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Summary. The medial axis of a geometric shape captures its connectivity. In spite
of its inherent instability, it has found applications in a number of areas that deal
with shapes. In this survey paper, we focus on results that shed light on this insta-
bility and use the new insights to generate simplified and stable modifications of the
medial axis.

1 Introduction

In this paper, we survey what is known about the medial axis of a geometric
shape. To get an intuitive feeling for this concept, consider starting a grass
fire along a curve in the plane, like the outer closed curve in Figure 1. The

Fig. 1: Medial axis of shape whose boundary is the outer closed curve. The distance-
to-boundary function has three critical points, one saddle and two maxima. One of
the maxima coincides with a branch point.
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fire starts at the same moment, everywhere along the curve, and it grows
at constant speed in every direction. The medial axis is the set of locations
where the front of the fire meets itself. In mathematical language: it is the set
of points that have at least two closest points on the curve. If we start the fire
along the boundary of a geometric shape in R

k we generically get a medial
axis of dimension k − 1, one less than the dimension of the space.

In the plane, the medial axis is a (one-dimensional) graph whose branches
correspond to regions of the shape it represents. Its structure has found appli-
cations in image analysis for shape recognition [52] and in robotics for motion
planning [42]. The distance-to-boundary recorded at points of the medial axis
provides information about local thickness, which can be used to segment
the shape, separating it into large regions with relatively narrow connections
[21, 25, 45]. In reverse engineering, the medial axis appears naturally as a
tool to characterize the sampling density needed to reconstruct a curve in the
plane and a surface in space [1, 2]. Other applications include domain decom-
position in mesh generation [46, 50], feature extraction in geometric design
[38, 39], and tool-path creation in computer-aided manufacturing [36].

In this paper, we make no attempt to cover the large amount of work
on medial axes in digital image processing and instead refer to texts in the
area [35, 40, 41]. Whenever possible, we state the definitions and results for
R

k, where k is an arbitrary but fixed constant, but sometimes we need to
limit ourselves to R

2 and R
3. Since most applications are in two and three

dimensions, this limitation implies only a minor loss of relevance. The style
adopted in this paper is not that of a typical survey paper. Rather than
aiming at a broad coverage of the literature, we focus on a small number
of results that we deem important. Those are centered around questions of
stability and computation of the medial axes. We encapsulate the various
topics in a relatively large number of small and by-and-large independent
sections. Starting with fundamental properties, we slowly progress towards
more advanced results. In Section 2, we define medial axes and skeletons.
Sections 3 and 4 state properties of the medial axis that concern its finiteness
and its homotopy type. Sections 5, 6, and 12 discuss the stability of the medial
axis under various notions of distance. Section 7 recalls that computing the
medial axis exactly runs into obstacles except for certain classes of shapes,
and Section 8 introduces the approximation paradigm designed to circumvent
these obstacles. Sections 9, 10, 11 and 13 describe steps and aspects of this
paradigm. We find that topics of stability and computation are related, which
is the reason for interleaving the sections as enumerated.

2 Medial axis and skeleton

There is no generally agreed upon definition for either the medial axis or the
skeleton of a shape; the precise meaning of these terms changes from one
author to another. The medial axis has been introduced by Blum [12] as a
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tool in image analysis. In this paper, we adopt the definitions given in [43].
Let X be a bounded open subset of the k-dimensional Euclidean space, R

k.
The medial axis, M[X ], is the set of points that have at least two closest
points in the complement of X . We call an open ball B ⊆ X maximal if every
ball that contains B and is contained in X equals B. The skeleton is the set
of centers of maximal balls. The two notions are closely related but not the
same. Specifically, the medial axis is a subset of the skeleton which is, in turn,
a subset of the closure of the medial axis [44, chapter 11]. In the most general
case, the skeleton is not necessarily closed and the last inequality is strict.
Examples of shapes in R

2 whose skeletons are composed of an infinite number
of curves and which are not closed can be found in [16, 22]. A simple example
of a skeleton in R

3 that is not closed is given in [20]. Even though medial axes
are not necessarily the same as skeletons, the two concepts are too similar to
warrant a balanced treatment of both. The rest of this paper will therefore
focus exclusively on the medial axis.

If we weight each point x of the medial axis with the radius ρ(x) of the
maximal ball centered at x, then we have enough information to reconstruct
the shape. In other words, the medial axis together with the map ρ provides a
reversible coding of shapes. This coding is not necessarily minimal and some
shapes, such as finite unions of balls, can be reconstructed from proper subsets
of their weighted medial axes.

3 Finiteness properties

There are cases in which the medial axis has infinitely many branches, even if
the shape is bounded and its boundary is C∞-smooth [22]. To construct such
an example, let f : R → R be a C∞-smooth function defined by

f(x1) =







1 − e
− 1

x
2
1

(

sin π
x1

)2

if |x1| < 1,

1 if |x1| ≥ 1.

Consider the set of points X ⊆ R
2 above its graph, as shown in Figure 2. The

medial axis of X consists of infinitely many branches, one for each oscillation of
f . To obtain a bounded shape, we apply inversion, mapping every point x ∈ X
to ι(x) = x/‖x‖2. The inversion preserves circles and incidences between
curves. It follows that the medial axis of ι(X) has the same structure and
number of branches as the medial axis of X . More specifically, if we compactify
R

2 and join all branches of M[X ] at the added point at infinity, then we have
a homeomorphism between M[X ] and M[ι(X)]. The point at infinity maps
to the center of the circle that is the image of the line x2 = 1. We note,
however, that the homeomorphism between the two medial axes is different
from ι, which does not preserve centers of circles. The above construction can
be extended to produce medial axes with infinitely many branch points and
similar pathological examples in higher dimension.
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0

X

Fig. 2: The upper ‘half-plane’ X bounded by a smooth curve and its image under
inversion. Both shapes have medial axes with infinitely many branches.

In the plane, Choi, Choi and Moon [22] establish that the medial axis of
a bounded shape whose boundary is piecewise real analytic is a finite graph.
Chazal and Soufflet [20] extend this result to semianalytic bounded open sets,
which are bounded and open subsets X ⊆ R

k for which every point of R
k

has a neighbourhood U with X ∩ U defined by a finite system of analytic
equations and inequalities. They prove that such sets have medial axes which
admit stratifications and satisfy finiteness properties. Specifically, the medial
axis can be decomposed into a finite number of strata, each a connected i-
manifold with boundary, for i < k. Furthermore, the medial axis has finite
j-dimensional volume, where j denotes the largest dimension of any stratum.
In addition, in R

3 the boundary of the medial axis consists of a finite union of
points and curves of finite length. For shapes in R

3, a classification of points
in the closure of the medial axis can be found in [4, 33].

4 Homotopy equivalence

In [43], Lieutier proves that any bounded open subset X ⊆ R
k is homotopy

equivalent to its medial axis. Unlike earlier works [53, 51], he assumes no
regularity condition on the boundary of X . Intuitively, this result implies
that the medial axis and the shape are connected the same way, ignoring
local dimensionality. To be formal, we say that two maps f and g from X to
Y are homotopic if there exists a continuous map H : X × [0, 1] → Y with
H(x, 0) = f(x) and H(x, 1) = g(x). Using this definition, two spaces X and
Y are homotopy equivalent if one can find two continuous maps f : X → Y
and g : Y → X such that g ◦ f is homotopic to the identity on X and f ◦ g
is homotopic to the identity on Y . To establish the homotopy equivalence
between a shape X and its medial axis, Lieutier considers the distance-to-
boundary function, ρ, which associates to each point x ∈ X its distance to
the complement of X and defines the vector field ∇ρ : X → R

k by



Stability and Computation of Medial Axes 5

∇ρ(x) =
x − c(x)

ρ(x)
, (1)

where c(x) is the center of the smallest ball enclosing the set of points in
the complement of X closest to x. Used before for the purpose of surface
reconstruction in [29, 34], this vector field extends the gradient of ρ to points
on the medial axis, where the gradient is not defined. The extended vector
field is not continuous but induces flow lines used in the proof to map the
shape to its medial axis. Specifically, each point x is mapped to the point
f(x) it occupies after flowing along the vector field ∇ρ for a sufficiently long
but constant amount of time. The proof uses f : X → M[X ] and the inclusion
map g : M[X ] → X to establish the homotopy equivalence.

5 Instability and semi-continuity

We think of M as a transform that maps the shape X to its medial axis,
M[X ]. As emphasized in [43], geometric shapes are usually not known ex-
actly and represented by approximations of one kind or another. For example,
the boundary of a shape may be approximated by a triangulation obtained
by software for surface reconstruction or segmentation. Under these circum-
stances, it would be important that the transform be continuous. In other
words, one should be able to compute an arbitrarily accurate approximation
of the output for a sufficiently accurate approximation of the input. Most
commonly, one would use the Hausdorff distance to quantify the difference
between two inputs and two outputs and this way define what it means for
the transform to be continuous. Unfortunately, the medial axis transform is
not continuous under this notion of distance: small modifications of the input
shape can induce large modifications of its medial axis. This effect is illus-
trated in Figure 4, where we compare the medial axis of an oval on the left
with the medial axis of a set whose Hausdorff distance to the oval is bounded
from above by ε > 0. The difficulty of approximating the medial axis due to
its instability with respect to the Hausdorff distance is a well-known but until
recently not well-understood problem.

One can observe experimentally that small modifications of a shape do not
affect the entire medial axis. Typical effects for shapes in R

2 are fluctuating
branches that leave the rest of the medial axis unchanged. Similarly, for shapes
in R

3 we notice fluctuating spikes, added to or removed from the otherwise
stable structure. This observation is consistent with the fact that the medial
axis is semicontinuous with respect to the Hausdorff distance [44, chapter
11]. To explain this concept, we let A and B be subsets of R

k and write
dH(A | B) = supx∈A d(x, B) for the one-sided Hausdorff distance of A from
B, where d(x, B) is the infimum of the Euclidean distances between x and
points y in B. Observe that dH(A | B) < ε if and only if A is contained in
the parallel body B+ε = {x ∈ R

k | d(x, B) < ε}. The Hausdorff distance



6 Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner

between A and B is dH(A, B) = max{dH(A | B), dH (B |A)}. We write Ac

and Bc for the complements of A and B and note that the Hausdorff distance
between Ac and Bc is generally different from that between A and B. Indeed,
dH(Ac, Bc) is forgiving for small islands of A far away from B, while dH(A, B)
is forgiving for small holes of A far away from Bc. With this notation, we are
ready to define the concept of semicontinuity. Specifically, a transform T is
semicontinuous if for every bounded open subset X ⊆ R

k and for every δ > 0,
there exists ε > 0 such that for every open subset Y of R

k,

dH(Xc, Y c) < ε =⇒ dH (T [X ] |T [Y ]) < δ. (2)

Note that ε depends on X . In words, small Hausdorff distance between the
complements of X and Y implies that T [X ] is contained in a tight parallel
body of T [Y ]. As mentioned earlier, this condition is satisfied for T = M.

6 Stability under C
2-perturbations

In [20], Chazal and Soufflet prove that the medial axis transform is continuous
when C2-perturbations are applied to shapes in R

3. To define what this means,
we call two multilinear maps ε-close if the norm of their differences is less than
ε. A map f : R

3 → R
3 is an ε-small Cm-perturbation if

(i) f(x) = x outside some compact subset of R
3,

(ii) f is a Cm-diffeomorphism,
(iii) the i-th derivatives of f and f−1 are ε-close to the i-th derivative of the

identity map, for all points x ∈ R
3 and all i from 0 to m.

Let X be an open subset of R
3 whose boundary is a C2-smooth manifold

[37]. Chazal and Soufflet [20] prove that a small C2-perturbation f implies a
small Hausdorff distance between the medial axes of X and f(X). Formally,
for every δ > 0, there exists ε > 0 such that for every ε-small C2-perturbation
f , dH(M[X ],M[f(X)]) < δ. This result is optimal for m since the medial
axis of a shape is already instable under C1-perturbations [20]. Therefore, for
approximating the medial axis of X with the medial axis of Y , the boundary of
Y must be close to the boundary of X both in position, normal direction and
curvature. Unfortunately, effective implementations of exact alorithms for the
medial axis are known only for restricted families of shapes, such as polyhedra,
unions of balls and complements of discrete point sets, whose boundaries are
generally not C2. In other words, it is unlikely that the positive approximation
result for C2-perturbations can be turned into a practical algorithm.

7 Exact computation of medial axes

A fairly general class of shapes for which it is possible, in principle, to compute
the medial axis exactly are the semi-algebraic sets, each the set of solutions
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of a finite system of algebraic equations and inequalities. The medial axis
of such a set is itself semi-algebraic and can be computed with tools from
computer algebra. To describe this, let X be a shape in R

3 whose boundary
is a C1-smooth manifold. We introduce the symmetry set of X , consisting of
the centers of spheres tangent to the boundary of X at two or more points.
It contains all points of the medial axis but possibly additional points since
the spheres are not constrained to bound balls contained in X . Suppose now
the boundary of X is defined by the algebraic equation f(x) = 0 and 0 is a
regular value of f . It follows that the gradient for all points of the boundary
is non-zero, ∇f(x) 6= 0. In this case, the symmetry set is the closure of the
set of points z for which there exists points x and y that satisfy the following
system of algebraic equations:































f(x) = 0,
f(y) = 0,
(x − z) ×∇f(x) = 0,
(y − z) ×∇f(y) = 0,
‖x − z‖2 = ‖y − z‖2,
t‖x − y‖2 = 1

In the last condition, t is an additional free variable that ensures that x and y
are distinct. If 0 is not a regular value of f , we need to add ∇f(x)∇f(y)s = 1
as yet another equation, with s a free variable. Finally, the medial axis is
obtained by imposing the additional conditions that ‖u − z‖2 ≥ ‖x − z‖2,
for all points u on the boundary, and z be contained in X . Considering u
a new free variable, we thus remove points from the solution, namely the
points z for which f(z) < 0 or for which there exists u with f(u) = 0 and
‖u−z‖2 < ‖x−z‖2. This new set is still semi-algebraic since it is the difference
between two semi-algebraic sets.

Although possible in principle, we are not aware of an implementation that
effectively constructs the exact medial axes of general semi-algebraic sets. The
most advanced effective implementations are limited to the planar case, to
piecewise linear shapes, and to shapes constructed from finitely many balls.
Even for shapes bounded by simple curves in the plane, the algebraic difficul-
ties in computing medial axes are significant and satisfactory implementations
are rare and far in between. Piecewise linear curves involve the comparison
of expressions with two nested square roots [17] and efficient and fully robust
implementations are few [36]. Ramamurthy and Farouki tackle the case of
algebraic curve segments whose bisectors have rational parametrizations [47].
An exact algorithm for not-necessarily convex polyhedra in R

3 can be found
in [24]. For the complement of a union of balls in R

k, the medial axis can
be derived from the Apollonius diagram of the corresponding spheres or from
convex hulls of finitely many points in R

k+2 [11, 14]. Perhaps suprisingly, the
medial axis of the union of finitely many balls is simpler than that of the
complement. As first described in [5], it is piecewise linear and can be con-
structed from the Voronoi diagram of a finite set of points. As discussed in
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more detail shortly, the cells of dimension less than k in this diagram may
be interpreted as the medial axis of a punctured Euclidean space, a case that
permits particularly simple exact algorithms.

8 Approximation paradigm for medial axes

The difficulty of computing medial axes exactly motivates a serious look at
approximation algorithms. We describe a framework that captures a common
line of attack to approximating the medial axis, as sketched in Figure 3. First,
we find Y approximating X that belongs to a class of shapes for which the
medial axis can be constructed exactly. Second, we construct the medial axis
of Y . Third, we prune the medial axis of Y to get a subset P [M[Y ]] ⊆ M[Y ]
that approximates the medial axis of X . The composition of the three steps
provides the approximation of the medial axis of X . The most challenging

X Y

P[M[Y ]] M[Y ]

-
Approximate

p

p

p

p

p

p

p

?

Approximate

Medial Axis

?

Construct

Medial Axis

�
Prune

Fig. 3: An approximation P[M[Y ]] of the medial axis of a shape X can be found as
part of the medial axis of a shape Y approximating X.

step in this paradigm is the extraction of a subset P [M[Y ] of M[Y ] that
indeed approximates M[X ]. Recent mathematical results that rationalize this
approach are discussed shortly.

The notion of approximation used in the first step varies between different
implementations of the approximation paradigm. It either means that Y is the
image of X under a small Cm-perturbation, or that the Hausdorff distance
between the complements of X and Y is small, as in [19]. Other notions of
approximation are conceivable.

9 Punctured Euclidean spaces

We start by identifying a class of shapes for which the medial axis can be
constructed exactly and efficiently. We obtain shapes in this class by punc-
turing the k-dimension real space at a discrete set of locations. Equivalently,
we consider the complement of a discrete set of points P in R

k. The medial
axis of this space is the Voronoi graph of P , which we define as the union
of all cells in the Voronoi diagram of dimension k − 1 or less. Algorithms for
constructing the Voronoi graph are well-studied in computational geometry
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and implementations are available from the geometric software library CGAL
[54]. For a set P of n points in R

k, the graph can be constructed in time
O(ndk/2e + n log n), which is optimal in the worst case because the graph can
consist of a constant times ndk/2e faces. In most practical applications, the
number of faces, F , is much less and the output-sensitive algorithm in [18]
constructs the graph in R

3 in time O((n + F ) log2 F ). Examples of point sets
with provably small Voronoi graphs are so-called κ-light ε-samples of compact
smooth generic surfaces in R

3, with F = O(n log n) [8], and κ-light ε-samples
of polyhedral surfaces in R

3, with F = O(n) [7]. Such samples will be studied
in more detail shortly.

Consider a finite point set P whose Hausdorff distance to the boundary
of a shape X is less than ε and write Vor[P ] for the Voronoi graph of P .
Using the semicontinuity of the medial axis expressed in (2), we can show
that the subset of Vor[P ] inside X contains an approximation of the medial
axis of X . In the approximation paradigm for medial axes, this subset can be
interpreted as part of the medial axis of a shape Y close to X . Following [19],
we let Y be the parallel body X+ε of X minus the points in P ; see Figure 4.
Since the Hausdorff distance between P and the boundary of X is less than
ε, the same is true for the complements of X and the thus constructed space:
dH(Xc, Y c) < ε. In summary, we have M[Y ] ∩ X = Vor[P ] ∩ X .

Fig. 4: On the left, a shape X and its medial axis. In the middle, a finite set of
points P whose Hausdorff distance to the boundary of X is less than ε and its
Voronoi graph. On the right, X

+ε

− P and its medial axis.

10 Voronoi graph and medial axis

We now consider results that focus on the detailed relationship between the
Voronoi graph of a finite point set and the medial axis of the shape whose
boundary the points sample. We need precise notions. A sample of the bound-
ary of a shape X is a finite set of points (exactly and not just approximately)
on that boundary. An ε-sample is a sample whose Hausdorff distance to the
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boundary of X is less than ε. In other words, every point of the boundary
is less than distance ε away from a point in the ε-sample. The ε-sample is
κ-light if the number of sample points within distance ε is never more than
κ. The ε-sample is noisy if points are not necessarily on the boundary but at
Hausdorff distance less than ε to the boundary.

An early result on the connection between the Voronoi graph and the me-
dial axis is due to Brandt [15]. Given a shape in R

2, he takes an ε-sample on
the boundary curve and considers the Voronoi edges and vertices that are com-
pletely contained in the shape; see Figure 5. He then proves that under some

Fig. 5: In R
2, vertices and edges lying inside a shape and extracted from the Voronoi

graph of an ε-sample of the boundary approximate the medial axis (courtesy of Attali
and Montanvert [10]).

technical conditions on the boundary curve, the portion of the Voronoi graph
defined by these edges and vertices approximates the medial axis. Amenta
and Bern [1] point out that the direct extension of this result to shapes in R

3

does not hold; see Figure 6. The validity of the extension is spoiled by the
existence of slivers in three-dimensional Delaunay triangulations, which occur
for ε-samples with arbitrarily small ε > 0. Roughly, a sliver is a tetrahedron
whose four vertices are almost cocircular. The location of the Voronoi ver-
tex corresponding to the sliver depends on the four vertices but is generally
unrelated to any feature of the surface and does not necessarily lie near the
medial axis. As a first step to cope with slivers, Amenta and Bern eliminate
all but a few Voronoi vertices they refer to as poles. Every sample point p
generates a Voronoi polyhedron and the vertices furthest away from p on the
two sides of the surface are the poles of p. Clearly, there are at most 2n poles
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for a sample of n points. As proved in [3], for a shape whose boundary is a
smooth C1-manifold, the poles tend to the medial axis of the shape and its
complement as ε goes to zero.

Fig. 6: On the left we see a triangulation of the boundary of a shape in R
3. Its

vertices determine a Voronoi diagram whose vertices inside the shape are shown in
the middle. The subset of poles inside the shape is shown on the right.

To extend the result of Brandt to R
3, we need more than just points (the

poles) near the medial axes, we also need to connect them to form a geometric
structure approximating the medial axis. In [3], Amenta, Choi and Kolluri use
simplices of the (weighted) Delaunay triangulation of the poles. To avoid the
construction of this weighted Delaunay triangulation and connect the poles
directly inside the Voronoi graph, we need to know about its local distance
from the medial axis. Bounds on this distance can be found in [6, 13, 23].
Assuming the boundary of the shape is a smooth C1-manifold and using
these bounds, among other things, Dey and Zhao [27] give an algorithm that
identifies a subgraph of the Voronoi graph that approximates the medial axis
for the Hausdorff distance. We note that the above results are limited to
smooth surfaces and to samples of points that lie on that surface. The next
two sections deal with more general data.

11 Pruning in the presence of noise

Assuming the medial axis of a shape Y approximating X has been con-
structed, we prune M[Y ] to retrieve an approximation of M[X ]. In this para-
graph, the terms shape, medial axis, and stable part refer to Y , M[Y ], and
P [M [Y ]], respectively. Pruning methods shorten peripheral branches of the
medial axis, trying to capture its stable part. Typically, points on the border
are successively removed until a stopping condition is satisfied. This condi-
tion may be a threshold on the difference between the initial shape and the
shape reconstructed from the simplified medial axis [16, 23, 28, 48, 49], or
it may be based on an estimate of the stability of portions of the medial
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axis [9, 10, 26, 31, 32, 45]. We present experimental results due to Attali and
Montanvert [10] that shed light on the latter approach. To each point y ∈ Y ,
we associate the distance to Y c, the complement of Y , and the largest angle
formed by points in Y c closest to y:

ρ(y) = d(y, Y c) and θ(y) = max
a,b∈Π(y)

∠ayb,

where Π(y) = {x ∈ Y c | d(y, Y c) = ‖y − x‖}. We obtain the parameter

graph by collecting, for all points y of the medial axis, the points (θ(y), ρ(y))
in the two-dimensional parameter space [9, 10]. Points in this graph lie on
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Fig. 7: Medial axis, parameter graph and simplified medial axis obtained by keeping
points in the upper right quadrant of the parameter graph (courtesy of Attali and
Montanvert [10]).

curves associated with branches of the medial axis, as illustrated in Figure 7.
When noise is added to the boundary, new branches appear on its medial
axis; see Figure 8. The corresponding effect on the parameter graph is the
appearance of a hyperbola-like point cloud located near the coordinate axes.
This experimental observation suggests a method for recognizing points on
the medial axis that owe their existence to noise in the input data. As a first
cut, we remove points y for which ρ = ρ(y) is smaller than a first threshold
or θ = θ(y) is smaller than a second threshold. In order to refine the method,
let us introduce h(y) = supa,b∈Π(y) ‖a − b‖/2. The new quantity, h = h(y) is
related to the previous ones by

ρ =
h

sin(θ/2)
.

For each fixed h we get ρ as a function of θ. By plotting a few of these
functions, we can experimentally find a value of h for which the graph of this
function approximates the hyperbola-like point cloud induced by the noise.
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Fig. 8: A small amount of noise added to the boundary of a shape suffices to dra-
matically change its medial axis. The simplified medial axis is defined by points in
the upper right quadrant of the parameter graph (courtesy of Attali and Montanvert
[10]).

This suggests that the stable part of the medial axis corresponds to points y
for which h exceeds a given threshold. The next section describes a theoretical
justification of this experimental finding.

12 Stability of the λ-medial axis

Chazal and Lieutier [19] define the λ-medial axis of a bounded open subset X
of R

k and prove its stability under the Hausdorff distance, for regular values
of λ. Remember that this property is not shared by the medial axis transform.
To describe their results, let r(x) be the radius of the smallest ball enclosing
Π(x), the set of points in the complement of X with minimum distance to x.
By definition, the λ-medial axis of X is

Mλ[X ] = {x ∈ X | r(x) ≥ λ}.

For λ > 0, the λ-medial axis is a subset of the medial axis and the Hausdorff
distance between the two tends to zero when λ goes to zero. We say that
λ is a regular value of X if the function that maps µ ∈ R to Mµ[X ] in R

k

is continuous under the Hausdorff metric at µ = λ. In other words, a small
modification of a regular value λ implies a small modification of the λ-medial
axis. Typical non-regular values are radii of locally largest maximal balls. We
are now ready to give a precise statement of the result in [19]: if λ is a regular
value of a shape X , the λ-medial axis transform is continous at X for the
Hausdorff distance. In other words, for every δ > 0, there exists ε > 0 such
that for every open subset Y of R

k,

dH(Xc, Y c) < ε =⇒ dH(Mλ[X ],Mλ[Y ]) < δ. (3)
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Note the similarity with (2), which expresses the same property using one-
sided instead of two-sided Hausdorff distance. As part of the approximation
paradigm for medial axes, this result sheds new light on the pruning method
described above, which is now seen as approximating the λ-medial axis. Fur-
thermore, an approximation of the medial axis can be obtained by forcing λ
to decrease as Y gets closer to X . This idea appears in [27] and can also be
found in [19]. Specifically, we consider a sequence of shapes Yε whose Hausdorff
distance to X is at most ε. Writing D for the diameter of X and introducing
g(ε) = 10

√
3D3/4 4

√
ε, we get

lim
ε→0

dH (M[X ],Mg(ε)[Yε]) = 0, (4)

[private communication with André Lieutier]. Unlike the medial axis, the λ-
medial axis is not necessarily homotopy equivalent to the shape. To shed light

Fig. 9: Left: a shape with weak feature size indicated by the arrow. Right: the λ-
medial axis for a value of λ greater than the weak feature size. Each endpoint has
two closest points on the boundary, whose distance from each other is 2λ.

on this phenomenon, Chazal and Lieutier [19] call a point x ∈ X critical if
the vector field ∇ρ defined in (1) vanishes at x; see Figure 1. The weak feature

size of X is the smallest distance between a critical point and the boundary
of X . As proved in [19], the λ-medial axis is homotopy equivalent to X if λ is
smaller than the weak feature size.

13 What now?

How do we best harness the power of the new insights, in particular the stabil-
ity of the λ-medial axis? In this section, we speculate how this stability can be
used to obtain improved implementations of the approximation paradigm for
medial axes. We also mention some of the open issues that are still obstacles
in our quest for a satisfactory solution in the absence of any knowledge on the
shape X other than a possibly noisy finite sample of its boundary.
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Given a finite point set P , we call the λ-medial axis of the complement the
λ-Voronoi graph of P . The λ-complex consists of all simplices in the Delaunay
triangulation that can be enclosed by a sphere of radius less than λ. The
relation between the two is one of duality and complementarity: a Voronoi
cell of dimension less than k belongs to the λ-Voronoi graph iff the dual
Delaunay simplex does not belong to the λ-complex. To derive an alternative

Fig. 10: The λ-complex and the λ-Voronoi graph of a noisy sample of a simple closed
curve in the plane.

description, let B be the set of open balls with radius λ whose centers are
points in P . The λ-complex consists of all Delaunay simplices spanned by
points in P whose balls have a non-empty intersection. This is similar to but
slightly weaker than the condition for the simplex to belong to the α-shape
[31], which requires that the balls and the (k-dimensional) Voronoi cells have
a non-empty intersection. Indeed, it is not difficult to prove that for λ = α,
the λ-complex and the α-complex are homotopy equivalent. To construct the
λ-Voronoi graph, we simply select the Delaunay simplices that belong to the λ-
complex and collect the dual Voronoi cells of the remaining Delaunay simplices
as the pieces of the λ-Voronoi graph. An example of this construction is shown
in Figure 10. Assume now that P is a noisy sample of the boundary of an open
set X ⊆ R

k. If we know that P is an ε-sample of that boundary, we may set
λ = g(ε) and compute the λ-Voronoi graph. The results presented in Sections
10 and 12 assure that as ε goes to zero, the λ-Voronoi graph restricted to X
is an approximation of the medial axis of X . To recapitulate, we go through
the following steps to obtain an approximation of the medial axis:

1. determine how small an ε is needed;
2. obtain an ε-sample of the boundary of X ;
3. construct the λ-Voronoi graph, with λ = g(ε);
4. select the part of the graph inside X .



16 Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner

In practice, we rarely have enough knowledge about X to know what ε > 0
is sufficiently small, and even if we knew, we might not have the means to
obtain an ε-sampling of the boundary. In exceptional cases, the boundary
of X is defined mathematically, e.g. as the zero-set of an algebraic function
f : R

k → R, and we can determine sufficiently fine ε-samples and therefore
λ-Voronoi graphs that approximate the medial axis, as in Figure 11. This

Fig. 11: Two λ-medial axes of the same shape, with λ increasing from left to right,
constructed as a subset of the λ-Voronoi graph of a sample of the boundary.

approach to medial axes thus suffers from the same difficulties as the α-shape
approach to surface reconstruction: it is usually not clear which value of λ (or
α) is most appropriate, and in many cases there is no such most appropriate
value. This suggests we re-trace some of the developments aimed at fixing this
drawback for α-shapes, namely looking at the filtration (nested sequence) of
λ-Voronoi graphs and use topological persistence [30] to select and combine
pieces of λ-Voronoi graphs for different values of λ in different portions of X .
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