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Abstract. Many component models and frameworks have been pro-
posed to abstract and capture concerns from Real-Time and Embedded
application domains, based on high-level component-based approaches.
However, these approaches tend to propose their own fixed-set abstrac-
tions and ad-hoc runtime platforms, whereas the current trend empha-
sizes more flexible solutions, as embedded systems must constantly in-
tegrate new functionalities, while preserving performance. In this paper,
we present a two-fold contribution addressing this statement. First, we
propose to express these concerns in a decoupled way from the com-
monly accepted structural abstractions inherent to CBSE, and provide a
framework to implement them in open and extensible runtime containers.
Second, we propose a three-tier approach to composition where applica-
tion, containers and the underlying operating system are designed using
components. Supporting a homogeneous design space allows applying
optimization techniques at these three abstraction layers showing that
our approach does not impact on performance. In this paper, we focus
our evaluation on concerns specific to the field of real-time audio and
music applications.

1 Introduction

Component-Based Software Engineering is nowadays applied for a wide range
of application domains, from IT systems using mainstream component tech-
nologies such as EJB or CCM to real-time and embedded (RTE) systems. Be-
yond the well-established advantages in terms of packaging and composability
of independently-implemented software modules, CBSE promotes flexible design
approaches, relying on separation of concerns embodied by the software’s ar-
chitecture. Moreover, the capability to specialize the architecture with relevant
abstractions and non-functional concerns of an application domain, conduct the
definition of Domain-Specific Component Frameworks (DSCF). Thereby, DSCF
offers a domain-specific component model and a tool-support allowing these
non-functional concerns to be deployed in the runtime platform composed of
a set of custom made containers. It is especially the case for RTE Component
Frameworks relieving the developer from dealing with redundant and error-prone
tasks such as creating threads, managing synchronization or activation of the
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components with temporal constraints, or performing inter-task communications
(ITC).

Problem statement. Many RTE Component Frameworks have been pro-
posed to address these non-functional concerns [6, 9, 24]. However, these propo-
sitions tend to provide their own abstractions, fixed set of execution and com-
munication models, and their own ad-hoc runtime platforms. We believe that
proposing more flexible solutions is a key issue to consider in order to improve
reuse and integration of legacy solutions. Indeed, i) components can be indepen-
dently deployed in heterogeneous execution contexts depending on embedded
or temporal requirements. ii) Runtime platforms must be adapted according
to new non-functional concerns as embedded systems must constantly integrate
new functionalities. However, RTE constraints are tightly dependent on the run-
time platform and on the underlying operating system since these layers must
not induce a significant overhead concerning critical metrics of the domain, such
as memory footprint, real-time responsiveness and execution time. The respect
of these constraints is thus a prerequisite for introducing flexibility in embedded
software stacks.

Contributions. To address these challenges, the contribution of this paper
relies on two parts which are integrated into a full-fledged framework. First, we
propose the use of a generic component-based framework extensible towards var-
ious domain-specific concerns [13]. These concerns are specified by the developer
in a flexible way via the use of annotations specializing the architectural artefacts
(components, interfaces, bindings), according to the execution contexts required
by the application. Our framework relies on an approach for generation and
composition of component-based containers implementing the runtime platform
which fits the application’s requirements. Second, we exploit a component-based
implementation of a real-time operating system presented in [14] providing the
low-level services required by the containers. As a result, we present in this paper
a three-tier approach where an embedded software stack made of component-
based application, containers and operating system is composed using a homo-
geneous component model. A homogeneous support of the component paradigm
is the key point of our contribution to support flexibility into the software stack
at these three abstraction levels. Moreover, i) by composition, only the services
strictly required by the whole system are deployed in the final executable to
fulfill the embedded constraints. ii) Our approach relies on optimization tech-
niques which are applied uniformly at these three abstraction layers reducing at
a negligible level its impact on the performances. In this paper, we apply this
approach to the design of real-time audio applications.

Outline. The paper is structured as follows: The two building blocks on
which our contribution relies are presented in Section 2, and a general overview
of our approach is outlined in Section 3. Section 4 presents our contribution to
designing component-based applications dedicated to real-time audio concerns.
The composition process involved to implement these concerns are detailed in
Section 5 and evaluated in Section 6. Finally, we discuss related work in Section 7

before concluding and drawing future directions of our research in Section 8.
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2 Background

In this section, we present two building blocks on which the contributions of this
paper rely.

2.1 Hulotte Component-Based Framework

Hulotte [13] defines a component metamodel introduced in Figure 1. This
metamodel is based on general CBSE principles [4], and is inspired by the reflec-
tive Fractal component model [3]. In particular, Hulotte identifies as core
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Fig. 1. The Hulotte Metamodel.

architectural artefacts the concepts
of Component (either Primitive or
Composite), Attribute, Interface,
and Binding. The behavior of a
primitive component is implemented
by the underlying programming lan-
guage supported by our framework
(the C language in the context of this
paper) and is reified by the Content

artefact. An architecture is then spec-
ified as a set of interconnected com-
ponents (at an arbitrary level of en-
capsulation by using the composite design pattern) via oriented relationships
between Interfaces.

We distinguish two roles involved in the Hulotte development process: the
application developer and the platform developer. The application developer is
responsible for the development of applicative components and the specification
of their domain-specific requirements. She/he uses the Hulotte metamodel con-
cepts, depicted in Figure 1, to design the component-based application, which is
afterwards annotated by Domain-Specific Annotations. These annotations mark
the Hulotte Architectural Artefacts like Java 5 annotations mark the Abstract
Syntax Tree (AST) of a Java program. Hulotte annotations isolate and specify
the concerns relevant to a targeted application domain, so-called domain-specific
concerns. Within our approach, it should be noticed that components are used
as pure business units, and a component-based architecture then implements
the whole business logic of the application. Therefore, annotations are used to
specify the domain-specific semantics over the architecture. For instance, in or-
der to address the multitask applications domain, an annotation can be used
on a component to qualify under which execution model its business interfaces
should be invoked, e.g. periodically or sporadically. As a second example, on
a composite component, an annotation can qualify the boundary of a memory
scope in which its subcomponents will be allocated. Finally, an annotation can
also be used on a binding to specialize the communication models and protocols
(e.g., asynchronous, shared memory, CORBA, SOAP) between the components
it binds.
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The role of the platform developer is to design the runtime platform imple-
menting the domain-specific requirements specified by the application developer.
Hulotte relies on a reflective architecture where each applicative component is
hosted by a container, which is itself implemented as a component-based archi-
tecture. Throughout this paper, we will refer to “platform components” encap-
sulated within the containers. Therefore, a container is also implemented using
the architectural concepts presented in Figure 1.

2.2 Real-Time Operating System Componentization

In [14], we have conducted a component-based reengineering of µC/OS-II [2],
a preemptive, real-time multitasking kernel for microprocessors and microcon-
trollers. It is implemented in ANSI C and certified by the FAA3 software intended
to be deployed in avionics equipment. It has been massively used in many embed-
ded and safety critical systems products worldwide. µC/OS provides the basic
services of a Real-Time Operating System (RTOS): Task and Time manage-
ment, Inter-Process Communications (mailbox, queues, semaphore, mutex), and
Interrupts management. The execution time for most of these services is both
constant and deterministic. µC/OS is implemented as a monolithic kernel, i.e.
it is built from a number of functions that share common global variables and
data types (such as task control block, event control block, etc). The reengineer-
ing presented in [14] consists of a library of ready-to-use RTOS configurations,
implemented by a set of composite components, providing their services to the
application. We showed that overheads involved by our component-based de-
sign in term of performance were negligible compared to the original monolithic
implementation of the kernel.

3 General Overview of the Approach & Case Study

This section presents a general overview of our three-tier approach for compo-
sition of a real-time embedded software stack, presents the application domain
and the case study on which it is applied in this paper.

3.1 General Overview

The software stack is sketched in Figure 2. At the higher abstraction level, the
application developer specifies the architecture of the application as a set of
components annotated by domain-specific annotations. In the context of this
paper, annotations are used for designing real-time audio applications and will
be presented in Section 4. As a first stage of composition (Fig. 2(1)), these
components are composed within component-based containers implementing the
semantics of the domain-specific annotations in a transparent manner for the
application developer. The implementation of containers by the platform devel-
oper and the composition rules between applicative and platform components

3 Federal Aviation Administration.
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Fig. 2. A Three-Tier Approach for Composition of a RTE Software Stack.

are integral parts of the Hulotte framework and will be detailed in Section 5.
Containers implement non-functional services required by the applicative com-
ponents, control them, mediate their interactions with other applicative compo-
nents and with the operating system. Therefore, as a second stage of composition
(Fig. 2(2)), the operating system services required by the containers are bound
to the component-based operating system presented in Section 5. A detailed
description of the roles involved within the design process presented in this pa-
per is sketched out in Figure 3, where steps (1) and (2) refer to the same two
composition steps from Figure 2.

(c) Handled automatically by the Hulotte Framework(b) Implemented by the platform developer

(a) Implemented by the application developer
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Fig. 3. Description of the Hulotte’s Design Process.

3.2 Specificities of RTE Audio Applications

In this paper, we present our approach in order to provide to the application de-
veloper a design space for component-based audio and music applications. These
applications are inherently designed as multitask and concurrent softwares since
they generally implement audio flows processing algorithms controlled by the
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end-user via HMIs (Human-Machine Interfaces). Moreover, they must be exe-
cuted in a real-time context since audio data must be processed in time to avoid
buffer underflows. Therefore, the developer must properly manage the resources
of the system (tasks, audio buffers, mutex, etc), implement the audio data copies
throughout, for example, a pipe of audio filters – potentially at different sam-
ple rates – or the way tasks are synchronized and shared data are protected
within critical sections. These aspects are typical domain-specific concerns since
from one application to another, their implementations are redundant, time-
consuming and error-prone. Therefore, the aim of Hulotte is to provide a
design space where these concerns are handled automatically by our framework.

3.3 Case Study: a Vinyl Multimedia Controller

To illustrate the main features of our approach, we introduce our case study
(DeckX) on which we will rely throughout the paper: An application for DJ’s
that uses a special vinyl record as a mean of controlling various multimedia
sources (such as MP3 audio or video files) from a classical turntable. It operates
as follows: the vinyl is pressed with a dedicated sinusoidal stereo signal which
encodes a “time-code”. A software analysis of the signal gives three pieces of
information: the absolute position of the turntable arm in the vinyl, its velocity
and its rotation direction. Concretely, it is thus possible to “scratch” in real-
time MP3 files stored in a computer from the turntable. Moreover, we consider
the ability for the DJ to control audio parameters (output volume and filtering
parameters) from the keyboard. Our case study thus represents a real-life appli-
cation, and is composed of various functional parts which have to meet various
concurrent constraints. Moreover, the application is intended to be deployed in a
microcontroller and must therefore fulfill constraints encompassed by ressource
limited devices.

4 Application Level: Designing RTE Audio Applications

This section presents the domain-specific annotations provided to the application
developer for designing real-time and audio applications. We outline then how
DeckX is implemented with Hulotte.

4.1 Domain-Specific Annotations

The audio-domain-specific concerns presented in Section 3.2 are modeled by Hu-

lotte annotations. These annotations are used by the application developer to
specialize its application specified as a set of interconnected applicative compo-
nents. The list of annotations provided to the developer is given in Table 1 and
their basic semantics are detailed below.

@ClientServerItf and @AudioItf annotations specify the signatures and
properties of the interfaces exported by the components. A Client-server inter-
face signature defines a set of method signatures (like Java interfaces) with a list
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Table 1. Hulotte Annotations Dedicated to Real-Time Audio Applications.

Annotation Applied to Parameters

@ClientServerItf interface signature: string
role:{client | server}
cardinality:{single | multicast}

@AudioItf interface signature: string
role:{producer | consumer}
cardinality:{single | multicast}

@Buffered interface bufferSize: integer
@MonoActive interface|component priority: integer
@MultiActive interface|component priority: integer

poolSize: integer
@Asynchronous binding

@Protected component initialValue: integer
@CpuItHandler interface irqNumber: integer
@OSItf interface

of parameters and a return type. The parameters of the annotation specify if the
interface is client or server, single or multicast. The multicast property
specifies a one-to-N connection scheme between one client and N server inter-
faces. Client-server interfaces model services required or provided by the com-
ponents. The audio interfaces (i.e., the interfaces annotated with @AudioItf)
model streams of audio data produced or consumed by the components. Their
signatures define a set of parameters qualifying audio streams: the number of au-
dio frames transmitted, their data types (an audio frame is stored as an integer,
a float or a double), the number of audio channels (e.g. mono or stereo), the sam-
ple rate of the audio flow, and the way multiple channel frames are intertwined.
The need to qualify these audio interface signatures is justified for composing in-
dependently implemented components. Indeed, interconnected components may
have been implemented according to audio streams encoded differently. An ex-
ample of a client-server and of an audio interface signatures using the Hulotte’s
IDL (Interface Description Language) is given in Figure 4. The bindings between
applicative components are specified between a client and a server interface or
between a producer and a consumer audio interface.

public cltsrvinterface
deckX.api.Track {

struct_track_t *getTrack(void);
int track_import(char *path);
int track_handle(void);

}

public audiointerface
audio.api.AnalyserAudioType {

audio_frame_size: 64; sample_type: float ;
channels: 2; sample_rate: 44100;
intertwined_samples: true;

}

Fig. 4. IDL’s Examples of a Client-Server and Audio Interface Signatures.

@Buffered annotations can be applied to interfaces. Such an interface spec-
ifies that service invocations or audio streams passing through it are buffered.
The size of the buffer is specified by the bufferSize parameter of the anno-
tation. Buffered interfaces are for instance used when components produce and
consume audio streams at different frequencies.

The @MonoActive annotation specifies that an applicative component is at-
tached to its own thread of execution defined with a priority. The execution
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model attached to such a component performs the incoming activation requests
sequentially – i.e., in a run-to-completion mode – with a FIFO ordering policy. In
our case, activation requests can be operation invocations from a server interface
or audio streams consumed from an audio interface. The @MultiActive anno-
tation has the same semantics but for a pool of threads performing activation
requests in parallel.

The @Asynchronous annotation can be applied to bindings. In this case, the
thread of control originating from the source interface of the binding returns
without being blocked until the completion of the execution at destination in-
terface side.

If the implementation code of an applicative component is stateful and not
reentrant (i.e., it can not be safely executed concurrently), the developer uses
the @Protected annotation. In this case, the Hulotte execution framework
guarantees mutual exclusion: a single execution flow is allowed to execute the
code encapsulated by such a protected component (just as the synchronized

keyword in Java).
@CpuItHandler and @OSItf are used to specify a link between the application

layer and the operating system layer. Indeed, two cases are identified: First, an
applicative component’s execution may be triggered by the reception of a hard-
ware interrupt (@CpuItHandler) managed by the operating system. Second, an
applicative component may directly require services implemented by the operat-
ing system or device drivers not directly handled by the application (@OSItf). In
these two cases, the annotated interfaces will be automatically bound afterwards
by the Hulotte process as described in Section 5.

4.2 Annotated Architecture of DeckX

The Hulotte architecture of our case study is given in Figure 5. In the fol-
lowing, we outline its functional and non-functional behavior, the latter being
specified by annotations: The AudioDriver component will be attached at run-
time by a thread of execution activated by an interrupt managed by the operating
system. This driver reads the audio buffers from the audio device (corresponding
to the timecoded signal read from the turntable) and produces asynchronously
audio frames on its outgoing audio interface. The Analyser1 component is also
attached to its own thread of execution and is activated each time new audio
frames are buffered in its incoming audio interface. At each analysis step, time-
code information decoded from incoming audio frames are multicasted to the
GUI and the AudioPlayerDeck1 components. According to this information, the
Player component processes audio frames read from an MP3 file managed by
the Track component, sends them to the AudioFilters and finally to the in-
coming audio interface of the AudioDriver. The KeyboardDriver component is
activated each time a key is pressed by the end-user and dispatch the process
of the corresponding event to change a parameter of the AudioFilters or to
load a new MP3 track via the Track component (the latter thus requires an
OSItf to access to the file system managed by the operating system layer). The
latter is protected since concurrent execution flows initiated from the Analyser1
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or the KeyboardDriver components access to its provided services. The priori-
ties of the @MonoActive and @MultiActive annotations attached to applicative
components are specified as follows: Prio(AudioDriver) > Prio(Analyser1)

> Prio(KeyboardDriver) > Prio(GUI), since audio samples must be handled
in priority by the AudioDriver and the analysis process, compared to the in-
teractions with the end-user with the keyboard and the GUI. Annotations are
implemented by the Hulotte platform as it is presented in the next section.

DeckX

AudioFilters

AudioDriver Analyser1

Timecode

DataBase

AudioPlayerDeck1

Interfaces annotated by
@ClientServerItf

Interfaces annotated by
@AudioItf

Player

Volume

Filter

Effects

Filter

Track

Keyboard

Driver

@Buffered

@Buffered @Protected

@MonoActive

@MultiActive

@CpuItHandler

@CpuItHandler

Primitive
component

Composite
component

Legend

@OSItf

@Asynchronous GUI

@MonoActive
@Asynchronous

@Asynchronous

@MonoActive

@domain-specific
    annotation

1 component DeckX {
2 component Analyser1 {
3 @Buffered(bufferSize="512")
4 @MonoActive(priority="20")
5 @AudioItf(sign="audio.api.AnalyserAudioType", role="consumer",
6 cardinality="single")
7 destination interface inputAudio

9 @ClientServerItf(sign="deckX.api.TimeCodeType , role="client",
10 cardinality="multicast")
11 source interface outputTimecode

13 @ClientServerItf(sign="deckX.api.tcDBType", role="client",
14 cardinality="multicast")
15 source interface tcDataBase

17 content AnalyserImpl.c
18 }
19 @Asynchronous
20 binds AudioDriver.outputAudio to Analyser1.inputAudio
21 binds Analyser1.tcDataBase to TimecodeDataBase.tcDataBase
22 // ... Other bindings and components
23 }

Fig. 5. Graphical and Textual Representations (excerpt) of a DeckX’s Annotated
Architecture.
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5 Hulotte Platform & Operating System Compositions

As sketched out in Figure 3(b), the platform developer is responsible for im-
plementing the runtime platform supporting the domain-specific requirements
specified as Hulotte annotations. The Hulotte platform is engineered with
component-based containers, which brings three significant advantages: i) the
platform developer benefits from a component-based design to implement the
semantics of arbitrary complex domain-specific annotations, in a decoupled way
from the application logic, ii) our approach relies on a reflective architecture,
in a symmetric and isomorphic way, and iii) the low-level services required by
the platform and provided by the operating system are explicitly specified. The
concept of container on which the platform is built is generalized, defining com-
position rules and architectural invariants as architectural patterns to specify the
link between applicative components and platform components as it is presented
in the following section. The component-based implementation of the operating
system is detailed in Section 5.2, as the composition between the container and
the OS layers.

5.1 Component-Based Containers Design and Composition

The composition of the containers corresponds to the first composition step of
the process depicted in Figure 3(c), and relies on a generative and aspect weaving
technique. Each Hulotte annotation is implemented by the platform developer
as architectural fragments made of interceptor and platform components. The
platform developer implements a Hulotte plugin which provides the way these
fragments will be woven into composite containers, according to the annota-
tions specified at the application level. The output of this composition step is
an architecture description where all applicative components are encapsulated
within their dedicated containers. Therefore, for a given applicative component,
its container:

– implements non-functional services it requires via annotations,
– mediates the domain-specific interactions with its environment,
– manages the resource instances it requires, such as tasks, semaphores, buffers

or message queues, reified as components [14],
– allows inversion of control based on interception of execution flows transiting

via applicative component’s interfaces.

The platform components are generic components provided by the Hulotte

component library, or generated components. The architectural specification and
implementations of the latter are respectively generated programmatically and
by source code templates according i) to interface signatures of the applicative
components they will control, and ii) the annotations parameters set by the
application developer. Interceptors are also generated since their specifications
rely on applicative components’ interfaces always known only at weaving time.
According to the annotations presented in Table 1, the contents of the contain-
ers depend on the following information which are specified by the application
developer:
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– Buffered interfaces are intercepted, and data transiting through them (e.g.,
parameters of method or audio flows) are stored in a buffer implemented as
a platform component.

– The semantics of MonoActive and MultiActive components are imple-
mented by OS task instances handled by generated platform components.
The latter control their thread(s) of execution as it was mentioned in Sec-
tion 4.1.

– The logics behind Asynchronous bindings and multicast interfaces are im-
plemented by interceptors.

– The semantics of Protected component is implemented by interceptors,
all together bound to a semaphore. The counter of the semaphore is then
incremented when an execution flow from the environment of the protected
component execute a service it provides and is decremented when it returns.

– In the case of applicative components bound via audio interfaces with differ-
ent signatures, a dedicated interceptor is generated implementing the con-
version algorithm between the source and the destination of the audio flow.

As an example, Figure 6 shows the container of the Analyser1 applicative
component, according to the annotations specified by the application developer
presented in Figure 5. Note that Hulotte annotations are also defined to char-
acterize the specificities of the container level concepts.

Analyser1

MonoActive
controller

Ringbuffer
Semaphore

instance
Task

instance

WriteFreeReadLock
Ringbuffer

@OSItf @OSItf

Analyser1 Container

Multicast
interceptor

@Generated @Generated

@Generated

@Interceptor @Interceptor

@PlatformComp @PlatformComp

@PlatformComp

PushAudio
interceptor

@Generated
@Interceptor

From AudioDriver container
To TimecodeDataBase container 

To GUI container 

To AudioPlayerDeck1 container 

@PlatformComp

AudioFlow
converter
interceptor

Fig. 6. The Generated Container of the Analyser1 Applicative Component.

Within this container, audio flows coming from the AudioDriver component
are converted according to the flow parameters expected by Analyser1 (spec-
ified by the signature of its incoming audio interface) and are buffered by the
PushAudio interceptor. The multicast client interface named outputTimecode

(see Fig. 5 lines 9-11) and bound to GUI and AudioPlayerDeck1 components
is handled by the Multicast interceptor. The semantics of the Asynchronous,
MonoActive and Buffered annotations attached to the incoming binding and
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interface of the Analyser1 component (see Fig. 5 lines 3-7 and 19-20) is imple-
mented by the set of platform components encapsulated within the container.

5.2 RTOS Design & Composition

As it has been presented, Hulotte containers implement non-functional con-
cerns required by the applicative components. These concerns may require op-
erating system services, such as task scheduling, time or Inter-Process Com-
munications management. In this sense, containers act also as an intermediate
abstraction layer between the operating system and the application layers.

As it is presented in details in [14], our component-based RTOS consists of a
set of primitive components encapsulated within a composite. The latter exports
the public services invokable from container and applicative components. Within
the Hulotte process depicted in Figure 3, the second composition step consists
in a two-direction composition between these layers, via client-server bindings:

– From container (or applicative) components to the RTOS. In this case, client
interfaces annotated by @OSItf annotation are bound to the corresponding
interface of the RTOS.

– From the RTOS to the container components when the latter encapsulates
applicative components annotated by @CpuItHandler. In this case, applica-
tive components export handlers to serve hardware’s interrupts.

This composition step is automatically handled by Hulotte and is based on
the signatures exported by the interfaces. The content of the RTOS is therefore
automatically built according to the services strictly required by the applicative
and container components.

6 Evaluation

In this section, we provide a detailed evaluation of our approach, from a quali-
tative and a quantitative point of view.

6.1 Qualitative evaluation

Application’s Design Space. Hulotte provides a component-based design
space which enforces a strong separation of concerns. Indeed, the developer is
exclusively focused on the implementation of its applicative architecture, after-
wards annotated with domain-specific/non-functional concerns. In consequence,
this separation occurs also at code level, the latter becoming more readable and
maintainable – reflecting the functional needs of the application without any
constraints imposed by the low-level real-time audio properties, as it has been
experimented with DeckX. Moreover, the decoupling between the architecture
and the annotations improves reuse since components can be independently de-
ployed in various execution contexts without any applicative code refactoring.
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However, since we propose a generic mechanism where each architectural
artifact can be annotated by arbitrary annotations, their use imposes several
constraints for the application developer. Indeed, annotations may be applied
incorrectly to an artifact, a set of annotations can be self-contradictory and can-
not be composed together, or annotations can depend on each other. To tackle
with issue, we chose a defensive approach based on constraints (using the OCL
constraint language [19]) which must be explicitly specified by the platform de-
veloper, and which are checked automatically from an annotated application.
These checks operate just before the container generation step and ensure the
consistency of the application’s specifications. These points are reported in de-
tails in [18].

Platform’s Design Space. The Hulotte platform consists of a set of con-
tainers implementing real-time-audio annotations. The containers composition
process relies on the incoming and outgoing interaction points externalized by
the applicative components, through explicitly defined and stable interfaces, and
therefore independently of their implementations. Moreover, a strong separation
of concerns is applied between applicative and platform components which are
linked together by composition without any dependency on the internal ele-
ments of the applicative code. These characteristics of our approach allow us to
improve sorely the extensibility of the platform, towards the support of new non-
functional concerns. For instance, our component-based platform model has been
validated in studies spanning various domains, from distributed reflective and
reconfigurable applications [13], to Real-Time Java Specifications (RTSJ) [21].

Taking Benefits of a Full Component-Based Approach. We can witness
several benefits in using a homogeneous component model for constructing RTE
software stack, made of applicative, platform, and RTOS components. First, we
rely on homogeneous composition techniques based on the component require-
ments exposed at architectural level to obtain the final stack. As it has been
presented in Section 5.2, this feature allows us to built automatically an oper-
ating system fitting exactly the services required by the whole system. Second,
since the Hulotte process outputs a flattened architecture of the complete
software stack, we can apply uniformly tools based on the abstractions of our
component model.

Two features provided by Hulotte are presented and evaluated thereafter:
the capability to support introspection and reconfiguration of the system at
runtime and the support of optimization techniques of the final executable. The
latter is a mandatory requirement raised from the embedded domain, since re-
lying on high-level abstractions at design time must not impact drastically on
performance at runtime.

6.2 Quantitative Evaluation

As illustrated in Figure 3, the Hulotte framework consists of a frontend im-
plementing the composition steps described in Section 5 and a backend. In this
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paper, the backend relies on the Think component framework [5]. From the
flattened architecture outputed from the frontend, the backend generates a set
of C source files compiled afterwards by a classical C compiler. In the following
section, we measure how our approach impacts the resulting executable in terms
of memory footprint and execution time, based on the DeckX case study.

The comparisons are established between a reference implementation against
a component-based design, the latter being based on Hulotte. The reference
implementation corresponds to a version of DeckX where applicative function-
alities and these implemented by the Hulotte containers are implemented man-
ually in a full code-centric approach, and linked to a monolithic implementation
of the operating system. In both cases, the same set of functionalities are em-
bedded in the final binary.

For the component-based design, we consider three scenarios: i) Flexible,
where all components outputed from the Hulotte process are generated as in-
trospectable and reconfigurable entities at runtime. This feature is supported by
Think, which generates meta-data and provides these capabilities at runtime.
ii) Not flexible, which generates a static binary of the whole architecture, not
introspectable and reconfigurable anymore. This scenario relies on Think opti-
mizations described in [12, 14] to control performance overheads induced by the
backend framework. Finally, iii) the Flattened scenario, consisting of a binary
generated as static and without hierarchical encapsulation. These scenarios are
taken automatically into account within the last stage of the Hulotte frontend
process depicted on Figure 3, according to the developer preferences.

Memory Footprint. Figure 7 presents the memory footprints of the refer-
ence implementation and the component-based designed for the three afore-
mentioned scenarios4. We measure the overhead in code (i.e., .text section)
and data, including initialized (i.e., .data section) and uninitialized (i.e., .bss
section) data. We make this distinction as code is usually placed in ROM,

Reference Component-Based Design
(a) (b) (c) (d)

Flexible Not flexible Flattened

Code 26994 +20.0 % +5.9 % 2.1 %
Data 17320 +12.0 % +0 % +0 %

Fig. 7. Memory Footprint Sizes of DeckX (in Bytes)
and Overheads.

whereas data are generally placed
in RAM. The overheads are not
negligible for the Flexible scenario
(Fig. 7(b)), reflecting the cost to
provide a full reconfiguration sup-
port at runtime. However, since this
feature may not be required for the
whole embedded stack, Hulotte

relies on the mechanisms provided by Think to specify whether a single compo-
nent or a subset of the architecture should be generated as reconfigurable [14].
When considering a complete static system (Fig. 7(c)), just a code overhead is
observed, becoming negligible in the last scenario (Fig. 7(d)). The latter overhead
comes for the resource instances reified as components within our approach.

4 These experiments have been conducted using GCC with the -Os option that opti-
mizes the binary image size.
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Total Abstraction Layers
(a) (b) (c) (d)

RTOS Platform Application
Code 27558 41.1 % 19.5 % 28.6 %
Data 17320 86.2 % 9.8 % 2.7 %

Comps 11 27 14

Fig. 8. Memory Footprint Sizes (in Bytes) and
number of components of DeckX for each Ab-
straction Layer.

The Figure 8 presents the memory
footprints for the Flattened scenario
compared between the RTOS, the plat-
form and the application layers5. These
results show in particular the important
part of DeckX related to audio and real-
time concerns, which are automatically
handled by our approach (Fig. 8(c)) in
an oblivious manner for the application developer.

Execution Time. Finally, Figure 9 presents the execution time overheads

Ref. Component-Based Design
(a) (b) (c) (d)

Flexible Not flexible Flattened

Mean (µs) 176.0 +2.9 % +1.7 % +0.3 %
Std. dev. 7.2 7.2 7.3 7.2

Fig. 9. Execution Time Overheads (and Standard
Deviation).

involved by our approach based
on the longest execution path of
DeckX, traversing more than forty
components from the application
level as well as the container and
RTOS levels. The testing envi-
ronment consists of a Pentium 4
monoprocessor at 2.0 GHz, running
100,000 times the execution path6. These results show that the involved over-
heads are completly negligible for the Flattened scenario (Fig. 9(d)) and ac-
ceptable in the other cases (Fig. 9(b) & (c)).

7 Related Work

Specializing Component Models with Annotations. In programming languages,
the use of annotations is widely applied to specialize their basic constructs. How-
ever, to the best of our knowledge, only the Think ADL [11], which we drew
our inspiration from, and UML2 [20] exploit this feature to specialize architec-
tural constructs. However, with Think, their uses are limited to optimization
properties, configuring the last stages of the Think’s code generation process,
and not to refine the applicative architecture with other non-functional concerns.
In turn, UML2 defines the composite structure diagram for specifying software
architectures, and introduces the notion of profiles [8]. The latter is the built-
in lightweight mechanism that serves to customize UML artifacts for a specific
domain or purpose via stereotypes. Thus, the latter could be used to extend the
semantics of the composite structure diagram artifacts. Our approach shares
with UML the notion of annotation, close to the one of a stereotype.

5 The total does not equal to 100% due to some code and data generated in the binary
by the linking process of the C compiler.

6 The scenario was “simulated” under a Linux 2.6 kernel (using a Linux port of µC)
patched by Rt-Preempt. The latter converts the kernel into a fully preemptible one
with high resolution clock support, allowing precise performance measures.
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Extensible Container-Based Approaches. Even if component containers – orig-
inating for the EJB – are a key part of component frameworks, they generally
support a predefined set of non-functional concerns. On the contrary, the PIN
component model [17] is based on generative techniques to generate custom con-
tainers encompassing component interactions and implementing non-functional
concerns. A strong separation of concerns is preserved between the latter and the
code implemented by applicative components. Despite these similarities with our
contribution, PIN relies on a code-centric approach (based on AspectC++) for
generating containers, whereas Hulotte capitalizes on the component paradigm
at this level. In this respect, Asbaco [16] and AoKell [23] are similar to our
approach, both targeting the Java language for IT systems. However, they rely
on costly mechanisms such as load-time mixin technique based on bytecode gen-
eration not suitable for embedded systems, and do not consider applications
constrained by time and requiring low-level services from the operating system.

Handling Flexibility in Embedded Software Stacks Based on CBSE. Considering
the approaches targeting real-time embedded systems, CBSE has been adopted
either at operating system level [7, 10, 15, 22] or to propose Architecture Descrip-
tion Languages capturing the domain’s relevant abstractions [1, 6, 9, 24]. In the
first case, CBSE is exploited to provide a set of components used as building
blocks to configure an operating system. However, within these approaches, the
applicative components directly use the services provided by the OS, without
any intermediate and flexible layer implementing non-functional concerns in an
oblivious manner for the application developer. On the contrary, software stacks
provided by the mentioned ADLs propose domain-specific abstractions imple-
mented by a dedicated runtime, but do not provide an engineering of this layer
to support new features not initially supported by their languages.

8 Conclusion

As embedded systems must be constantly adapted to support new features with
a growing complexity, it is becoming necessary to use current software engi-
neering principles and methodologies to increase software productivity. CBSE is
widely-known to foster separations of concerns, reuse, and flexibility to shorten
development time.

This paper presents a three-tier approach for composition of flexible real-
time embedded software stacks. It relies on a design process where flexibility
is achieved by two features: i) an annotation-based mechanism for specializing
the application’s architectural artefacts with non-functional concerns, and ii)
a container model for the generation and composition of the runtime platform
implementing them. The extensible nature of the containers makes them suit-
able for implementing complex features supported by the platform, relieving the
application developer from dealing with redundant and error-prone tasks. Con-
tainers offer a straightforward design space for adapting the platform towards
various application requirements. Moreover, our software stack model relies on a
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component-based RTOS which provides, by composition, the low-level services
strictly required by the upper layers. In this paper, we apply our approach for de-
signing and implementing real-time audio applications. We demonstrate through
a real-life case study that the impact on performances of our design process is
negligible.

As a future work, we plan to provide a richer library of annotations encom-
passing various communication models and execution models (e.g., Constant
Bandwidth or Contract-Based Scheduling Servers) commonly used in RTE sys-
tems. Moreover, we envision to extend the generic component model on which
the software stack relies with a behavioral model based on automata. The com-
position of these automata gives the global behavior of the whole stack outputed
by our process, including low-level OS primitives, analyzable by model-checking
tools (such as deadlock-free analysis).
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