
HAL Id: inria-00471714
https://hal.inria.fr/inria-00471714

Submitted on 8 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Broose: A Practical Distributed Hashtable Based on the
De-Bruijn Topology

Anh-Tuan Gai, Laurent Viennot

To cite this version:
Anh-Tuan Gai, Laurent Viennot. Broose: A Practical Distributed Hashtable Based on the De-Bruijn
Topology. Proceedings of the 4th International Conference on Peer-to-Peer Computing (P2P), 2004,
Zurich, Switzerland. pp.167-174. �inria-00471714�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50096883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00471714
https://hal.archives-ouvertes.fr

S
N

 0
24

9-
63

99

 IS

R
N

 IN
R

IA
/R

R
--

52
38

--
F

R
+

E
N

G

appor t
de r echerche

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Broose: A Practical Distributed Hashtable
Based on the De-Bruijn Topology

Anh-Tuan Gai — Laurent Viennot

N° 5238

Mars 2004

Unité de recherche INRIA Rocquencourt

Broose: A Pratial Distributed Hashtable

Based on the De-Bruijn Topology

Anh-Tuan Gai∗† , Laurent Viennot∗†

Thème COM � Systèmes ommuniants
Projet Gyroweb

Rapport de reherhe n° 5238 � Mars 2004 � 16 pages

Abstrat: Broose is a peer-to-peer protool based on the De-Bruijn topology allowing a
distributed hashtable to be maintained in a loose manner. Eah assoiation is stored on k
nodes to allow higher reliability with regard to node failures. Redundany is also used when
storing ontats avoiding omplex topology maintenane for node departures and arrivals. It
uses a onstant size routing table of O(k) ontats for allowing lookups in O(log N) message
exhange (where N is the number of nodes partiipating). It an also be parametrized for
obtaining O(log N / log log N) steps lookups with a routing table of size O(k log N). These
bounds hold with high probability. Moreover, the protool allows load balaning of hotspots
of requests for a given key as well as hotspots of key ollisions. The goal is to obtain a
protool as pratial as Kademlia based on the De-Bruijn topology.

Key-words: peer-to-peer, distributed hashtable, De-Bruijn

∗
inria Roquenourt, Domaine de Volueau, 78153 Le Chesnay, Frane, {Anh-Tuan.Gai,

Laurent.Viennot}�inria.fr
† Travail �nané par le projet PairAPair de l'ACI Masse de données

Broose : une table de hahage distribuée e�ae basée

sur le graphe de De-Bruijn

Résumé : Broose est un protoole pair-à-pair basé sur la topologie De-Bruijn qui permet de
maintenir une table de hahage distribuée de manière souple. Il permet à haque assoiation
d'être stokée sur k n÷uds, pour une plus grande résistane aux pannes. La redondane
simpli�e la maintenane des tables de routage vis à vis des arrivées et des départs de n÷uds.
Des tables de routage de taille onstante O(k) sont utilisée et permettent d'e�etuer des
reherhes en O(log N) messages (où N désigne le nombre de n÷uds dans le réseau). Il est
possible d'obtenir des reherhes en O(log N / log log N) messages ave des tables de routage
de taille O(k log N). De plus, le protoole permet d'étaler la harge due aux zones à forte
onentration de requêtes ou aux ollisions de lés. Le but est d'obtenir un protoole aussi
e�ae que Kademlia basé sur la topologie De-Bruijn.

Mots-lés : pair-à-pair, table de hahage distribuée, De-Bruijn

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 3

1 Introdution

Broose is a peer-to-peer protool based on the De Bruijn topology allowing a distributed
hashtable to be maintained in a loose manner. More preisely, onversely to previous dis-
tributed hashtables based on the De Bruijn topology [7, 5, 2℄ and similarly to Kadmelia [6℄,
it stores an assoiation on k nodes instead of one, for getting high reliability with regard
to node failures. Similarly to other De Bruijn based hashtables it uses a onstant size O(k)
routing table instead of O(k log N) (where N is the number of nodes) for Kademlia. Lookups
are then performed by ontating O(log N) nodes. Similarly as Kademlia, the protool an
be tuned to obtain O(log N/ log log N) steps lookups with a routing table of size O(k log N)
instead of O(k log2 N) for Kademlia (see Table 1 in Setion 4 for a more detailed om-
parison). A previous version of Broose was desribed in [3℄. This paper desribes a more
optimized version where the bukets are redesigned to obtain tight bounds on the size of
routing tables. The R and L bukets (see Setions 2.2 and 2.4) replae respetively the P
and S bukets desribed in [3℄.

Most protools for distributed hashtables split the key spae among nodes aording to
their identi�ers. This results in a very strit topology whih is hard to make reliable with
regard to node failures. (This is the ase for previous distributed hashtables based on the
De Bruijn topology [7, 5, 2, 1℄.) The major breakthrough of Kademlia [6℄ is to selet the
nodes storing an assoiation for a given key in a loose manner: on the k losest nodes to the
key for some metri at the moment when the assoiation is inserted. Contats populating
the routing table are also seleted in a similar loose manner. The parameter k is tuned
aording to a probability pn of node failure within the next hour. Some experiments [6℄
show that approximately 70 perents of nodes with uptime at least one hour stay onneted
one more hour. This suggest pn < 0.3 if nodes partiipate in storing assoiations only after
the �rst hour of uptime. The authors of Kademlia suggest k = 20. The probability that all
the nodes storing an assoiation quit the network is then less than 10−10. An assoiation
is then republished every hour. (As a node stores all the ontats whih are lose to its
identi�er, republiation is made loally.)

Kademlia uses a topology similar to the hyperube resulting in a routing table of O(log N)
bukets for lookups in O(log N) steps. (A buket stores k ontats whih an equivalently
partiipate in a given lookup.) However the same lookup e�ieny an be ahieved using a
onstant size routing table with the De Bruijn topology. The De-Bruijn graph over N = 2n

nodes is de�ned as follows. Every node u with identi�er u[1, n] has two suessors s = u[2, n]0
and s′ = u[2, n]1 obtained by shifting u to the left (u ≪ 1) and adding a bit on the right
(one of these suessors may be u itself), and thus two predeessors p = 0u[1, n − 1] and
p = 1u[1, n − 1]. This simply de�ned graph has the property of having onstant in-degree
and out-degree 2 and logarithmi diameter n. One an easily �nd a route from u to any
node v = v1 · · · vn: u → u[2, n]v1 → u[3, n]v1v2 → · · · → u[n, n]v1 · · · vn−1 → v. Note that
another route an be similarly found by following edges bakward. This topology an be
adapted for a varying number N of nodes for getting a very e�ient distributed hashtable
[7, 5, 2, 1℄. Lookups an be made by shifting bits to the right from predeessor to predeessor
as in [7℄ or to the left from suessor to suessor as in [2℄. However, these solutions split the

RR n° 5238

4 Gai & Viennot

key spae very stritly among nodes, induing omplex topology maintenane when nodes
join and quit the network.

Broose generalizes both approahes (shifting left or right) and o�ers a very simple routing
table onsisting of three bukets. As in Kademlia, no topology maintenane is needed with
regard to node arrival and departure thanks to redundany in ontats. Reenforement of
bukets through requests is also ahieved by using both types of lookups.

The rest of the paper is organized as follows. Setion 2 presents the Broose protool in
detail. Some simulations are presented in Setion 3. Finally, the protool is analyzed and
its orretness is proved in Setion 4.

2 Broose Protool

2.1 The xor metri and identi�ers

All node identi�ers and hash table keys are n bits positive integers. Eah node hooses
its identi�er randomly. n should be su�iently large for making ollisions very unlikely
(n = 128 or n = 160 for example). A key, value assoiation will be stored on the k losest
nodes, i.e. on the k nodes with losest identi�er to the key for the xor metri.

As in Kademlia, we use the xor metri beause it measures whether identi�ers have long
ommon pre�x: two identi�ers are at xor distane less than 2n−l if and only if they share
at least the same l �rst bits. (Identi�ers are read as positive integers as well as the distane
u ⊕ v between two identi�ers u and v.) The xor distane veri�es the triangular inequality
sine u⊕w = (u⊕ v)⊕ (v ⊕w) for any u, v, w and x⊕ y ≤ x+ y for any x, y. An interesting
property of the xor metri is that there are exatly x identi�ers at xor distane less than x
from any given identi�er.

For alleviating notations, we will equally denote by u a node u and its identi�er u =
u[1, n]. u[1] is the high order bit of u. u[i, j] = u[i] · · ·u[j] will denote the j − i + 1 bits
portion of u beginning at position i. If x and y are two bit sequenes, xy will denote the
sequene obtained by onatenating them. If x = x[1, i] is a bit sequene, x = x[1] · · ·x[i]
will denote the sequene where eah bit is negated (x ⊕ x = 1 · · · 1). x ≪ d = x[d + 1]0 · · ·0
will denote the identi�er obtained by shifting x by d bits to the left and padding with zeros.

2.2 Right shifting lookup

Eah node maintains two bukets R0, R1 storing ontats with identi�er lose to the right
shifted identi�er of the node. More preisely, for a node with identi�er u:

� R0 stores the k′ losest nodes to 0u[1, n− 1],

� R1 stores the k′ losest nodes to 1u[1, n− 1].

k′ is a protool parameter lying between k/2 and k. See Setion 4 for more details. The
reader may �rst assume k′ = k.

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 5

To make a lookup for a key w, a node u �rst estimates the distane d in number of
hops to a node storing w. The idea is to ontat any node vd−1 in Rwd

, and then any node
vd−2 in the Rwd−1

buket of vd−1, and so on until �nding some node v0. If d was hosen
su�iently large, v0 should have an identi�er su�iently lose to w to store information
assoiated to w. The intuition behind this proess is that eah vi will have an identi�er
lose to w[i + 1, d]u[1, n − d + i]. The bits of w are inserted on the left and shifted to the
right until a node sharing a long ommon pre�x with w is reahed. (A more detailed proof
of orretness is given in Setion 4.1.)

As shown in Setion 4.1, d an be estimated from R0 or R1: if l is the length of the
longest ommon pre�x of the identi�ers ontained in R0, then d = l + 1 is almost surely
su�ient. (Notie that l is an estimation of log2

N
k′
.)

More preisely, the right shifting lookup proedure for key w by node u onsists in the
following proess. u initializes a lookup buket K with {u} and estimated distane dK = d
hops. u then repeats the following steps until dK reahes zero:

� u ontats one to α nodes in K for a right lookup on w at dK hops, eah ontated
node should reply with its RwdK

buket;

� if u reeives a reply for dK hops, K is replaed by the buket ontained in the message
and dK is deremented by one;

� if u reeives a reply for dK + 1 hops, the ontats ontained in the message are added
to K;

� if u reeives a reply for more than dK + 1 hops, it ignores the message.

α is a protool parameter allowing speedup of lookups with regard to node failure. If no
answer is reeived, u may ontat α more nodes in K (eah node in K should be ontated
only one). Notie that the parameter k′ is hosen suh that it is unlikely that no node in
K answers. (K always ontains at least k′ ontats exept for the �rst iteration where u
ontats itself.)

To �nd one of the k′ losest node to the key w, the right shifting lookup should be
su�ient. This is often su�ient for �nding an existing assoiation with key w. However,
if no assoiation has been stored or for storing an assoiation, all the k losest nodes to w
must be found.

2.3 Brother lookup

Eah node maintains a brother buket B storing ontats with identi�ers lose to the identi�er
of the node (alled brothers):

� B stores the δ losest nodes to u.

The size δ of B is hosen so that one of the k losest nodes to some key w will almost
surely know all the k losest nodes to w. We will see in Setion 4.1 that δ = 7k is su�ient.

RR n° 5238

6 Gai & Viennot

To make a brother lookup for key w a node u must know a set of nodes K with identi�ers
lose to w. The k losest nodes to w are queried. Eah node should answer with the k losest
nodes to w in its B buket. If some node do not answer, u queries further nodes until k
nodes answer.

To make a omplete lookup, a node �rst makes a right shifting lookup and terminates
with a brother lookup. Any query for a lookup at 0 hops should be onsidered as a brother
lookup. Alternatively, it an begin with a left shifting lookup.

2.4 Left shifting lookup

To allow reenforement of bukets through requests, a left shifting lookup is provided. It is
preisely the reverse of a right shifting lookup.

Eah node maintains a left buket L storing ontats with identi�er lose to the left
shifted identi�er of the node. More preisely, for a node with identi�er u:

� L stores any node v suh that u is among the k′ losest nodes to u[1]v[1, n− 1].

Notie that u an test whether it is among the k′ losest nodes to some identi�er by
omputing the k′ losest nodes to the identi�er in B∪{u}. If the buket is lexiographially
sorted, the k′ losest nodes to v an be found by sanning the buket symmetrially around
the insertion position of v.

The left shifting lookup proedure is very similar to the right shifting lookup proedure
exept that eah ontated node for a left lookup on w at dK hops replies with the k′ nodes
v with v ≪ dK losest to w. As we will see in Setion 3 and 4.1 a node should preferentially
query the k′′ < k′ losest nodes to w ≪ dK . k′′ is a protool parameter (typially, k′′ ≈ k/2).
If these k′′ nodes fail to answer, the node may query the α losest nodes to w ≪ d (resp.
v ≪ −d) among the remaining k′ − k′′ ontats at the risk of lookup failure with higher
probability.

A node v is in the L buket of u when u should be in one of the R bukets of v. This
symmetry implies that right shifting lookups allow L bukets to be refreshed while left
shifting lookups allow R bukets to be refreshed. Both lookups proedures should be used
equally.

2.5 Uni�ed lookup queries

All types of lookups desribed above an be uni�ed with the same query format. Eah node
de�nes its right buket R as R = R0 ∪ R1. Eah node has thus mainly three bukets: R, L
and B. Eah lookup query message should ontain a key w and an estimated hop distane
d whih is positive, negative or zero. Suh a query is alled a lookup query for w at d hops.
A node reeiving a lookup query message should reply with:

� the k′ losest ontats to w in B if d = 0,

� the k′ losest ontats to w ≪ d in R if d > 0,

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 7

� the k′ nodes v in L with v ≪ −d losest to w if d < 0.

A right shifting lookup onsists in a sequene of lookup queries with dereasing hop
distane and terminates with a lookup query at 0 hops. A left shifting lookup onsists in a
sequene of lookup queries with inreasing hop distane and terminates with a lookup query
at 0 hops.

2.6 Aelerated lookups : shifting more than one bit at a time

To minimize tra� and allow faster lookups, the protool shifts more than one bit at a time.
b, a parameter of the protool, denotes the number of bits shifted. The R buket of node u
thus ontains 2bk′ nodes: the k′ losest nodes to eah identi�er up omposed of any pre�x
p of b bits followed by u[1, n − b] . The size of buket B does not depend on b. We de�ne
u ≪b i = u ≪ bi to simplify notations. A node v is in the L buket of u when u is among
the k′ losest nodes to v ≪b 1. The average size of L will thus be 2bk′. We will see that it
is very unlikely that L ontains more than O(2bk′) ontats. More preisely for k′ = 20 and
b = 4 or b = 5 it is very unlikely that a node will have more than 4.3 ∗ 2bk′ ontats in its
L buket. (See Setion 4.2 for more details.)

With b = log log N the routing table size thus beomes O(k log N) and lookups are
performed in less than 1

b
log2

N
k′

+ 1 = O(log N/ log log N) steps as detailed in Setion 4.1.

2.7 Physial proximity

Notie that any α nodes among k′ (resp. k/2) for right (resp. left) shifting lookups are
queried at eah lookup step. Some heuristi for hoosing physially lose ontats should be
used (for example by seleting ontats with longest ommon pre�x of IP address). More
sophistiated strategies as in [8℄ ould eventually be used. The simplest heuristi ould be
to give the minimum response time for eah neighbor. Assuming that the physially losest
neighbor from a lose node are lose too.

2.8 Balaning hotspots

As Kademlia, Broose uses ahing for solving hotspots of requests for a given key. When
a node performs a lookup for key w and gets an answer when querying node vi at i hops,
it should store the key, value assoiation on the node vi−1 that answered for i − 1 hops.
(If a brother lookup was neessary, it stores the assoiation on the node v0 queried for the
brother lookup.) The assoiation is ahed during a duration dereasing exponentially with
i.

An advantage of the De Bruijn topology is that it also o�ers a solution for balaning
hotspots of key ollisions. It may happen that many assoiations have the same key w.
Assoiations are supposed to be sorted aording to some total order of the assoiated
values. The k losest nodes to w will store the A �rst assoiations. A is a protool parameter
(for example A = 1000). The 2A next assoiations are stored on the k′ losest nodes to

RR n° 5238

8 Gai & Viennot

w[n− b + 1, n]w[1, n− b] and the k′ losest nodes to w[n − b + 1, n]w[1, n− b] depending on
the �rst bit of the assoiated value. Notie that all these nodes are in the R buket of the k
losest nodes to w. (These assoiations will be repliated k times at the �rst republiation.)
The 4k next assoiations are similarly stored on 4k′ ontats found in the R bukets of these
2k′ nodes aording to the two �rst bits of the assoiated value and so on in a binary tree
fashion. Notie that storing an assoiation onsists in desending this tree aording to the
�rst bits of the value. On the other hand, retrieving the (2i − 1)A �rst assoiations requires
to query all the tree up to depth i. However, this only onsists in pushing further ahead
a right shifting lookup. Porting this strategy on another topology than De Bruijn would
result in (2i − 1) lookups, a ost whih is prohibitive. If an importane of assoiations an
be estimated, a good hoie for ordering assoiations would be to plae more important
assoiations �rst.

Both strategies may ohabit. When the retrieval begins with a right shifting lookup,
the binary tree is explored in the following way. If the A �rst assoiations are found in the
ahe of a node with an identi�er sharing a long ommon pre�x with w[bi + 1, n], the 2A
next assoiations are searhed on nodes with pre�x lose to w[n − b + 1, n]w[bi + 1, n − b]
and w[n − b + 1, n] w[bi + 1, n− b], and so on. If an assoiation blok is not found, the tree
is searhed with root pre�x lose to w[b(i − 1) + 1, n− b] and a opy is stored on one of the
k′ orresponding nodes of the tree rooted at w[bi + 1, n]. If a blok is still not found, the
tree rooted at w[b(i − 2) + 1, n − 2b] is searhed, and so on until searhing the original tree
rooted at w. In any ase, a opy is ahed in the previous tree. When no assoiation exists
for some blok (due to limited number of assoiations), an empty blok is ahed. Notie
that the neessary ontats are always found in the R bukets of queried nodes.

A similar strategy an be used for exploring the binary tree when the retrieval �rst
began with a left shifting lookup. If the A �rst assoiations are found in the ahe of a
node with identi�er lose to u[1, bi] w[1, n − bi], the 2A next assoiations are searhed on
w[n− b+1, n]u[1, bi]w[1, n− b(i+1)] and w[n − b + 1, n] u[1, bi]w[1, n− b(i+1)], and so on.
A similar tree searhing is then performed as for right shifting lookups using R bukets. L
bukets allow the seletion of a tree loser to the original tree rooted at w.

2.9 Node insertion and buket reation

A new node u must know an entry point: node v. R is onstruted by performing 2b omplete
lookups starting with a lookup buket K = {v}, one for eah identi�er up omposed of any
pre�x p of b bits followed by u[1, n− b] . B an then be onstruted with L bukets of nodes
in R and L an be onstruted with L bukets of nodes in B.

Alternatively, B an be initialized with the k losest nodes to the own identi�er of u.
Let u[1, l] be the longest ommon pre�x of these k nodes. B is then further ompleted with
the k losest nodes to u[1, l − 1]u[l]u[l + 1, n]. Retrieving the B bukets of these 2k nodes
should be su�ient.

As soon as a node has its B and R bukets initialized, it an partiipate to the network
and let L be onstruted online. However, L ould be onstruted from srath by exploring

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 9

the pre�x trie of identi�ers rooted at u[b + 1, l]. The details of suh onstrution annot be
inluded here due to spae limitation.

2.10 Refresh poliy

Broose poliy for refreshing bukets is similar to Kademlia poliy for the k losest nodes.
Intuitively, Broose only stores lose ontats (allowing routing table size to be redued)
allowing few hoie for ontats. On the other hand, Kademlia has a di�erent poliy (keeping
ontats with long uptime) for long range ontats.

As soon as a new alive ontat is disovered in one of the buket range during any message
exhange, it should be inserted in the orresponding buket. This ontinuous proess allows
new ontats to be disovered. However, node departure is harder to detet. A possibility
is to ping ontats when they have not been refreshed during a ertain period of time. To
redue the ping tra�, eah lookup query for a node vi at hop distane i ould ontain the
identi�er of the node vi+1 that has responded at the previous step for hop distane i + 1.

Alternatively, a node may periodially repeat the proedure for onstruting its bukets
from srath.

Similarly to Kademlia, an assoiation is republished every hour. This is done e�iently
thanks to a brother lookup. To avoid redundant republiations a node republishes an asso-
iation if no other node has republished the assoiation during the previous hour and it is
still among the k losest nodes to the key. To allow assoiation expiration, an assoiation is
republished at most 24 times, and the soure of an assoiation must republish it every day.

3 Simulation

The size of bukets R and L depends on b and k′. A large b (b = 4 or b = 5) is neessary
for speeding up lookups. A small k′ (k′ < k) allows the size of bukets to be minimized. A
large value for k′ makes the system more robust. We propose some simulations for �nding
the best ompromise for k′. (We will use b = 4.) A ritial situation ours when a large
fration of nodes hanges during the refresh time period. We make simulations where nodes
leave the network at the same rate as new nodes enter it. We start with a one million nodes
network (N = 106) in a stable situation (i.e. bukets are aurate). Then rN nodes are
deleted and rN inserted. r denotes the node renewal fration . The arrival and departure
proess are ontinuous.

We distinguish three di�erent types of nodes: dead, old and new. The rN �rst arrived
nodes are dead, and the rN last arrived nodes are new.

� Old nodes are not aware of dead nodes departure. An old node u have a new node v
in its bukets with probability pv = rN−a

rN
. a denotes the arrival position of v. (An

old node has more hanes to learn about new nodes with longer uptime.)

RR n° 5238

10 Gai & Viennot

� A new node u onsiders a dead node v still alive if v leaves the system after the arrival
of u. u knows new nodes inserted before itself in addition to old nodes. u also knows
a new node v inserted after itself with probability pv.

� A lookup fails if the k′ nodes returned during a lookup step are dead nodes, or if
none of the k′ �nal nodes are among the k losest to the key. (No brother lookup is
performed at the end.)

This model grabs the e�ets of inonsisteny between nodes: eah node has its own view of
the network.

Figure 1: Perentage of lookup failures as a funtion of the node renewal fration r for
k′ = 6, 10, 12, 15 when the furthest alive ontat at hop distane i from the shifted key
w ≪b i is seleted at eah lookup step.

Figure 1 shows the perent of right shifting lookup failures as a funtion of r for di�erent
values of k′. (1000 simulations of lookups are performed for eah ratio and for eah urve.)
Notie that a logsale is used for perentages. These simulations are further pessimisti sine
the worst alive ontat with respet to the bits of the key is seleted at eah step among the
k′ known ontats. For left shifting lookups, the worst ontat among the k′′ best ontats is
seleted (if these k′′ ontats are dead, the best one among known alive ontats is seleted).
The parameters have been tuned for a ratio r < 0.3 (yielding a probability pn = 0.3 of node
failure). However, a larger ratio is needed for being able to observe some failures. Note that
a failure was observed for k′ = 15 only for r = 0.6. As a omparison rk′

beomes greater
than 1/1000 for r = 0.3 when k′ = 6, r = 0.5 when k′ = 10, r = 0.63 when k′ = 15. This
is onsistent with the expeted probability of failure rk′

shown in Setion 4.1. Muh better
results are obtained with a random hoie of ontats and a �nal brother lookup.

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 11

Figure 2: Perentage of lookups failures as a funtion of the node renewal fration r for
k′ = 15 when the k′′th furthest alive ontat (with respet to the key) is seleted for the
next lookup step for k” = 7, 9, 11.

Figure 2 shows the perentage of left shifting lookup failures as a funtion of r for k′ = 15.
The simulation assumes that the worst alive ontat among the k′′ losest known nodes (with
respet to the bits of the key) is hosen at eah step. We observe that left shifting lookups
are less reliable than right shifting lookups when the furthest ontats are hosen. Choosing
the worst alive node among the k′ losest nodes gives poor results. However, satisfying
results are obtained when the k′′ losest ontats are preferred with k′′ < k′. The proof in
Setion 4.1 will give some hints about the reasons for that. For low r, this is the main reason
for lookup failure. For large r, the probability of loosing the k′′ losest ontats beomes
preponderant.

As we are going to see in the following setion, a larger value of b would also enhane
reliability.

4 Protool analysis

4.1 Corretness of lookup proedures

We are going to show that the probability that a lookup fails is in the same order of magni-
tude that the probability that the k nodes storing the information fail. If pn is the probability
that a node fails, the probability that k nodes fail is pk

n. (We will give numerial values for
protool parameters assuming pn = 0.3 and k = 20.)

However, Broose has two independent lookup proedures. We are going to show that a
right shifting lookup fails with probability less than pk′

n and that a left shifting lookup fails
with probability less than pk−k′

n (for appropriate value of k′′). This avoids to double the size
of routing tables and still ensures that the probability of failure of both lookup proedures
is approximately less than pk

n.

RR n° 5238

12 Gai & Viennot

Our proofs are mainly based on the fat that nodes hoose their identi�er randomly and
that the probability of hoosing an identi�er of n bits at xor distane less than x from a
given identi�er is x/2n. (This is due to the fat that there are exatly x positive integers
at xor distane less than x.) These properties allow the following lemma whih is a diret
impliation of Cherno� bounds [4℄.

Lemma 1 Consider a normalized distane x = dN (µ) de�ned by dN (µ) = µ ∗ 2n/N and
an identi�er u (N is the number of nodes). Then the number Nx of nodes at distane less
than x from u is Θ(µ) with high probability. More preisely, there exist some inreasing
funtions f+ and f− suh that P [Nx ≥ m] < exp(−µf+(m/µ − 1)) and P [Nx ≤ m′] <
exp(−µf−(1 − m′/µ)).

Notie that the average number of nodes at distane x is E[Nx] = µ sine the probability
that a random identi�er falls at distane less than x is µ/N . When µ = log N , the above
probabilities thus get smaller than 1/N r where r is a onstant depending on the values of
f+ and f−. (Note that k = 20 for example is greater than log N for N ≤ 108.)

The Cherno� bounds state that there exist f+ and f− suh that P [Nx ≥ (1 + ǫ)µ] <
exp(−f+(ǫ)µ) and P [Nx ≤ (1 − ǫ)µ] < exp(−f−(ǫ)µ). The bounds of the lemma are
obtained for ǫ = m/µ − 1 and ǫ = 1 − m′/µ respetively. The lassial Cherno� bounds
use f+(ǫ) = ǫ2/2 and f−(ǫ) = ǫ2/3. However, we will use the sharper bounds obtained with
f+(ǫ) = (1+ ǫ) log(1+ ǫ)− ǫ and f−(ǫ) = (1− ǫ) log(1− ǫ)+ ǫ. See [4℄ for more details about
Cherno� bounds. Notie �nally that the above probabilities fall down exponentionally as µ
inreases.

As a �rst appliation of Lemma 1, onsider the nodes at distane less than dN (ck) =
ck ∗ 2n/N from some identi�er for some onstant c > 1. The probability pc that there are
less than k suh nodes is bounded by exp(−ckf−(1 − 1/c)). For k = 20, we get pc < 0.320

for c = 3.5. In the sequel, let c denote the onstant suh that pc < pk
n (we will use c = 3.5

for numerial appliations).
Let l = ⌈log2

N
ck
⌉ denote the pre�x length suh that 1

2

N
ck

< 2l ≤ N
ck
. There exists

almost surely at least k nodes whose identi�er shares the l �rst bits of any given key w.
(It is equivalent to share the l �rst bits of w and to be at xor distane less than 2n−l ≥
ck ∗ 2n/N = dN (ck) from w.)

Brother lookup. First onsider the B buket of a node u. We have to prove that knowing
the δ losest nodes to u is su�ient for knowing the k losest nodes to some key w when u
is one of the k losest nodes to w. Almost surely, the k losest nodes to w share the same
pre�x w[1, l]. If there are less than δ nodes with pre�x w[1, l], then B ontains all the nodes
sharing this pre�x inluding u and the k losest nodes to w.

Now suppose that more than δ nodes have pre�x w[1, l]. Then we an show that almost
surely, more than k nodes have pre�x w[1, l + 1]. Consider δ nodes with pre�x w[1, l]. As
their l + 1th bit is random they have pre�x w[1, l + 1] with probability 1/2. Applying the
lower Cherno� bound, the probability that less than k nodes have pre�x w[1, l + 1] is less

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 13

than exp(−µf−(1 − k/µ)) with µ = δ/2. It is typially very low for δ = 2ck. (At least, it is
less than 0.320 for δ = 7k with k = 20.)

Now suppose that more than k nodes have pre�x w[1, l+1]. Again if there are less than δ
nodes with pre�x w[1, l+1], then B ontains all the nodes sharing this pre�x. The probability
that B does not ontain the k losest nodes to w is thus bounded by the probability that
there are more than δ nodes at distane less than 2n−l−1 < dN (ck) = ck ∗ 2n/N from w.
This probability is again bounded thanks to Lemma 1. It is also very low for δ = 2ck. (It
is less than 0.320 for δ = 7k with k = 20.)

In any ase, we have proved that the probability that B does not ontain the k losest
nodes to w is very low. (Take δ = 7k when k = 20 and pn = 0.3.)

Right shifting lookup. Now onsider a right shifting lookup proedure from u for a key
w. With probability greater than 1 − pk′

n , a node vi will answer for eah iteration at an
estimated distane of i hops. Consider this sequene u = vd, . . . , v0 of nodes that answer.

Let us �rst show that vi shares the b(d − i) �rst bits of w ≪b i as long as at least k′

nodes share this pre�x. This is true for vd (empty mathing pre�x). Suppose vi[1, b(d −
i)] = (w ≪b i)[1, b(d − i)] = w[bi + 1, bd]. The R buket of vi ontains the k′ losest
nodes to w[b(i − 1) + 1, bi]vi[1, n − b] and vi−1 is one of them. If there are at least k′

nodes with pre�x w[b(i − 1) + 1, bd] = w[b(i − 1) + 1, bi]vi[1, b(d − i)], then the k′ losest
nodes to w[b(i − 1) + 1, bi]vi[1, n − b] must share this pre�x implying that vi−1 has pre�x
w[b(i − 1) + 1, bd]. The above property is thus true by indution.

Consider the �rst index im suh that less than k′ nodes have pre�x w[bim, bd − 1]. If d
was hosen su�iently large, im ≥ 1. Indeed, the probability that less than k′ nodes have
pre�x w[1, l] (where l = ⌈log2

N
ck
⌉) is less than pk

n. As there are at least k nodes with a given
pre�x of l bits with rather high probability, vim

shares the l �rst bits of w ≪b im. For the
same reason, vi will share the l �rst bits of w ≪b i for im ≥ i ≥ 1. v1 thus shares the l �rst
bits of w ≪b 1 with high probability.

Finally, with probability less than 1−O(pk
n), v0 is among the k losest nodes to w[1, b]v1[1, n−

b] whih shares l + b bits with w. We an then use the following arguments of the proof
onerning brother lookups. If v0 shares at least l + 1 bits with w, then the B buket of
v0 almost surely ontains the k losest nodes to w. As the k losest nodes to w almost
surely share the pre�x w[1, l], the �nal step may thus fail only if there are less than k nodes
with pre�x w[1, l + 1] and more than δ nodes with pre�x w[1, l] whih happens again with
probability less than pk

n. This ahieves the proof of right shifting lookups orretness.
Notie that we an dedue from this proof an estimation of d: b(d− im) ≥ l and im ≥ 1

allow initiation of the proof. d ≥ 1 + l
b
is thus su�ient. Notie also that the length of the

longest pre�x of the k losest nodes to a node u is greater or equal to l with high probability.
u may thus obtain an upper bound of l from its B buket. A better bound an even be
obtained from the R buket: as k′ ≤ k, the k′ losest nodes to some identi�er share the
same l �rst bits with high probability. For eah pre�x of b bits, an estimation of an upper
bound of l an be obtained. d an be omputed from the smallest estimation.

RR n° 5238

14 Gai & Viennot

Left shifting lookup. Now onsider a left shifting lookup proedure from u for a key w.
Consider this sequene u = vd, . . . , v0 of nodes that answer. (vi answers for an estimated
distane of i hops.) We are going to show that vi is always among the k′′ losest nodes to
wi = u[b(d− i)+ 1, bd]w[1, n− (b(d− i))] (the bi last bits of u[1, bd] followed by the �rst bits
of w) with probability 1 −O(pk′

−k′′

n). (This proof supposes that the k′′ losest ontats are
preferred to other ontats at eah step with k′′ ≥ k′ − k′′.) If d is hosen su�iently large,
this is learly true for vd. Suppose this is true for vi. The L buket of vi ontains all nodes
v suh that vi is among the k′ losest nodes to vi[1, b]v[1, n− b]. Consider a node v among
the k′′ losest nodes to wi−1 and let li−1 be the length of the longest ommon pre�x of v
and wi−1. vi[1, b]v[1, n − b] thus shares at least the li−1 + b bits of wi. Consider the length
li of the longest ommon pre�x of vi and wi.

First suppose li ≥ li−1 + b. vi is not among the k′ losest nodes to vi[1, b]v[1, n− b] only
if there are more than k′ nodes with pre�x wi[1, li].

Now suppose li−1 + b ≥ li + 1. There are at most k′′ nodes whose li−1 + b bits pre�x
mathes all the bits of wi[1, li−1 + b] mathed by vi plus at least one more other bit not
mathed by vi (otherwise vi would not be among the k′′ losest nodes to wi). If there are
less than k′ nodes with pre�x wi[1, li] = vi[1, li], vi must be among the k′ losest nodes to
vi[1, b]v[1, n− b]. Otherwise k′−k′′ among these losest nodes must math exatly the same
bits of wi[1, li−1 + b] as vi and thus have pre�x vi[1, li−1 + b].

In any ase, the lookup step may fail only if there are more than k′ − k′′ nodes with
a pre�x of length li−1 + b. The lookup step may thus fail only if there are less than k′′

nodes with pre�x wi−1[1, li−1] and more than k′−k′′ nodes with pre�x w[1, li−1 +b]. This is
equivalent as getting more than k′− k′′ nodes when seleting nodes with probability 1/2b in
a bin of k′ nodes. This probability is bounded by exp(−µf+(1+(k′−k′′)/µ)) with µ = k′/2b.
This is less than 0.36 for b = 3 with k′ = 15 and k′′ = 6, less than 0.37 for b = 4 with k′ = 14
and k′′ = 7, less than 0.37 for b = 5 with k′ = 13 and k′′ = 7. This ahieves the proof of
orretness of left shifting lookup: a lookup step may fail with probability less than pk′′

n .
To allow reasonable hoie of ontats and good reliability of left shifting lookups, we

will onsider k′′ = 9. It then important to evaluate the smallest value of k′ allowing k′′ = 9
in the proof. To get a tighter bound, we have omputed the exat probability to obtain less
than k′′ nodes when they are piked with probability 1 − 1/2b among k′ for various values
of k′. This probability is lower than 0.39 for k′ = 18 when b = 3, k′ = 15 when b = 4 and
k′ = 14 when b = 5. These values will be used for estimating the routing table size.

Again notie that the hop distane from the �rst node u performing the lookup an
be estimated from the B buket : d should be su�iently large so that u is among the
k′′ losest nodes to u[1, d]w[1, n − d]. With still similar arguments, we ould show that
d ≤ ⌈ 1

b
log2

N
k′′

⌉ + 1 with high probability.
Both lookups proedure will ontat ompletely independent nodes exept for the brother

lookup at the last step. Both lookups may thus fail if the k′ losest node to the key w fail.
However, it then su�es to make a lookup for w[1, l]w[l + 1] where w[1, l] is the longest
ommon pre�x of the k′ identi�ers of these nodes to allow a suessful �nal brother lookup.

INRIA

Broose: A Pratial Distributed Hashtable Based on the De-Bruijn Topology 15

Notie that the proofs ensure that a node v0 with identi�er lose to the key w will be
found even when using old ontats without being aware of new node insertion. It is possible
that new nodes have been inserted with identi�er loser to w than a node u still storing the
assoiation for w. However, the proof for brother lookup indiates that when rN nodes are
inserted in a network of N nodes, at most 7kr new nodes are inserted the B buket of v0.
For small r, u will almost surely still be in the B buket of v0

4.2 Routing table size

The L buket will ontain an average of 2bk′ ontats. With similar arguments as before we
an prove that it will ontain more than c2bk′ ontats (for some small c) with probability
less than pk′

n . More preisely, for k′ = 15 and b = 4 (resp. k′ = 14 and b = 5), we get c = 4.3
(resp. c = 4). and less than one perent of the nodes will have more than 2.4∗2bk′ ontats.
The R buket ontains exatly 2bk′ ontats.

Table 1 ompares the average number of ontats for Broose and Kademlia for various
values of b. Kademlia uses a parameter similar to b (identi�ers are onsidered by hunks of
b bits) allowing similar lookup omplexity. For b < 3, Broose should only use the R bukets
sine the L buket beomes reliable for b ≥ 3. For b ≥ 3, the best values of k′ aording to
the proof of orretness of left shifting lookup are used for k′′ = 9.

b 7k 2bk k′ 2bk′ Broose Kademlia
1 140 40 20 40 180 400
2 140 80 20 80 220 600
3 140 160 18 144 428 933
4 140 320 15 240 620 1500
5 140 640 14 448 1036 2480

Table 1: Average number of ontats for Broose and Kademlia for various values of b with
k = 20 and k′′ = 9.

5 Conlusion

With it's novel symmetriized De Bruijn topology and its optimized ontat list, Broose
improves the loose framework for distributed hashtables introdued by Kademlia. We have
shown how Broose an obtain signi�antly smaller routing tables than Kademlia. It has
been proven that lookups sueed with high probability under the model of onstant node
failure probability and buket onsisteny. This proof is on�rmed by simulations for some
degree of buket inonsisteny between nodes.

Broose allows physial proximity to be taken into aount. However, further work is
needed to estimates how muh it an gain from this �exibility with regard to physial prox-
imity. Finally, Broose is the �rst peer-to-peer system introduing a solution for balaning

RR n° 5238

16 Gai & Viennot

key ollision hotspots and is thus a good andidate for peer-to-peer �le sharing with keyword
indexing.

Referenes

[1℄ I. Abraham, B. Awerbuk, Y. Azar, Y. Bartal, D. Malkhi, and E. Pavlov. A generi
sheme for building overlay networks in adversial senarios. In 17th International Parallel
and Distributed Proessing Symposium (IPDPS'2003), april 2003. Nie.

[2℄ P. Fraigniaud and P. Gauron. The ontent-addressable network d2b. Tehnial Report
LRI 1349, Univ. Paris-Sud, 2003.

[3℄ A.T. Gai and L. Viennot. Broose: A loose distributed hashtablebased on the de-brujin
topology. Tehnial Report RR-5147, INRIA, marh 2004.

[4℄ T. Hagerup and C. Rüb. A guided tour of herno� bounds. Inform. Proess. Lett.,
33(6):305�308, Feb. 1990.

[5℄ M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed
hash table. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[6℄ P. Maymounkov and D. Mazieres. Kademlia: A peerto -peer information system based
on the xor metri. In 1st International Workshop on Peer-to-Peer Systems (IPTPS),
2002.

[7℄ M. Naor and U. Wieder. Novel arhitetures for p2p appliations: the ontinuous-disrete
approah. In Proeedings of the �fteenth annual ACM symposium on Parallel algorithms
and arhitetures (SPAA), 2003.

[8℄ Keith W. Ross, Ernst W. Biersak, Pasal Felber, Luis Gares-Erie, and Guillaume
Urvoy-Keller. Topology-entri look-up servie. In Proeedings of COST264 Fifth Inter-
national Workshop on Networked Group Communiations, 2003.

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Broose Protocol
	The xor metric and identifiers
	Right shifting lookup
	Brother lookup
	Left shifting lookup
	Unified lookup queries
	Accelerated lookups : shifting more than one bit at a time
	Physical proximity
	Balancing hotspots
	Node insertion and bucket creation
	Refresh policy

	Simulation
	Protocol analysis
	Correctness of lookup procedures
	Routing table size

	Conclusion

