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Diffusion Curves Our Solution
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Diffusion Curves Our Controlled Diffusion

Figure 1: Diffusion Curves allow us to draw vectorial images with a rich set of color gradients (left). It is based on a diffusion process that
propagates color information from curves in the scene. While the colors could be chosen arbitrarily, the diffusion itself is not controllable
by the user. Our work introduces ways to alter diffusion behavior. This allows us to reduce the number of color definitions for an equivalent
output (middle), to control the diffusion strength of certain colors (right, floor), or even influence diffusion directions (right, cushion).

Abstract

The formulation of Diffusion Curves [Orzan et al. 2008] allows for
the flexible creation of vector graphics images from a set of curves
and colors: a diffusion process fills out the parts of the image that
are away from curves. However, this model has limitations in cer-
tain situations and does not always seem to agree with how an artist
wants to use the software. First, the diffusion itself cannot be con-
trolled, only the colors. Further, the fact that color needs to be de-
fined everywhere along the curve can lead to tedious and nonintu-
itive interactions. In this paper, we present a number of adaptations
to diffusion curves that constrain how color is spread across the im-
age. Specifically, we argue for the utility of controlling the speed
and direction of the color diffusion, and the ability to have barriers
that can be defined without the need to specify a particular color
along these curves. We also describe how this can be implemented
by solving a linear system, and demonstrate the effectiveness of our
solution on a number of examples.

1 Introduction

Today, we rely on many different devices to display information
that range from small hand-held devices to large projector screens.
Consequently, producing scale-independent content, such as vecto-
rial images, becomes important. Further, for artists it is often ben-
eficial to work with vector-based applications because objects can
be described directly via primitives that represent the shape instead
of having to work with pixels. Consequently, manipulations such
as deformations are less prone to artifacts and do not degrade the
object representation as is often the case for raster illustrations.

While vectorial images can adapt to the screen resolution and pro-
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duce an adequate image, some challenges remain. Traditional vec-
tor graphics tend to look less detailed than their pixel-counterparts.
The advent of more advanced color fills helped to close this gap.
Initially distinguishing only between linear or radial color gradi-
ents, new solutions like gradient meshes (Adobe Illustrator©, Corel
CorelDraw®) are capable of representing almost photo-realistic
images by interpolating colors on a quad mesh. Unfortunately, the
introduction of such a grid adds more complexity to the vector il-
lustration, trading off some of its editing advantages against a richer
representation, and making automatic conversion methods the pre-
ferred method of creation [Sun et al. 2007; Lai et al. 2009].

Diffusion curves [Orzan et al. 2008] combine curve primitives with
a diffusion method that smoothly spreads color from the curves
across the image. The fact that the representation relies on a
small number of simple entities makes it particularly well-suited
for artists. The diffusion process allows for highly expressive re-
sults [McCann and Pollard 2008]. This observation was also made
by Johnston [2002] who successfully applied similar techniques in
the context of cel animation.

Diffusion is the key component that enables a rich, yet simple def-
inition of resolution-independent illustrations. Nevertheless, previ-
ous drawing systems did not allow the user to control the diffusion
process, which limited expressivity and could make some opera-
tions cumbersome. In this work, we address this limitation by en-
abling more control over the diffusion process itself. To illustrate
the importance of this control, we will look at some examples.

Johnston [2002] pointed out that not all curves should diffuse val-
ues to both sides. In particular, along occlusion boundaries, diffu-
sion should typically only occur on the occluding part. To handle
these exceptions, a blending mask is manually created that limits
the extent of diffusion. On the other hand, diffusion curves [Orzan
et al. 2008] do not offer this kind of control, and many illustrations
exhibit unwanted halos or modifications of the color gradients, be-
cause the artist is forced to specify diffused colors on both sides of
each curve, even if there is no need for them. An example is illus-
trated in Figure 1 (middle). The curtain needs color constraints even
on the occluding boundary, leading to a large number of additional
color constraints whose presence affected the radial appearance of
the sun’s gradient. Instead, our system allows the definition of diffu-
sion barriers that block diffusion without emitting colors. No color
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constraints need to be defined on the blocked side, which avoids the
inconsistencies, as illustrated in the inset, that can arise from such
unnecessary color constraints that do not perfectly match up with
the geometry. Diffusion barriers can also be used to define shapes
that can simply be filled with colors via diffusion curves, that are
applied similarly to a paint-bucket tool.

Another example is a gradient where colors from different places
intervene with differing strengths. Figure 1 (right) illustrates how
the shadow underneath the bed also strongly influences the sur-
rounding floor. Controlling the color strength directly provides in-
fluence over the impact of a color. Previously, the artist was obliged
to place additional curves to simulate a non-linear diffusion behav-
ior. Not only is this tedious, but any color change also implied that
all these curves would need to be adapted. Influencing the diffusion
via color strength is independent of the associated colors.

We also introduce a control over diffusion orientation which helps
to guide color locally (almost like a smearing tool). It allows com-
plex shapes and color variations that cannot be achieved with the
uniform diffusion available from previous work. In Figure 1 (right)
this technique was used to create a complex pattern on the cushion.

Finally, in some situations, one needs to use a color resulting from
the diffusion process at a different location of the scene; e.g. if
a shape represents a thin occluder and one wants to guarantee a
smooth color transition on the occludee. Figure 2 shows an exam-
ple and Figure 3 shows the entire teaser image after applying our
diffusion extensions.
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Figure 2: The artist decided to add a color gradient to the wall.
Usually it would be blocked by the curtain rod, but by virtually
connecting the two regions, colors are transferred from one side to
the other. Further, the color gradient was conveniently defined in
the interior region of the wall, similar to a paint-bucket fill. This
was enabled by setting some boundaries to diffusion barriers.

Our technique avoids such problems by enabling control over the
diffusion process and related diffusion constraints while maintain-
ing the simplicity of the original Diffusion Curves. The new de-
grees of artistic freedom allow for further expressivity and enable
an intuitive design of complex illustrations and color gradients. Pre-
cisely, our contributions are:

Diffusion barriers that block diffusion (but do not emit color)

Control over diffusion anisotropy and orientation
e Control over diffusion strength (speed)

e A generalized solution method for non-local diffusion

2 Previous Work

Diffusion processes often underlie methods for solving the Pois-
son equation, as its solution minimizes the deviation from a given
gradient field. Its 2D formulation has found applications in many
contexts, including image compression [Elder and Zucker 1998],
manipulation of photographs [Elder and Zucker 1996; Orzan et al.
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Figure 3: The figure shows the teaser image that was modified
using the diffusion curve extensions presented in this paper. Our
solution offers more control over the diffusion process and makes
several tasks simpler.

2007], seamless cut-and-paste operations [Pérez et al. 2003], or al-
pha matting [Sun et al. 2004].

The Poisson equation is also the basis of Diffusion Curves [Orzan
et al. 2008] and real-time gradient domain painting [McCann and
Pollard 2008], where colors are sparsely defined along curves in
the image and interpolated everywhere else. Jeschke et al. [2009a]
introduced a faster and more accurate solver by exploiting the fact
that the constraints are very sparse. Also, triangulation-based so-
lutions [Farbman et al. 2009] are interesting alternatives to pixel-
based diffusions. Although all these solutions are efficient, the
diffusion is always uniform. Our work is strongly inspired by the
aforementioned approaches, but we aim for a more flexible tool that
provides the user with more control over the diffusion process.

Diffusion processes also could be beneficial to interpolate other val-
ues such as normals [Johnston 2002] (to enable relighting), or even
general surface details [Jeschke et al. 2009b] (for real-time con-
texts). These approaches can benefit from the extensions proposed
in this paper as well.

There are a number of techniques that achieve resolution indepen-
dence, of which reconstruction using diffusion is just one possibil-
ity. The Ardeco system [Lecot and Levy 2006] simulates complex
shading via local approximations using linear or quadratic gradi-
ents. Since it is an image conversion process, the results may con-
tain a very large number of regions. A different approach known
as gradient meshes is an artistic tool available in commercial soft-
ware. It enables a user to specify colors at the vertices of a (planar)
quadrilateral mesh; these colors are then interpolated. The creation
can be tedious and Sun et al. [2007] and Lai et al. [2009] propose to
assist the user by automatically optimizing a gradient mesh accord-
ing to a given input image. Nevertheless, no control is given over
color interpolation and many vertices (and patches) are necessary
to produce complex shading.

3 Mathematical Background

Before presenting our algorithm, we will discuss interpolations
based on the Poisson equation, which is the principle that underlies
Diffusion Curves (Section 3.1). We reformulate the relationship
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into a constrained linear system that will provide the basis for our
work (Section 3.2). We present how to modify the system to support
diffusion barriers, curves that block the diffusion processes without
emitting colors (Section 4.1). We show how to guide the diffusion
process by orienting it according to a user-specified flow field (Sec-
tion 4.2). We then add the possibility to control the strength of a
color during the diffusion (Section 4.3) before addressing a non-
local extension of the diffusion process to allow us, e.g., to transfer
color from one part of the image to another (Section 5).

3.1 Diffusion Process

Our work builds upon the Poisson-equation framework previously
applied in many contexts [Tumblin and Turk 1999; Pérez et al.
2003; Orzan et al. 2008]. Consider an image I with n pixels,
{Ix|k € 1...n} (colors are addressed individually as I or
as a grid simply as I; ;). The goal is to derive an interpolant
matching a set of constrained pixel colors {C |k € I}, where
Z C {1...n} is an index set, and having a gradient close (Lo-
norm) to a given vector field w = {wy |k € 1...n}. The vector
field values are also stored in pixels and addressed, just like for 1
with wy, 1= (wg, wY).

The image I is defined implicitly using the Poisson equation:

AT = divw,
and I, = Cy, Vk € Z, ))

where A is the Laplace operator, and div is the divergence operator.
The solution is usually found by solving a discretized version of
Equation 1 for each color channel separately. A Gauss-Seidel solver
could be used, but more efficient conjugate gradient or multigrid
solvers (as in [Orzan et al. 2008]) are an option. In the case of
Gauss-Seidel iterations, a value I; ; needs to be updated by adding
(Liv1,j + Licaj + Lijpr + Ligr,j41 + divw, ;) /4.

In the case of Diffusion Curves, colors are specified along each
side of the curve and represent hard constraints. In addition, the
vector field w is zero everywhere except across constraint curves.
In other words, the solution will show a continuous, smooth change
of colors except across hard constraints.

3.2 Reformulating the Diffusion Process

To facilitate the understanding of how to influence the diffusion pro-
cess, we need to look a little closer at its properties. After solving
Equation 1, the resulting image I is the solution to the following
constrained minimization:

I = argmin VJi —wil?,
Imgage J;| ‘ l‘
subject to J, = Cx, Vk € I, ?2)

where V is the gradient operator, C}, are the color constraints at
the pixel positions Z, and w; = (w{,w/) is the vector field w at
pixel position <. The solution is the result of a minimization process
that searches for the image whose gradient is the best fit to a given
vector field, while respecting the color constraints.

In our work, we want to guide the diffusion process in various ways.
Consequently, we cannot always rely on the original Poisson equa-
tion. Instead we will set up a constraint system involving hard and
soft constraints. Hard constraints (I = C}) are the colors stored
at pixel positions Z and defined by the initial color curves chosen
by the user. Hard constraints will be satisfied exactly. The soft con-
straints guide the diffusion in the image and implicitly define the

color of the remaining pixels. Soft constraints might not be satis-
fied exactly, but the solution best satisfies our system in the least
square sense.

To illustrate the use of such an equation system, we start by writing
the Poisson-equation as a soft constraint system:

v [ e
(w) =] 3)

where V is a simple matrix that encodes the derivative along the
axis z, (wg, wy) is the vector field w’s value at pixel k € 1...n.
Each line of V is of the form (0,...,0,—1,1,0,...,0). Vy is
defined accordingly. The matrix encodes the properties of the solu-
tion, which we are going to modify for our purposes.

In general, the Equation system 3 is over-constrained. To find the
least-squares fit, we use the pseudo-inverse. For this, the equation
needs to be multiplied by (V%, V% ). The result of doing so is:

I :
Ve () | | = v e | M
Yy I 1

I1 w
(VeVe+ VeV [ o | =Va | o | +V| o ], @&

I, wi wY

=8

where n is the number of pixels in the image.

The operator (VLV, + V.LV,) is the discrete version of the
Laplace operator and, similarly, (Viw® —I—VZwy) is the divergence.
In the Poisson-equation example, the lines in V%V, have the form
0,...,0,1,—-2,1,0,...,0) which corresponds to a discrete sec-
ond derivative. The similar structure of V},V,, implies that the lines
in matrix (V4 V. + V}, V) have the form:

Al j = Livry — Lic1j = Lig1 = Livr g = divawsj,

which readily corresponds to the discrete Poisson equation.

4 Diffusion Control via Constraint Systems

We will now illustrate how to apply the previous formulation in
order to improve upon the original standard definition.

4.1 Diffusion Barriers

An important issue addressed in this paper relates to the inflexi-
bility of the relation between curves and colors. For each Diffu-
sion Curve, one needs to define color values for both sides of the
curve. These double-sided constraints often oblige users to select
colors at awkward locations, which produces unwanted side-effects
as shown in Figure 5. In this example, the black line defined on
the exterior side of the hat impacts the color of the ribbons at that
location. In order to avoid such artifacts, the user must select col-
ors along the intersection between hat and ribbons. Furthermore,
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Figure 4: a) Soft constraints indicating the diffusion behavior. b) Color is attributed to some pixels. c-d) Color diffusion illustration. e)

Result after minimization. The missing soft constraints placed on the pixels in the middle of the image prevent colors from mixing.

the choice of the right colors is difficult, since they need to match
the diffused region accordingly. A better solution would enable the
diffusion process to determine some of the colors directly. In other
words, the curve in question would, on one side, define colors in
the interior of the hat, but, on the other side, simply be used as a
barrier to prevent the ribbon and hat colors from mixing.

Figure 5: For Diffusion Curves colors have to be defined along
the curve. Here, the background was supposed to be dark and this
color is dragged into the interior of the hat (red circle).

Being able to specify our constraint system allows us to define lo-
cally controllable diffusion behavior. Omitting constraints that re-
late two pixels breaks the connectivity between them and, therefore,
blocks the diffusion process at that location. For a better under-
standing, Figure 4 illustrates such a situation.

Each pixel represented in the image stores a soft constraint that indi-
cates the direction in which color information is diffused (a). Thus,
every pixel diffuses color to its 4-connected neighbors, except those
pixels located along the two columns in the middle of the grid. In
order to illustrate the impact of locally manipulating a soft con-
straint, such pixels relate to only two of their neighbors, therefore
breaking the connectivity between pixels in these columns. When
color information is defined at some pixel positions (b), the result
is that it will be diffused following the connectivity defined by the
soft constraint (c-d). Because pixels in the middle of the grid do
not relate, color information cannot cross them, and is therefore
prevented from mixing (e).

This simple operation enables us to define diffusion barriers: curves
that do not actively emit colors but, instead, are responsible for
blocking the diffusion process from crossing the pixels underneath
it. This kind of curve is useful when the user desires to restrain the
diffusion from reaching a certain region without having to actually
define any color at that location.

e) )
( ) . ||
) ) d) 8

Figure 6: a) Blue and orange strokes. b) Diffusion of blue and or-
ange strokes. c) The circle defines a diffusion barrier. d) Diffusion
blocked in the interior and exterior of the circle (diffusion barrier).
e) Soft constraints breaking connectivity across the curve.

e

Figure 6 shows a practical example of the use of such a curve. Blue

and a orange color pixels are placed on the image (a). If no other
curve is added, the blue and orange pixels will be diffused and mix
at certain locations (b). Nevertheless, if we place a circle curve as
a barrier (¢), the diffusion of the blue pixels will be restrained to its
interior; analogously, the orange to its exterior (d). In practice, dif-
fusion barriers are obtained by breaking the connectivity between
pixels underneath the curve and those located on its left side (e).

It is also possible to only set a different behavior to one side of
the curve. In this case, one side emits colors, whereas the other
serves as a barrier to prevent colors from crossing the curve at that
location. This is an important tool that lets the user avoid defining
colors at awkward locations, as previously shown on Figure 5.

Figure 7: Left: Lines along which problems occur. Center: Red
and green line curves are transformed into barrier curves emitting
colors from only one of its sides. Right: Result of the diffusion.

Figure 7 left indicates the lines where placing double-sided color
constrained curves is problematic. To solve this problem, we trans-
form these lines into diffusion barriers. For this, we prevent the
right side of the red line from emitting colors to the interior of the
hat, but on its left side, we remove the constraints connecting it to
the pixels underneath the curve. Analogously, the interior side of
the green line will emit its original colors, while its exterior side
will work as a barrier. The result of the diffusion is depicted in Fig-
ure 7 right. Notice that colors diffused from the ribbons are now
nicely expanded to the boundaries of the hat without discontinuity
artifacts.

4.2 Anisotropic Diffusion

We have seen in Section 3.2 that the diffusion process is guided
by soft constraints on the derivative. Minimizing derivatives in all
directions ensures the uniformity of the results. While this is of
interest in many situations, it can be useful to give more control
to this process. When drawing motion-blur-like streaks, flames,
paint strokes and other phenomena, the color interpolation often
has a privileged direction. In other words, continuity is enforced
more strongly along one direction than another. Such behavior can
be achieved via directional smoothness constraints, resulting in an
anisotropic diffusion.

Let’s look at a simple example. We have seen that each pixel has a
row in the matrices V, and V, which enforces a smoothness along
the corresponding axes. Leaving out the row in V,, would lead to a
diffusion along the x-axis. This is a direct consequence of the fact
that differences along the y-axis are no longer penalized. Figure 8
(left) shows the influence of this process and illustrates the resulting
motion-blur-like streaks obtained with this solution.
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Figure 8: Left: Horizontal diffusion; Right: Path-guided diffusion

For an arbitrary diffusion direction d := (cos#,sin )7, the ma-

trix row needs to be changed. The directional derivative along dis
(Va, Vy)d. Correspondingly, the discretized constraint reads:

cos 0(I¢+1,j — L,’,j) + sin 0([¢7j+1 — L,’,j) =0. (5)

Replacing the original full-derivative constraint leads to a diffusion
process only along d. Our goal is to use differing directional con-
straints to globally guide the diffusion (Figure 8, right).

In general, diffusion is rarely just following a single direction. Usu-
ally, a tradeoff between a privileged direction and its orthogonal
counterpart is wanted. This implies the need for a similar smooth-

ness constraint involving d* := (—sin#,cos6)”. Adding both
equations to the system would result again in a uniform diffusion
process (it merely reflects a rotation of the basis vectors, meaning
that V 7 takes the role of V, and V 5, Vy in Eq. 3). Nonethe-
less, an anisotropic result can be obtained by scaling the constraints
differently, as this influences the least-square result of the equation
system. We will show how to use this observation to control how
strongly a given direction is respected during the color diffusion.

a) Definition of diffusion directions | | b) Diffused directions
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Figure 9: To define per-pixel diffusion directions, the directions
are themselves diffused.

In order to specify a direction d and a tradeoff between standard
and anisotropic diffusion, we suggest that the user draws direction
curves. These curves contain a 2D vector, whose direction defines
an orientation d and whose length results in a scaling factor to per-
form the tradeoff. The vectors defined by the directional curves are
spread via a uniform diffusion, leading to a value in each pixel. In
our interface, we let the user define vectors of length smaller than
one, because a global scale does not affect the solution.

In the example of Figure 9 b, diffusion barriers were used to refrain
the diffusion to the right (outer arc) and left (inner arc) sides of the
curves. Adding color constraints, our diffusion process, according
to Equation 5, leads to the result depicted in Figure 10. Here, color
information defined along a curve (a) is dragged by the flow field
resulting in an arc-shaped diffusion of colors creating a rainbow
effect (b). To define a diffusion direction, the user only defined a
single direction per curve, although more would have been possi-
ble. Just like colors, directions are interpolated along the curve, but
follow the curve’s tangent direction.

While in the previous example the directions were basically of con-
stant length, directional constraints can vanish when opposing di-
rections are merged during diffusion. In these areas, a privileged
direction does not exist and a uniform diffusion should be applied.
This need is compatible with our idea to use the length of d to de-
fine the tradeoff between standard and anisotropic diffusion. One
possibility would be to use 1 — Hd_ﬂ as a scaling factor on the equa-
tion according to d*. For ||d|| = 1, only the diffusion along d is
applied and for d = 0 the uniform diffusion is reestablished.

In practice, we use a different solution with a threshold 7. If the
vector is longer than the threshold, we renormalize it. Only if it
is below 7, we use the length d) /7 as before. This threshold could
also be diffused, but we found that a global value of 0.5 is usually
a good choice.

a) Diffusion directions b) Colors diffused along directions
[N
VVVV’P»AA\
MAdddd Ve
MAAd b LTV

4
4
1
b
M
A
Y
14
14
14
’
»
»
»
»

YV reaaaa.

TroTIiraaaass
(VVV?»LAA\\\
CYVVrrmaaad
MAd st LN
::vvr>>;\“
v A
R o
1

Qo030 REREALE

Figure 10: The directions define constraints that ensure that the
color is diffused accordingly.
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Figure 11 illustrates the influence of anisotropic diffusion and the
threshold. Standard diffusion curves lead to a very smooth result
that is missing many of the vivid characteristics one would expect
in the case of a fire illustration. With our solution, the contrast is
improved because color follows the flow of the lines and the final
result looks more detailed, although we only relied on the same
color curves. Modifying the threshold allows us to obtain a more
uniform body of the fire.

Figure 11: A complex anisotropic diffusion defined with a small
set of curves. The two examples use different threshold settings to
tradeoff uniform and anisotropic diffusion.

4.3 Color Strength

B

Figure 12: Left: Standard diffusion (equal strength), Center: Or-
ange stronger than blue. Right: Varying strength along curve.
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The previous section presented a way to control diffusion direc-
tions, but one limitation is that it does not allow us to influence the
diffusion speed. In other words, independent of the direction, the
diffusion between two colors will weight both colors in the same
way. In this section, we will present a solution to attribute a strength
to a color in order to define its dominance in the diffusion process.

Figure 12 depicts a simple example with two color constraints, or-
ange on the top and blue at the bottom. As expected, the diffusion
process spreads these colors uniformly over the remaining image
connecting both color constraints. In order to achieve fine-grained
results, we introduce color strengths, a mechanism to control the
region of influence of colors during the diffusion process. By ma-
nipulating the color strength, the artist can make the orange color
become more dominant over the blue, thus pushing the diffusion in
this direction (Figure 12, center). A variety of effects can be ob-
tained if different values of color strength are defined along lines
as, for example, the diagonal diffusion effect in Figure 12, right.

Figure 13 shows an example of complex color gradients achieved
by manipulating the color strength in the interior and exterior of
the eye. Compared with the standard result, we show that the color
strength extension can lead to interesting results with no additional
curves.

Figure 13: The curves (left) define both parts of the image (right).
The left part uses uniform weights, the right has varying weights.

One way of controlling the strength of colors during diffusion is to
formulate this problem as an interpolation process. Intuitively, if
we have two colors c¢1, c2 with respective strengths a; and a2, then
we would like the interpolation 7" of the two to yield:

aicy + azc2

T ((c1,a1), (c2,a2)) = ai + a2

As we can see, the equation results in ¢; for a; — oo, andif a1 = 0,
the equation simplifies to ca. Therefore, the values a1, a2 can be
used to control the dominance of one color over the other. The
result is a linear combination of the initial color values that naturally
favors colors with a higher strength. This generalizes:

_ Z CiQj

T ((c1,a1),. .., (ck,ar)) S a

In some sense, when thinking of a blending process, the strength
value will indicate the mixing coefficients. Due to the normaliza-
tion, such a weighted blending is non-linear and, hence, would not
fit into the diffusion framework. Nevertheless, it is possible to lin-
earize the computations using homogenous colors.

A homogenous color is defined by a RGB-tuple (r,g,b)
and an alpha value a # 0.  Algebraically they resem-
ble homogeneous coordinates, widely used in projective ge-
ometry calculations [Willis 2006]. Two homogenous colors

(r1,91,b1,a1) and (72, g2, b2, a2) describe the same actual color
when az(r1,91,b1) = ai(r2,g2,b2). If a; is not zero, the ac-
tual color is obtained via a projection mapping P(r,g,b,a) =
(r/a,g/a,b/a). Itis easy to verify that the projection of the sum of
homogenous colors corresponds to the weighted sum of the actual
colors, as defined above.

The key idea of our extension is that the alpha value of a color
will define the color strength. In the interface, the user only spec-
ifies a standard color ¢ = (r, g,b) and a color strength a. This
input is then transformed into a homogenous color by mapping it
to (ar, ag, ab,a). Each channel (including the alpha channel) is
thus diffused separately, but all following the same diffusion behav-
ior. At the end of the diffusion process, we perform the projection
(r/a, g/a,b/a) to obtain the final result. The correctness of this so-
lution becomes clear when inspecting the way that the Gauss-Seidel
iterations would update the values in the solver, where an average
is computed in each step. The final projection then transforms the
result into a weighted sum and the diffusion will reflect the weight.

We explicitly excluded the case when a; equals zero. It makes the
color’s contribution to the weighted sum be zero as well. There-
fore, it would be possible to use this special case to define diffusion
barriers, but in practice, this can lead to small artifacts along the
boundaries and care has to be taken to correct them. Such difficul-
ties do not arise with the solution presented in Section 4.1.

5 Beyond Local Constraints

The final problem we will address relates to the fact that the diffu-
sion is usually locally defined. In other words, a differently colored
region will always block the diffusion on its boundary. In this sec-
tion, we will present a solution to connect different areas of the im-
age to ensure a continuous diffusion between them. To some extent
this can serve as a color picking of colors that are only implicitly
defined by the diffusion process.

Our solution to ensure the same color on two locations is to simply
link them in the diffusion process via soft constraints via a similar
condition as the one that usually exists between neighboring pix-
els. For two pixels I}, I;, this translates to a soft constraint of the
form I, — I; = 0. Again, the importance of this similarity can
be steered by multiplying the equation with a factor. It is, hence,
possible to ensure that both pixels will receive similar values at the
end of the diffusion. The definition of such a constraint is simple.
We allow the user to link two curves and then define points of cor-
respondence between them, by default, we match both curves via
their parametrization uniformly. It is also possible to match one
curve with several others if needed.

There are several applications that arise from this possibility. It is
possible to address smaller occlusions without resorting to layers,
by channeling colors from one side of an object to another, as il-
lustrated in Figure 2. Here, color gradients are continued across
boundaries and small gaps. Another application is the creation of
seamless textures. This is usually a complicated process because
colors have to be matched correctly across boundaries. Solutions
exist to create such textures in a postprocess [Pérez et al. 2003],
but in this case the artist has little control over the appearance. By
matching boundary pixels via non-local constraints, the diffusion
can be wrapped around the domain and during the design process
the result can already be visualized. It is also possible to move and
repeat constraints, so that their displacement effectively drags the
texture over the screen. An example can be found in Figure 14.
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Figure 15: Left: Image outlines. Center: Shading using color dif-
fusion. Right: Result of relighting using a normal map created by
normal vector diffusion.

6 Results

Our method was implemented using OpenGL on a NVIDIA GT285
graphics card. Besides the non-local constraints, all other exten-
sions can be handled locally and thus can be integrated directly into
the diffusion curve algorithm. Color strength comes at an added
cost of about 30%, because the diffusion uses four instead of three
channels. Directional diffusion comes at roughly twice the cost, be-
cause we first diffuse directions, but it still leads to a real-time so-
lution. Unfortunately, the quality of the final result suffers from the
multi-grid solver, and, for the non-local constraints, a local diffu-
sion model is no longer very efficient. Instead, we rely on a general
global linear solver implemented in CUDA which, as a side benefit
leads to more precise images. Unfortunately, due to its general-
ity the solver is slower and our system then does no longer reach
real-time performance. For the teaser image, the computation took
approximately 4 — 5 seconds for a 512 x 512 image. Although the
feedback is not instant, it is sufficiently fast to create convincing
drawings in a small amount of time. If needed, one could imag-
ine caching non-local constraint results to give an approximate, but
faster feedback. In the same spirit, we could also maintain an in-
verted matrix to allow interactive color adaptation, but we keep such
investigations for future work.

The advantage of our solution is that it is more flexible. Artifacts
such as halos can be avoided if the artist desires. Diffusion bar-
riers also make the color fill more intuitive and can be useful for
diffusing normals. The folds on the skirts in Figure 15 and on the

lion’s mane in Figure 16 benefits from this solution and makes the
lighting look more realistic. Color strength is a simple way of mak-
ing adjustments to the illustration without increasing its complexity.
The same holds for anisotropic diffusion that allows us to increase
the richness in the illustrations drastically. A few directional curves
can intuitively define a complex color diffusion. Finally, non-local
diffusion allows easy color transfer and occlusion treatment.

Figure 16: Our approach can diffuse not only colors (left), but also
normals (middle) for relighting purposes (right).

7 Conclusion and Future Work

In this paper, we presented methods to increase the flexibility of
diffusion-based tools for artists. We illustrated several scenarios in
which our solution can be of strong benefit for the user. Our work
also enabled new designs that were previously not easily realizable
with existing solutions.

In the future, we would like to investigate new interaction
metaphors that could replace the curve-based input. For example,
brush strokes could be a useful extension. We believe that our work
also has other applications. Flow fields are very versatile and one
recent example is street modeling [Chen et al. 2008]. Our work
could be used in the design process and the possibility to guide
the diffusion of information could by an interesting extension for
city simulations. Another example concerns vectorial illustrations
from 3D models. It is usually tedious, but an automatic transforma-
tion into layered vector graphics is possible [Eisemann et al. 2009].
The resulting document is usually refined by an artist. If diffusion
curves are involved, care must be taken to ensure color consistency
across cuts that were introduced to allow a layer decomposition.
Our diffusion constraints can ensure smoothness in the final illus-
tration across layers. In the same way, we could also connect dif-
ferent images at the same time in order to produce not a single, but
various matching texture tiles, that can then be employed as Wang
Tiles [Cohen et al. 2003].
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