Modeling the mapping between abstract syntax and concrete
syntax

Before detailing the mapping, it is worth reminding general principles of text
parsing.

3.1 General principles of text parsing

A text parsing process starts with lexical analysis. The input stream is split into a
sequence of tokens (number, keyword, plain text, etc), usually described by regular
expressions. A token is associated to a type (number, comment, keyword, etc.), a text
(e.g. "12.85" for a number), and eventually a location (e.g. a line and a colon). A tool
fulfilling this function is called a lexical analyzer, in short a lexer.

The process goes on with syntactic analysis. The token stream obtained from the

lexical analysis is analyzed according to a grammar of the language under study,
usually defined in the form of EBNF-like rules. Actions may be embedded in the
grammar rules (attributed grammar), so that one may build an abstract syntax tree
(AST) that may be later walked through to generate code. A tool fulfilling syntactic
analysis is called a parser (for simplicity, we do not detail scanner-less parsing here).

There are two main families of parsers: top-down parsers and bottom-up parsers.

• Top-down parsers (LL parsers - from Left to right scanning using Leftmost

derivation) attempt to trigger the topmost rule (the main rule), and move down
into grammar rules. For instance, if expression is the topmost rule, a LL parser
will trigger the expression rule and then choose among the alternatives such as
addition or subtraction. Left recursivity, i.e. a rule potentially calling itself as a
first sub-rule, must be avoided.

• Bottom-up parsers (LR parsers - from Left to right scanning using Rightmost

derivation in reverse), also known as shift-reduce parsers, will store
intermediate tokens into a stack up to a rule is matched. For instance, it is only
when the token stack contains a number, a ‘+’ sign, followed by another
number, that the addition rule will be recognized as an expression rule.
However, these parsers are difficult to produce by hand.

Parsers usually drive their associated lexer; that is, they consume tokens while they

analyze rules. An important issue is that rules may be conflicting, i.e. different rules

8 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

(and alternatives) may be applied to recognize the same text. For instance, at the
moment a parser consumes a number terminal, it cannot decide whether the triggered
rule should be addition or subtraction. To solve that problem, two options are
possible: look-ahead and backtracking.

Look-ahead parsers can analyze more than one token at a given moment. While

analyzing an expression, such parsers can choose between addition and subtraction
by looking at the next token, which should be either a ‘+’ or a ‘-’ terminal. Depending
on the grammar complexity, the number k of tokens to be accessible in advance is
different, but the more important that number is, the more complex and the less
efficient the parser is. The parser is said to be LL(k) or LR(k). Nowadays, one can
easily find LL(1), LL(*), and LR(1) parser generators.

Backtracking parsers, such as the TXL parser [41], follow a try-and-error scheme.

Whenever a rule fails (for instance because of an un-matching token), such parsers
abandon the current rule, backtrack, select another rule, and try again to parse the
input text. For instance, a backtracking parser will choose first the addition rule each
time it encounters a number terminal, “hoping” that the right rule was chosen. If the
next token is a ‘-’ terminal, then addition rule fails, and the parser backtracks to the
point of the rule choice, and starts again analysis using the subtraction rule
alternative. Unfortunately such a process is rather inefficient compared to the
previous one.

Our goal has not been to reinvent a text format specification or parsing technique,
but to extend the above-described techniques so that they can specify both analysis
and synthesis. Regarding analysis, our extension targeted the creation of a model
while parsing a text representation, i.e. semantic analysis. Regarding synthesis,
extension was about making the process reversible. We chose to compare both look-
ahead and backtracking approaches in our prototype implementations. Regarding text
analysis, the TCSSL tools generate an ANTLR compiler compiler specification from
a meta-model and a textual concrete syntax specification. Since ANTLR is an LL(k)
parser generator, the generated text analyzer follows LL(k) rules: parsing is efficient
but grammars must neither be left recursive, nor ambiguous for a k lookahead. This
last point requires the ambiguities as detected by the ANTLR tool to be transformed
into errors that are understandable from the perspective of the genuine textual
concrete syntax specification. Note that ANTLR can compute and use the minimal
value for k locally to a rule. To the contrary, Sintaks interprets the textual concrete
syntax specification while analyzing an input text by executing a backtracking
mechanism. The scope of possible grammars is thus larger since ambiguous
grammars are acceptable: ambiguities (among choices) are resolved depending on the
order those choices were declared. However, for sake of ease of implementation,
Sintaks is based on a top-down recursive descent: as for TCSSL tools, left recursivity
still needs to be avoided. As said above, the major drawback is that analysis is slower
(around 6 times, highly depending on the grammars), which is not really an issue as
long as the goal is building languages by prototyping. Nevertheless, this approach

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 9

could scale when it comes to create and test a textual concrete syntax, following the
philosophy of the TXL engine [41].

3.2 Abstract syntax versus concrete syntax

Defining a language can be decomposed into three related activities: defining the

syntax, the semantic domain, and the mapping between syntax and semantic domain.
D. Harel and B. Rumpe give a good introduction to the issues surrounding these
activities in their paper about defining complex modeling languages [42]. In this
paper we focus on syntax definition; defining semantic domain and mapping syntax to
semantic domain is out of the scope of the work presented here.

Syntax can be further decomposed into abstract syntax and concrete syntax since

“surface structure does not necessarily provide an accurate indication of the structure
and relations that determine the meaning of a sentence” ([43] on page 93). Abstract
syntax describes the concepts of a given language independently of the source
representation (concrete syntax) of that language and is primarily used by tools such
as compilers for internal representation. Concrete syntax, also called surface syntax,
provides a user friendly way of writing programs; it is the kind of syntax
programmers are familiar with.

Object-oriented meta-modeling languages (such as EMOF, Ecore or Kermeta) can

be used for representing abstract syntax; concepts of languages are then represented in
terms of classes and relations. A given program can be represented by a model
conforming to the meta-model which represents the abstract syntax of the language
used to write the program. Writing this program, in other words building the model
which represents the program, requires some way to instantiate the concepts defined
in the meta-model.

This can be achieved either at the abstract syntax level, or at the concrete syntax

level. The difference is that in the first case, the user has to manipulate the concepts
available in the meta-modeling environment (for instance via reflexive editors) while
in the second case, the user may use a surface language which is made of those
concepts. While the end-result is the same, it is much simpler for users (such as
programmers) to write programs in terms of concrete syntax, rather than using
instances of meta-modeling concepts.

For textual languages, there must be some way to link the information in the text

(the concrete syntax) with the information in the model (the abstract syntax). We have
seen in the previous subsection that the issue of analyzing text to produce abstract
syntax trees had already received much attention in the compiler community. Most
notably, efficient tools are available to generate parsers from EBNF-like grammars.
Unfortunately, these generated parsers produce abstract syntax trees, leaving a gap
with the abstract syntax defined by meta-models (graphs related), and further ad-hoc
hand-coding is required in order to perform semantic analysis (see Figure 1).

10 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

An example of such a time consuming task is type checking, which actually

matches name-based references to other elements that are defined elsewhere. Typical
examples are typed programming languages, where one may declare variables of a
certain type, which can be considered correct if and only if that type is declared
elsewhere in the code. Other examples are method and operator calls. It is again the
task of type checking to actually find the called operation according to its name and
the inferred type of the arguments. Again, type inference is a concern of semantic
analysis.

In practice, structure of concrete syntax often influences abstract syntax. Some

even derive the abstract syntax from the concrete syntax, following a bottom-up
approach like in [34]. However, for the same language, one may want to define
different concrete syntaxes (e.g. UML models that can take a graphical appearance,
but also textual XMI or HUTN shapes). If different surface syntaxes are provided, a
bottom-up approach to abstract syntax specification will lead to different abstract
syntaxes for the same language. In our approach, we propose to improve text structure
definition to support manipulation of predefined abstract syntaxes given under the
form of meta-models.

3.3 Code generation versus textual concrete syntax

Code generators are usually built for one specific source language (e.g. UML), and
for one specific target language (e.g. Java). This two-dimension dependency
outnumbers the necessary code generators by a Cartesian product factor. Moreover,
this architecture can raise several problems when a source model needs to be
customized, for instance when using a profile.

We believe that a better approach would be to pass through an intermediate model
(i.e. an abstract syntax instance). In the example of a Java code generation from an
UML model, the approach we propose would be the following: the UML model
(instance of the UML metamodel [44]) would be transformed into a Java model
(instance of a Java metamodel such as [45]) through a model transformation, and then
the Java model would be synthesized into Java text files by mean of a text
synthesizer. A striking advantage of this approach is that the semantic domain
translation is achieved by a model transformation, which is a dedicated technology,
while text synthesizers would need to deal with the concrete syntax of the target
language. The process distinguishes two different tasks (transformation and synthesis)
that are performed using appropriate approaches.

In case of compilers, a source textual specification expressed in a language A has
to be transformed into a target textual specification in language B. To perform this
task using a model-based approach so as to benefit from model transformation
technology, an additional step is required: source code must be analyzed into a model,
for instance by mean of a text processor. A problem with that approach is that, for a
given language L, one needs to provide either a text analyzer, in case L is the source
language; or a text synthesizer, in case L is the target language; or even both, should L

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 11

play the role of both source and target languages. In this latter case, which appears for
instance in round-trip engineering processes, analyzer and synthesizer have to be
consistent. This motivates the unified specification proposed in this paper.

The process for compiling a specification given in language A into a B
specification is given in Figure 3. In the MDA terminology, white represented models
at the M2 level (meta-level) and grayed models reside at the M1 level. Examples for
A/B couples are Java/C++, UML (e.g. represented with HUTN or XMI)/Java, and
B/C++. One may notice that in these examples Java may play both the role of a
source or a target language. A textual A specification is analyzed into an A model. The
A model is transformed into a B model, and the B model is thus synthesized into a B
representation. It is interesting to see that if the A/B transformation is reversible, one
may reverse the complete process (from B textual representation to A textual
representation) with no additional development.

Language B
Metamodel

Model A Model B

B textual
representation

«conformsTo» «conformsTo»

«represents» «represents»

A textual
representation

Language A
Metamodel

Language A
Textual Concrete
Syntax Definition

A analyzer
and synthesizer

Language B
Textual Concrete
Syntax Definition

B analyzer
and synthesizer

A/B
transformation

Figure 3: Approach to Code Generation based on Textual Concrete Syntax

In the next sections we propose a new kind of specification for concrete syntaxes,

which takes advantage of meta-models to generate fully operational tools (such as
parsers or text generators). The principle is to map abstract syntaxes to concrete
syntaxes via bidirectional mapping-models with support for both model-to-text, and
text-to-model transformations.

3.4 Requirements for mapping abstract syntax to concrete syntax (and the
reverse)

Modeling the mapping between abstract and concrete syntax means expressing
how a given piece of information can either be stored in an object model (considering
that we used object-oriented meta-languages to define abstract syntax) or represented
in text (as we focus on textual concrete syntax). One must consider that there is no
one-to-one mapping between abstract and concrete syntax, and further, that there is no
single solution either to store information in a model or to represent it in text.

12 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

The multiple ways to capture information (e.g. the structure of abstract syntax) in
an object model are genuinely addressed by object-oriented meta-models. Elementary
information can be modeled as a class, an attribute, a relation, or a role. Attributes,
relations, and roles may be shared among classes (and relations) in presence of
inheritance. Storing more complex information in a given model is then achieved by
creating clusters of instances of the modeling-elements defined in their corresponding
meta-model.

As we have seen earlier, representing information in text follows structures known

as grammars. Building a mapping between models and texts therefore implies
understanding how information can be mapped between models (graphs of instances)
and texts (sequences of characters).

 An instance of modeling-element, following the example of an object, is
characterized by an identifier and a state. In an object model, state is stored in the
slots of the instances (i. e. values, either of primitive types, or references to other
instances of modeling-elements).

Going from abstract syntax to concrete syntax (or the reverse) is then a matter of

explaining how pieces of abstract syntax (i.e. values held by slots of instances of
modeling-elements) are to be serialized (or conversely de-serialized) to pieces of
concrete syntax (actually character strings, as we target textual concrete syntaxes).

This means that in addition to what traditional text analysis tools provide (e.g.

terminal, sequences, and alternatives), concrete syntax definition should also offer the
possibility to state how individual slots of instances of modeling-elements are mapped
to concrete syntax.

3.5 Toward an implementation for the mapping

Let’s consider the following meta-model of a language which defines models as a
collection of types where types have attributes, which in turn have a type.

Attribute

name : String
Model

Type

name : String

attributes children

type

* *

1

Figure 4 : Meta-model of abstract syntax for a simple language

A model instance and a typical concrete syntax may be:

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 13

:Type

name = "Mail"

:Attribute

name = "From"

:Attribute

name = "To"

:Type

name = "User"

attributes

typetype

:Attribute

name = "Name"

:Type

name = "String"
type

attributes

attributes
:Model

children

children

children

Type Mail {
 From : User
 To : User
}

Type String;

Type User {
 Name : String
}

Figure 5: The same model represented as an instance diagram and using a
specific textual concrete syntax

The concrete syntax for the meta-model shown in Figure 4 can be described in

plain English as shown in Figure 6:

The text represents a Model instance. The list of the Model’s
children is represented. A Type is declared by a ‘Type’
keyword followed by the name of the Type and the collection of
its attributes. If not empty, the collection of attributes is
enclosed by curly braces; an empty collection is specified by a
semi
colon. An Attribute is represented by its name, followed by a
colon and the name of its type. Notice that the notation allows
forward and backward references (e.g. to User in the Mail type
declaration and to String in the User type declaration).
Representations for attributes should be placed on a dedicated
line.

Figure 6: Textual Concrete Syntax in Plain English

The meta-model on Figure 4 captures the abstract syntax (the concepts of the
language, and their relations). The goal of our approach is to describe a concrete
syntax following the example of that one given in plain English in Figure 6, but in a
formal way, once given a meta-model that structures the abstract syntax. In our
approach, we have introduced the concept of template which is associated to meta-
classes. Each instantiable modeling-element (i.e. each concrete meta-class) defines a
template whose role is to organize the serialization (de-serialization) of the instances

14 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

of its (meta-)features, regardless if they are defined in the meta-class or inherited.
Each (meta-)feature further defines a feature-mapper, which knows how to fill a
given slot with elementary data coming from a text (and conversely, how to generate
text from the data).

Templates should also embed facilities for iteration (repeating the same sequence a

given number of times) and for alternatives (alternate textual representations
according to a given constraint). Moreover, it must be possible to define the value of a
slot depending on an alternative; for instance, setting a slot to true or false depending
on the occurrence of a given sequence of tokens in the textual representation (or
conversely, generating a given sequence of tokens depending on the value of a slot).
Alternatives can also be used to specialize children class descriptions based on a
single mother class.

Beyond the basic alternative and sequence capabilities, the various mapping

options are described by 3 major properties of the feature-mappers: the kind of values
held by the slots, the multiplicity of the information to be represented, and the way to
share and parameterize feature-mappers. These properties are presented in detail in
the following subsections.

3.5.1 Kinds of data

Slots may contain three different kinds of data:

• Attributes values which refer to primitive types; i.e. either data types (such as

String, Integer, Real, and Boolean) or enumerations. A single-value feature-
mapper, with automatic type translations (to and from text) can handle these
attributes.

• Compositions which physically embed the slots of the contained instance of

modeling-element into a slot of the containing instance. Representing such a
relation can be realized straightforwardly by embedding the template of the
owned meta-class into the template of the owning meta-class.

• Simple references are a little bit more subtle a problem, and denote that a

source instance of a modeling-element refers to a target instance of another
modeling-element, using a given key which is in fact a specific slot value. In
practice, the textual representation of the referenced instance of modeling-
element may appear after the representation of the reference, as in the example
presented in Figure 5 where Type String is represented after the
Attribute Name of Type User, whose type is String. This
referencing capability is also required to implement bidirectional associations
(A references B which in turn references A).

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 15

3.5.2 Multiplicity of the data

Features are either mandatory or optional, and single or multiple. In the meta-

model stating the abstract syntax of the considered language, the optional nature of a
feature is rendered by the lower bound of the multiplicity (0 for optional, and 1 for
mandatory), and the single/multiple nature is rendered by the upper bound (1 or *).

• Representing the mandatory/optional nature can be done by reusing the
alternative rule: optional information will be represented by an alternative with
an empty branch.

• Representing the single/multiple nature can be done by using either a single-

value feature-mapper or an iteration.

3.5.3 Shared and parameterized feature-mappers

In practice, properties for different classes often share the same concrete syntax.

This is especially true regarding inherited properties. Thus, it may be interesting to
introduce shared definitions in the feature-mapper to address this reusability concern,
following example of EBNF non-terminal rules that can be called from different rules.
Feature-mappers may then be defined outside the scope of given meta-class template,
and further called by several meta-class templates; in the same way a procedure may
invoke a sub-procedure in an imperative language.

Two cases may be distinguished, representing whether a feature-mapper knows the

feature to map or not. The first case typically allows reusing the mapper for the same
feature within an inheritance hierarchy of meta-classes. The second case (we talk
about parameterized feature-mappers) permits to share the same feature-mapper not
only by different templates but also by different features, even across meta-class
hierarchies.

4 Modeling concrete syntax

As seen in the previous section, when defining a language, the meta-model of the
abstract syntax has to be complemented with concrete syntax information. In our case,
this information will be defined in terms of a model conforming to a meta-model for
concrete syntax, which has to be used as a companion of the meta-model already used
for defining the abstract syntax of the language under specification.

Fully defining the syntax of a language is achieved by combining the abstract

syntax as supplied by a meta-model with one or more concrete syntax specification as
supplied by a model conforming to the meta-model introduced in next section. The
effect of parsing text (conforming to a concrete syntax model) is to create a model
(conforming to the abstract syntax meta-model). Conversely, the text can be
synthesized from the model.

16 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

Metalanguage
(e.g. MOF, Kermeta)

Textual
Concrete
Syntax

(Metamodel)

Textual
Concrete

Syntax Spec.

Abstract
Syntax Spec.
(Metamodel)

Model Text

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»
Reversible

Text Processor

Reads
or Writes

Walk
through

Built Against

Instantiates
or walks through

Walk
Through

Figure 7: A model-driven generic machine performs the bidirectional

transformation

As shown in Figure 7, the reversible text processor is configured by the meta-
model of the language and a textual concrete syntax specification. Those two models
are supplied as instances of a meta-meta modeling language (e.g. MOF or Kermeta)
and of a textual concrete syntax meta-model. The goal of analysis is to construct a
model by instantiating the meta-model while reading a text specification. The goal of
synthesis is to generate a text while walking through a model.

During synthesis, text is generated by a generic synthesizer which operates like a

model-driven template engine. The synthesizer visits the model (conform to the
abstract syntax meta-model) and uses the presentation information available in the
concrete syntax model (conform to the concrete syntax meta-model) to feed text to the
output stream.

Interestingly, both processes of analysis and synthesis are highly symmetric, and

since they share the same description, they are reversible. Indeed, a good validation
exercise for the prototype is to perform two synthesis-parse sequences, and observe
that there are no significant differences in both generated texts.

4.1 Overview of our proposal

Our meta-model for concrete syntax is displayed on Figure 8. Given concrete
syntax has a top-level entry point, materialized by the root class which owns top-level

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 17

rule fragments and meta-classes. A model of concrete syntax is built as a set of rules
(the sub-classes of abstract class Rule). The bridge between the meta-model of a
language and the model of its concrete syntax is based on two meta-classes: Class and
Feature respectively referencing the class of the abstract syntax meta-model and their
properties. Class Template makes the connection between a class of the meta-model
and its corresponding rules. Class Value (and its sub-classes) and class Iteration make
the connection between the properties of a class and their values. Class Iteration is
used for properties whose multiplicity is greater than 1. The remaining classes of the
meta-model provide the usual constructions for the specification of concrete syntax
such as terminals, sequences and alternatives.

TCSSpecRule

name : String [0..1]

start

rules
1

*

TemplateIterationAlternativeSequence

Terminal

terminal : String

conditions

1..*

rule

1
subRule1

subRules

1..*
{ordered}

subRule

1

Condition
0..1

separator

BooleanQuery

constraint

Attribute

Class

1 metaClass

0..1

container

Value

RuleRef PrimitiveValue ObjectRef

identifier

1

0..1

feature

0..1

ref

1

Action

0..1 sideEffect

SideEffect

Adornment

adornment : String

In the
meta-

metamodel

Figure 8: Overview of the meta-model for concrete syntax

The following sub-sections detail the semantics (in plain English) associated with

each element of our concrete syntax meta-model, from both analysis and synthesis
prospectives. We illustrate each concept using the example of section 3.5 by showing
corresponding excerpts of Figure 6.

4.2 Template rule

A Template rule makes the connection between a class of the meta-model
(property metaClass) and a sub-rule.

Analysis semantics: The template specifies that an object should be created. The
meta-class is instantiated and the object is set as the current object. The sub-rule is

18 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

invoked and the current object is initialized. If an error occurs the current object is
dismissed.

Synthesis semantics: The template specifies which object to serialize. The sub-
rule is invoked to generate the corresponding text.

Example: An Attribute (metaclass) is represented by (sub-rule follows) its
name, followed by a colon and the name of its type.

4.3 Terminal rule

A terminal rule represents a text whose value is constant and known at modeling
time. The text value is stored in the property terminal of type String in class Terminal.

Analysis semantics: The text in the input stream must be equal to the terminal
value. The text is simply consumed. If the text does not correspond an exception is
thrown.

Synthesis semantics: The terminal value is appended to the output stream.
Example: …a ‘Type’ keyword… or …a colon…

4.4 Sequence rule

A sequence rule specifies an ordered collection of sub-rules. A sequence has at
least one sub-rule.

Analysis semantics: The sub-rules are invoked successively. If any sub-rule fails
the whole sequence is dismissed.

Synthesis semantics: The sub-rules are invoked successively.
Example: A Type is declared by a ‘Type’ keyword (sub-rule 1) followed by the

name of the Type (sub-rule 2) and the collection of its attributes (sub-rule 3).

4.5 Iteration rule

Iterations specify the repetition of a sub-rule an arbitrary number of times. An
iteration uses a collection (property container of type Feature), and may have a
terminal to be used as a separator between elements (property separator of type
Terminal). However, for complex iteration expression, one may refer to derived
properties if model repository supports it.

Analysis semantics: The sub-rule (and separator, if specified) is invoked
repetitively, until the sub-rule fails. For each successful invocation the collection
specified by the container feature is updated.

Synthesis semantics: The sub-rule is applied to each object in the referenced
collection, and the optional separator (if specified) is inserted between the texts which
are synthesized for two consecutive elements.

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 19

Example: The list of the Model’s children (container) is represented. A Type
(i.e. the meta-class that isthe type of the Model::children property) is declared
by… (the sub-rule)

4.6 Alternative rule

Alternatives capture variations in the concrete syntax. An alternative has an
ordered set of conditions which refer each to a given sub-rule. A boolean expression
in a query language may constrain choice for the correct condition. Queries may be
written using languages like OCL, Kermeta, MTL, Xion, or even JMI Java code; for
instance TCSSL tools uses EMF Java code, and Syntax defines its own language for
comparing a feature with a value, or testing the object’s metaclass.

Analysis semantics: This is the most complex operation. Often there is no clue in
the input stream to determine the condition (in the sense defined in the meta-model
for concrete syntax) which held when the text was created. It is therefore necessary to
infer this condition while parsing the input stream. The simplest (but also the most
time consuming) solution, applied by Sintaks, is to try each branch of the alternative
until there is a match. It is worth noticing that the ordered collection of conditions can
also be used to handle priorities between conflicting sub-rules. Another solution, as
implemented by TCSSL tools and by most text analyzers, is to choose alternatives
depending on the next lexemes (see section 3.1). Conditions’ queries should be
enforced once the analysis is completed. If Sintaks does not make use of the
conditions’ queries at analysis, TCSSL tools force them to be a comparison, with an
attribute access at its left-hand side. At analysis, the comparison is interpreted as an
affectation: the slot corresponding to the attribute value is set to the result of the
computation of the right-hand side of the condition. More experiments should decide
whether constraint solving or constraint enforcement are helpful in choosing an
alternative.

Synthesis semantics: The conditions are evaluated in the order defined in the
collection, and the first one which evaluates to true, triggers the associated rule.

Example: (Condition 1:) If not empty (constraint for condition 1), the collection
of attributes is enclosed by curly braces (sub-rule for condition 1); (Condition 2 :
) an empty (constraint for condition 2) collection is specified by a semi-colon (sub-
rule for condition 2).

4.7 Primitive value rule

The rule PrimitiveValue specifies that the value of a feature is a literal. The type of
the referenced feature should be a primitive type such as Boolean, Integer or String.

Analysis semantics: The literal value corresponding to the type of the feature is
parsed in the input stream. The result is assigned to the corresponding feature of the
current object unless the type conversion failed.

Synthesis semantics: The value of the feature in the current object is converted to
a string and appended to the output stream.

Example: the name of the Type (feature)

20 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

4.8 Object reference rule

This rule implements the de-referentiation of textual identifiers to objects.
Identifiers (such as names or numbers) are used in texts to reference objects which
can bear an attribute whose value contains such identifiers.

Analysis semantics: The reference which is extracted from the input stream is
used as a key to query the model so as to find a matching element. If there is a match,
the parser updates the element under construction. If there is no match, the parser
assumes that the referenced item does not yet exist (because it might be defined later
in the text), the referencing is deferred in a “to-do” list, and will be tried again next
time the model is changed (instantiation or slot update). By the end of the parsing
process, the “to-do” list has to be empty unless there is a parsing error.

Synthesis semantics: The identifier is printed to the output stream.
Example: An Attribute is represented by (…) the name (identifier) of its

type (feature). Notice that the notation allows forward and backward references
(e.g. to User in the Mail type declaration and to String in the User type declaration).

4.9 Rule reference rule

The rule RuleReference references a top-level template, stored under the root of the
concrete syntax model.

Analysis semantics: The ref rule is triggered and the result is assigned to the
feature of the current object.

Synthesis semantics: The ref rule is triggered.
Example: We will detail examples in the following section.

4.10 Side effect rule

An action is an instruction that has a certain impact on the model. Action may be
written in any language capable to impact a model. Examples of such languages are
Kermeta, Xion, and JMI Java code. OCL cannot be used as such since it is a side
effect free language.

Analysis semantics: The action is performed on model. The contextual object is
that one of the rule.

Synthesis semantics: Action is merely ignored.
Example: We will detail an example in section 5.2.

4.11 Adornment rule

In order to have proper representations for models, one needs to specify non-
significant characters such as space or carriage return. This allows to render models
not on a single line.

Analysis semantics: Adornment is merely ignored.

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 21

Synthesis semantics: The adornment is added to the rendered text. To limit the
number of necessary adornments, a white space can automatically be introduced after
each terminal, object reference, and primitive value rule application. As shorthand, a
\t adornment indents text while a \b adornment unindents it.

Example: Representations for attributes should be placed on a dedicated line.

4.12 Towards more complex mappings

The proposed solution does not claim to solve all the problems encountered in
compiler construction. In particular, it does not avoid a possible necessity of multiple
pass, even if the “to-do” list actually helps. For instance, this is necessary in order to
perform full type checking. This part presents a solution to integrate multiple pass
analysis in the proposed solution.

The main idea is to keep the classical way of solving the multiple-pass problem,
which is transforming decorated abstract syntax trees. The advantage of our approach
is that abstract syntax trees are models, conforming to metamodels. This offers the
possibility to formally define passes and available decorations: decorations are no
longer typeless key-value pairs, but attributes that are added to the metamodel. Thus,
passes are merely model transformations exploiting information from decoration
attributes. Once processed, this information should still appear in the model to which
those decorations are removed.

To formally add attributes to a metamodel (i.e. a decoration), one might use
package merge mechanism [1]: this technique uses refinement of modeling elements,
to add compatible additional features, such as adding attributes to a class. It works
like inheritance, but at the metamodel level: in case a model m conforms to a
metamodel cm that merges metamodel am, m also conforms to am. So, to add a new
decoration attribute to a class, one should make a new metamodel merge the genuine
metamodel, and refine classes by adding the new decoration attributes.

An n-pass architecture includes then n−1 refinements of the main metamodel, a
TCSSL specification for the n−1th refinement, and n−1 model transformations. Note
that for the approach to be valid both at analysis and synthesis time, the model
transformations have to be bidirectional. As an example, Figure 9 shows a 2-pass
architecture. The genuine metamodel is refined to include specific decorations that a
dedicated model transformation handle to construct the final model. The TCSSL
specification actually describes the concrete syntax for the decorated metamodel.

22 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

Metamodel

Decorations
Analyzer

(2nd pass)

Reversible
Text

Processor

Textual
Concrete

Syntax Spec.

Text Decorated
Model

Final
Model

«conformsTo»

Decorated
Metamodel

«conformsTo»

«merges»

Figure 9: A 2-pass architecture

The following section shows how the concrete syntax meta-model is used for
specifying concrete syntax.

5 Examples

The following examples illustrate our approach. The first example is the formal
description of the example given in section 3.5. The second example gives an
overview of the specification of a concrete syntax to the meta-model of Figure 8.

5.1 A very simple example of concrete syntax specification

We use our meta-model of concrete syntax to specify a textual representation of
the language presented in Figure 4. In the example of concrete syntax given earlier
(see Figure 5), there is no specific materialization of the model meta-class in the text.
We propose in Figure 10 the textual concrete syntax for that language, and we detail
the analysis and the synthesis processes.

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 23

3

1

2

4

5

6

7

root:TCSSpec

TMI:Iteration

TT:Template

:Sequence

:Terminal

terminal = "Type"

:PrimitiveValue

rules

start

TM:Template Model:Class
metaClass

rule

children:Attribute
container

subRule

Type:Class
metaClass

rule

subRules

featuresubRules

:Alternative
subRules

:Condition
condition

:Condition
condition

:OCL::Query

/text = "self.attributes->isEmpty()"

:OCL::Query

/text = "self.attributes->notEmpty()"

name:Attribute

query

query

:Terminal

terminal = ";"subRule

AS:Sequence

subRule

AST1:Terminal

terminal = "{"subRules

AI:Iteration
subRules

:Template Attribute:Class
metaclass

subRule

:Sequence

rule

:PrimitiveValue name:Feature
featuresubRules

:Terminal

terminal = ":"subRules

:ObjectRef type:Feature
feature

Grayed objects
reside in the model

(instance of the
metamodel)

identifier

subRules

AST2:Terminal

terminal = "}"subRules

attributes:Attribute
container

:Adornment

adornment = "\n\t"subRules

:Adornment

adornment = "\n"subRules

:Adornment

adornment = "\n"subRules

:Adornment

adornment = "\b"subRules

Figure 10: Textual concrete syntax specification as instances of

Figure 8

24 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

In this model, there is only one top-level rule which describes the concrete syntax

of the language. The model is built as a cascade of rules. The model starts with a
TM iteration over types . The sequence explains that types start with the keyword
“Type” , followed by a name , and then an alternative because types may have
a collection of attributes. The collection of attributes is expressed by an iteration ,
which in turn contains a sequence made of a name, followed by a separator (terminal
‘:’) and finally a reference to a type . Attributes, when present, are delimited by
curly braces. As explained in section 3.5, and according to the meta-model of Figure
4, is a mandatory attribute-value feature-mapper (as Type.name is an attribute
with a 1..1 multiplicity), is an optional multiple composition feature-mapper (as
Model.children is a composition with a 0..* multiplicity), (in association
with) is an optional multiple composition feature-mapper (as
Type.attributes has a 0..* multiplicity), and is a mandatory reference
feature-mapper (as Attibute.type is a reference with a 1..1 multiplicity).

Often, it is desirable to share some part of the concrete syntax. Therefore templates

do not have to be nested, and can be defined individually at the top level of the model
of the concrete syntax. The following picture represents such a variation, for the same
concrete syntax. Links between independently defined templates are realized with rule
references (RuleRef). Actually, and are now defined independently as shared
feature-mappers (as introduced in section 3.5.3).

root:TCSSpec

TMI:Iteration

TT:Template

rules

start

TM:Template
rule

AS:Sequence
AST1:Terminal

terminal = "{"subRules

:RuleRef
subRules

AST2:Terminal

terminal = "}"subRules

rules

:RuleRef
subRule

ref

AI:Iteration
ref

rules
Figure 11: Variation with top-level reusable template

Both representations are totally equivalent. The parsed models or the generated

texts are identical.

If one provides a textual concrete syntax for the meta-model given in Figure 8, the

specification given above may be written in textual form rather than a raw meta-
model instance as depicted by object diagrams as shown in Figure 10 and in Figure
11. The specification mentioned above is represented in Figure 12 using a typical
concrete syntax for our textual concrete syntax specification language. That particular

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 25

syntax is introduced in next section. One may notice that such a textual specification
for textual concrete syntax is much more readable than the object diagrams
represented above as it is specialized (one could even talk of a domain specific
concrete syntax), compared to general purpose representation formalisms such as
object diagrams or XMI.

start template (TM) handles Model do
 iterate (TMI) handles Model::Children do
call TT
template (TT) handles Type do
 < "Type" >
 value handles Type::name
 choice
 when self.attributes->isEmpty() do < ";" >
 when self.attributes->notEmpty() do call AS
 end
begin (AS)
 < (AST1) "{" >
 <@ "\n\t">
 call AI
 <@ "\b">
 < (AST2) "}" >
 <@ "\n">
end
iterate (AI) handles Type::attributes do
 template handles Attribute do begin
 value handles Attribute::name
 < ":" >
 reference handles Attribute::type
 with Type::name
 <@ "\n">
 end

Figure 12: Concrete syntax specification in textual form

In order to better understand the text synthesis process, we describe here the

behavior of the generic analyzer and synthesizer in synthesis mode. The language
description is provided by the meta-model shown in Figure 4 and by the textual
concrete syntax specification as introduced above. The model to serialize is the model
represented by the object diagram of Figure 5.

The main object must be provided. In this particular case, it is the object instance
of the Model metaclass. The TM start rule is then invoked to produce the text, taking
the Model instance as the contextual object. The TM invokes the TMI iteration rule
which calls the TT sub-rule for all the children of the Model instance (i.e. the
Mail, the User and the String Type instances). For each one of these iterations,

26 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

the contextual object is the Mail, the User and the String instance, respectively.
The invocation of the TT rule over the Mail contextual instance first writes ‘Type’ to
the output stream, then the name of the instance (i.e. ‘Mail’), with a whitespace
automatically inserted in-between. Since the Mail instance references some
attributes (as detected by the self.attributes->notEmpty() OCL
expression – self references the contextual instance), the AS sub-rule is called,
again with the Mail instance as the contextual instance. The call appends a “{” to the
output stream (according to the AST1 rule), a carriage return and an indentation
(according to adornment), and then invokes the AI rule. The AI rule iterates over the
attributes of the Mail instance, namely the From and To Attribute
instances by outputting, for each attribute, the name, (a whitespace,) a colon, (a
whitespace,) the name of the Type instance as referenced by the type slot, and a
carriage return. The AI rule is then accomplished, the AS rule ends by un-indenting
the text and appending a “}” before a carriage return, and the TT rule is invoked
again by the TMI rule, this time over the User instance a first time, and over the
String instance in a second time. The final output is that one represented in Figure
5.

The process may be reverted by considering the text in Figure 5 and setting the
generic analyzer and synthesizer in analysis mode to get the model. It is important to
stress that the language definition in use is the same for both the analysis and the
synthesis mode.

The TM start rule is a template for the Model metaclass, thus the analyzer creates a
new Model instance that we will further call m. The TMI rule is then invoked, which
iteratively calls the TT rule. The contextual instance for the TM and TMI rule is the
newly created m instance. The TT rule will be called iteratively by the TMI rule with
no contextual instance. The TT rule is a template rule for the Type metaclass; thus,
the rule creates a new Type instance and sets it as the contextual instance. Then, the
TT rule recognizes the ‘Type’ keyword, an identifier (‘Mail’), which will be placed
in the name slot of the newly created contextual instance. Finally, the TT rule needs
to perform a choice among two possibilities. As the contextual instance is under
construction, the rule cannot rely on the guard constraints. In case of LL(k) parsing, as
for the TCSSL tools, the choice will depend on the k next tokens; here, the next token
is a ‘{‘, which will lead to choose the second alternative (i.e. we need k≥1). In case of
backtrack parsing, as for the Sintaks tool, the first choice is taken, fails, and then the
tool attempts the second choice. Note that if the first choice have had side effects (e.g.
instantiation or slot update), they would have been all canceled. The second choice is
a call to the AS rule. The Mail instance remains the contextual instance. The AS rule
recognizes the ‘{’ character, (it ignores the adornment), and calls the AI rule with
Mail as the contextual instance, which creates the From and To Attribute
instances. As the AI rule handles the Type::attributes property, the From and
To Attribute instances are placed in the attributes slot of the Mail Type
instance. Note that the template rule for the Attribute metaclass calls a sequence
rule that contains a reference rule handling the Attribute::type property
according to the Type::name property. A problem is that the User Type instance

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 27

is not created yet and thus could not be retrieved to be referenced by the From and
To attributes. The referencing is then added to a “to-do” list, which contains all
postponed tasks that are tried each time the model changes. So, the referencing of the
type for the From and the To attributes will be done as soon as a Type instance
will receive the User value in its name slot. If at the end of the analysis process the
“to-do” list still contains tasks that cannot be performed (i.e. ending in error), the
analysis ends in error. Once the AS rule has recognized the ‘}’ character, the TMI rule
appends the Mail instance (which is the contextual instance for the TT rule) to the
children slot of m. The rest of the process behaves the same way by iterating again
over the TT rule to successively recognize the User and String types.

5.2 Supplying TCSSL with a textual concrete syntax

We show here how to provide our meta-model for textual concrete syntax
specification described in section 4 with a textual concrete syntax as that one shown
in example in Figure 12. Note that this is only an example, and not an official
concrete syntax that needs to be used with our tools or approach: one can very well
supply another concrete syntax to specify his/her concrete syntaxes. However, for
sake of brevity, we only show here the most interesting excerpt of the specification.
Such an approach was validated for the two prototype tools.

The main rule is shown in Figure 13. A specification starts with the ‘start’

keyword and continues an iteration to handle all the rules of the specification using
the RuleT rule. For the first rule to be the start rule, we place a side-effect rule (in
between <? and > tags) which tests whether the start rule is already there or not. In
the latter case, the current rule, which must be the first rule to appear in the text, is
referenced as the start rule. Remember that, as stated in section 4.10, a side-effect rule
is only performed at analysis time.

start template handles TCSSpec do begin
 < "start" >
 iterate handles TCSSpec::rules do begin
 call RuleT
 <? if self.start == void then
 self.start := self.rules.one
 end >
 <@ "\n\n" >
 end
end

Figure 13: Main TCSS rule for the TCSS language

Each instantiable concept shown in Figure 8 is supplied with a template rule. In

parallel, each abstract concept is provided an alternative to choose among possible
concretization. As an example, the Rule concept is represented by an alternative

28 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

(RuleT) that will propose choices among rules intended to manage sub-concepts.
The RuleT rule is shown in Figure 14, and the template for the Template concept
in Figure 15. Experience showed us that this repetition of generalization structure (as
defined in the meta-model) in the alternatives of the concrete syntax is a common
design pattern.

choice (RuleT)
 when self.oclIsKindOf(Template) do call TemplateT
 when self.oclIsKindOf(Iteration) do call IterT
 when self.oclIsKindOf(Alternative) do call AltT
 when self.oclIsKindOf(Sequence) do call SeqT
 when self.oclIsKindOf(Terminal) do call TerminalT
 when self.oclIsKindOf(Adornment) do call AdornT
 when self.oclIsKindOf(SideEffect) do call SET
 when self.oclIsKindOf(Value) do call ValueT
end

Figure 14: The RuleT rule

template (TemplateT) handles Template do begin
 < "template" >
 call optionalId
 < "handles" >
 call MetaClassT
 < "do" >
 <@ "\n\t" >
 call RuleT handles Template::rule
 <@ "\b\n" >
end

Figure 15: The template for the Template concept

6 Prototype implementations

Two prototypes have been implemented to validate our approach: Sintaks
and TCSSL Tools. Both prototypes are operational and provide support for the model-
driven definition of textual concrete syntax.

We first describe how the tools have been implemented, and then compare

them to the above-presented approach.

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 29

6.1 Implementation

The Sintaks prototype is based on top-down recursive descent using a
backtracking mechanism. It realizes both analysis and synthesis of concrete syntax by
interpreting the textual concrete syntax specification provided as a model. It has been
implemented on top of EMF in Eclipse.

We have not been trying to achieve high parsing performance; we have
simply been investigating how modeling could be used to describe concrete syntax.
We decided to implement Sintaks as a top-down recursive descent parser for sake of
ease of implementation. This means that described grammars need to avoid left
recursivity in order for the tool not to enter an infinite loop.

The main advantage of Sintaks is that one can rapidly prototype and test
grammars, following the philosophy of the TXL parsing engine [41]. Conditions are
formulated in a dedicated language able to test attribute values and object types. Side
effect rules are not available in the current version.

TCSSL Tools were developed at CEA LIST and are a set of two different

tools that make use of the same concrete syntax specification.
The first tool compiles a textual concrete syntax specification into a compiler

compiler specification (namely ANTLR). The result is an LL(k) text processor that
builds an EMF model from a textual representation. Here, in addition to avoid left
recursivity, rules have to avoid LL(k) ambiguities. Actions and conditions are given
using Java/EMF instructions.

The second tool compiles the same specification into a set of JET [46] code
generation templates. Conditions are defined by an attribute value compared to an
EMF Java expression. Those conditions are interpreted as attribute assignments at
analysis time. Side effect rules are given using EMF Java instructions.

6.2 Major differences between the two prototypes

A first difference, which was experienced in TCSSL tools, is an automatic

rule selection algorithm according to concept inheritance as described by the abstract
syntax. Thus we avoid describing rules such as RuleT (see Figure 14), which are
nothing but repetitions for inheritance hierarchies already provided by the meta-
model. If this approach is more intuitive, a problem is that one cannot specify
precedence among various template rules (e.g. multiplication over addition). Note that
the language designer must always be aware of what is done implicitly by the generic
analyzer and synthesizer generated by the TCSSL tools.

Another important difference is that TCSSL tools offer a more generalized

analysis mechanism regarding template rules. Indeed, at analysis time, the concept
instantiation can be made conditional, depending whether the instance under analysis
can already be found in the model according to a Boolean query. In case the instance
is found, it is used as the contextual object. In case no instance is found, language

30 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

engineers can state if the contextual instance should be created, or if the analysis
process must end in error. This allows for example to overload the specification of the
same element. One example is the C++ language in which the header and the
implementation files for describing the same class are separated. If one needs to
specify two different rules for the same meta-concept of C++ class, at analysis, only
one rule is responsible for the instantiation of the concept, while the other merely
finds it. This also allows specifying more complex search criterion than trying to
match an identifier with an element in the model. A drawback of that method is that it
is not compatible with a “to-do” list of the actions to be performed “as soon as
possible”. Indeed, search criteria can return different results depending on when they
are executed during analysis.

7 Conclusion

The work presented in this paper provides a bi-directional bridge between texts and
models. One can now think in terms of equivalence between those two worlds, and
hence benefit from the best of both worlds. As a matter of example, model-
transformation tools may be applied to texts (actually to their model counterpart),
while pattern matching tools may be applied to models (actually to one of their textual
representations).

More specifically, this paper addresses the issues of defining textual surface

syntaxes on top of given metamodels. The advantage of our solution is that textual
surface syntaxes can be fully customized and designed to be as specific as necessary.
An important point is that the structure of abstract syntax (the metamodel) is
completely independent from the structure of the concrete syntax.

We considered the two fundamental aspects of the problem: representing a model

in text (synthesis) and constructing a model from text (analysis). Most traditional
approaches make a clear distinction between those two cases, and propose two
distinct solutions that have to be kept consistent. Instead, we propose a single
specification for textual concrete syntax in which a generic text processor can find the
necessary information to perform those two activities that are text analysis and
synthesis.

Instead of inventing a brand new kind of specification, we have preferred to rely on

well established principles of the grammarware community, especially on compiler
compiler specification languages. However, two major improvements were necessary:
the specification had to be made reversible and had to handle directly a predefined
abstract syntax definition as given by a metamodel.

For the approach to be reversible, we provided (in plain English) different

semantics for analysis and synthesis phases. For the approach to manipulate a
predefined metamodel, we proposed concepts such as templates for meta-classes and

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 31

meta-features. Moreover, we made it possible to describe references, queries, and
actions on the constructed/read model.

We built two different implementations to validate our proposal: Sintaks and

TCSSL tools. Sintaks processes the specification by recursive descent implementing a
backtracking mechanism. If this approach is recognized as not the most efficient, it is
a nice mean to (partially) avoid ambiguities management while prototyping textual
concrete syntaxes. The TCSSL tools transform the same specification into both a
compiler compiler specification that includes directives directly on the constructed
model, and into code generation templates that create formatted text depending on a
model to be represented. As such, we directly benefit from compiler compiler
advances regarding efficiency and scalability (at the necessary price of managing
ambiguities).

In future developments we would like to take advantage of generalization

hierarchies in metamodels to help in engineering concrete syntax specifications.
Another possible improvement is to apply a bottom-up approach to parser
technologies (LR) to handle a broader scope of possible grammars. Moreover, we
would like to extend our approach in order to include an interactive synchronization
between models and their textual representations. The result would be that models
could be updated as soon as their textual representations are changed, and the reverse.
To do so, a possible way is to build on graphical concrete syntax specification
techniques or textual approaches to customize IDEs (such as in [36]).

Building this equivalence between texts and models is a cornerstone in the contexts

of Model-Driven Engineering (MDE) and Domain-Specific Modeling (DSM). MDE
promotes the usage of models as primary artifacts of software development projects,
while DSM promotes the usage of the most suitable modeling language depending on
the target domain and the considered level of abstraction.

In the MDE community, models are structured by their metamodels, which can be

considered as defining the abstract syntax of the corresponding domain specific
modeling language. To easier manipulate or understand models, one may want to
provide a surface syntax for a modeling language. Ideally, it should be possible to
have different concrete syntaxes, either graphical or textual, to represent a given
model (i.e. a given metamodel instance) through different concrete syntaxes.

When used together with approaches for model executability (e.g. Kermeta [5]),

our work offers a comprehensive mean to engineer textual domain-specific languages
(DSLs) using a modeling paradigm. Indeed, one can now define the abstract syntax of
his/her DSL by providing a metamodel, specify the operational semantics using
Kermeta, and state one or more textual concrete syntaxes thanks to the TCSSL
language described in this paper, all this in a model-driven continuum.

32 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

References

[1]. O.M.G. Object Management Group: Meta-Object Facility (MOF)
Core Specification. (2006)

[2]. Eclipse: Eclipse Modeling Framework (EMF). (2005)
[3]. IBM: Emfatic. http://www.alphaworks.ibm.com/tech/emfatic
[4]. F. Jouault, J. Bézivin: KM3: A DSL for Metamodel Specification.

The 8th IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS), Bologna (2006)

[5]. Kermeta: The KerMeta Project Home Page. http://www.kermeta.org
(2005)

[6]. OMG: Xml Metadata Interchange (XMI 2.1). (2005)
[7]. Sun_Microsystems: Metadata repository (MDR). (2005)
[8]. C. Atkinson, T. Kühne: The Role of Metamodeling in MDA.

International Workshop in Software Model Engineering associated to
UML ’02, Dresden, Germany (2002)

[9]. J. Greenfield, K. Short, S. Cook, S. Kent: Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, Indianapolis (2004)

[10]. T. Clark, A. Evans, P. Sammut, J. Willans: Applied Metamodelling:
A Foundation for Language Driven Development (2004)

[11]. OMG: MOF Model to Text Transformation Language (Request For
Proposal). (2004)

[12]. J. de Lara, H. Vangheluwe: Using AToM3 as a meta-case tool. 4th
International Conference on Enterprise Information Systems (ICEIS)
(2002) 642-649

[13]. F. Fondement, T. Baar: Making Metamodels Aware of Concrete
Syntax. European Conference on Model Driven Architecture
(ECMDA), Vol. LNCS 3748 (2005) 190-204

[14]. andromda.org: AndroMDA.
[15]. T.J. Parr, R.W. Quong: ANTLR: A predicated-LL(k) parser generator.

Software - Practice and Experience 25 (1995) 789-810
[16]. K. Czarnecki, S. Helsen: Feature-based survey of model

transformation approaches. IBM Systems Journal 45 621-645
[17]. P.-A. Muller, J.-M. Jézéquel: Model-driven generative approach for

concrete syntax composition. Best Practices for Model Driven
Software Development'04 (OOPSLA & GPCE Workshop),
Vancouver (2004)

[18]. F. Fondement, R. Schnekenburger, S. Gérard, P.-A. Muller:
Metamodel-Aware Textual Concrete Syntax Specification. (2006)

http://www.alphaworks.ibm.com/tech/emfatic
http://www.kermeta.org/

Model-Driven Analysis and Synthesis of Textual Concrete Syntax 33

[19]. P.-A. Muller, F. Fleurey, F. Fondement, M. Hassenforder, R.
Schneckenburger, S. Gérard, J.-M. Jézéquel, D. Touzet: Sintaks.
(2007) http://www.kermeta.org./sintaks

[20]. P.-A. Muller, F. Fleurey, J.-M. Jézéquel: Weaving executability into
object-oriented meta-languages. MoDELS/UML 2005 - ACM/IEEE
8th International Conference on Model Driven Engineering
Languages and Systems, Vol. 3713. Springer, Montego Bay, Jamaica
(2005) 264-278

[21]. P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
V. Pascual: Centaur: the system. ACM SIGSOFT/SIGPLAN software
engineering symposium on practical software development
environments, Vol. 13 (5) 14-24

[22]. N. Chomsky: Three models for the description of language. IRE
Transactions on Information Theory (1956) 113-124

[23]. D.E. Knuth: Semantics of context-free languages. Mathematical
Systems Theory 2 (1968) 127-145

[24]. J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, A.J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van
Wijngaarden, M. Woodger: Report on the algorithmic language
ALGOL 60. Communications of the ACM 5 (1960) 299-314

[25]. ISO: ISO 14977 Information Technology - Syntactic Metalanguage -
Extended BNF. (1996)

[26]. S.C. Johnson: Yacc: Yet another compiler compiler. UNIX
Programmer's Manual, Vol. 2b (1979)

[27]. A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers: Principles,
techniques, and tools (2nd edition). Addison Wesley (2006)

[28]. T.W. Pratt: Pair Grammars, Graph Languages and String-to-Graph
Translations. Journal of Computer and System Sciences (JCSS) 5
(1971) 560-595

[29]. R. Heckel, H. Voigt: Model-Based Development of Executable
Business Processes for Web Services. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.): Lectures on Concurrency and Petri Nets.
Springer, Berlin / Heidelberg (2003) 559-584

[30]. D. Hearnden, K. Raymond, J. Steel: Anti-Yacc: MOF-to-text.
Enterprise Distributed Object Computing (EDOC) (2002) 200-211

[31]. OMG: Human-Usable Textual Notation. Object Management Group
(2004)

[32]. I. Kurtev, M. Aksit, J. Bezivin: Technical Spaces: An Initial
Appraisal. CoopIS, DOA´2002 Federated Conferences, Industrial
track, Irvine (2002)

[33]. M. Wimmer, G. Kramler: Bridging Grammarware and Modelware.
Workshop in Software Model Engineering associated to MoDELS'05,
Montego Bay, Jamaica (2005)

http://www.kermeta.org./sintaks

34 Pierre-Alain Muller1, Frédéric Fondement2, Franck Fleurey3, Michel Hassenforder2,
Rémi Schnekenburger4, Sébastien Gérard4, Jean-Marc Jézéquel1

[34]. M. Alanen, I. Porres: A Relation Between Context-Free Grammars
and Meta Object Facility Metamodels. Turku Centre for Computer
Science (2003)

[35]. A. Kunert: Semi-Automatic Generation of Metamodels and Models
from Grammars and Programs. Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques at ETAPS
2006 (2006)

[36]. M. Scheidgen: Textual Editing Framework (TEF). Humboldt-
Universität zu Berlin (2007) http://www2.informatik.hu-
berlin.de/sam/meta-tools/tef/index.html

[37]. F. Jouault, J. Bézivin, I. Kurtev: TCS: a DSL for the specification of
textual concrete syntaxes in model engineering. Generative
Programming and Component Engineering (GPCE), Portland (2006)
249-254

[38]. P. Klint, R. Lämmel, C. Verhoef: Towards an engineering discipline
for grammarware. ACM TOSEM 14 (2005) 331-380

[39]. P.-A. Muller, M. Hassenforder: HUTN as a Bridge between
ModelWare and GrammarWare - An Experience Report. WISME
2005: 4th Workshop in Software Model Engineering (Satellite Event
of MoDELS 2005), Montego Bay (2005)

[40]. D. Akehurst, P. Linington, O. Patrascoiu: OCL 2.0: Implementing the
Standard. (2003)

[41]. J.R. Cordy: The TXL source transformation language. Sci. Comput.
Program. 61 (2006) 190-210

[42]. D. Harel, B. Rumpe: Meaningful Modeling:What’s the Semantics of
“Semantics”? IEEE Computer 37 (2004) 64-72

[43]. N. Chomsky: Language And Mind. Cambridge University Press,
Cambridge, USA (2006)

[44]. OMG: Unified Modeling Language: Superstructure Version 2.0. Vol.
2005 (2003)

[45]. M. Matula, S. Dedic: Java metamodel. Netbeans 4.0 (Sun
Microsystems) (2005)

[46]. Eclipse: Java Emitter Templates (JET). (2005)

http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html

