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Allocation de fréquences et coloration impropre des graphes

hexagonaux pondérés

Résumé : Motivés par un problème d’allocation de fréquences, nous étudions la coloration impropre des
graphes pondérés et plus particulièrement des sous-graphes pondérés de la grille et du réseau triangulaire.
Nous donnons des algorithmes d’approximation pour trouver de telles colorations.

Mots-clés : Coloration impropre, Coloration pondérée, Algorithmes d’approximation
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1 Introduction

This paper is motivated by a problem posed by Alcatel Space Technologies (see [1]). A satellite sends
informations to receivers on earth, each of which is listening several frequencies, one for each signal
it needs to receive. Technically it is impossible to focus a signal sent by the satellite exactly on the
destination receiver. So part of the signal is spread in an area around it, creating noise for the other
receivers displayed in this area and listening the same frequency. Each receiver is able to distinguish the
signal directed to it from the extraneous noises it picks up if the sum of the noises does not become too
large, i.e. does not exceed a certain threshold T . The problem is to assign frequencies to the signals in
such a way that each receiver gets its dedicated signals properly, while minimizing the total number of
frequencies used.

Generally the "noise relation" is symmetric, that is if a receiver u is in the noise area of a receiver v
then v is in the noise area of u. Hence, interferences may be modelled by a noise graph G = (V (G), E(G))
whose vertices are the receivers and where two vertices are joined by an edge if and only if they interfer.
Moreover, to the graph is attached a weight function p : V (G) → IN, where the weight p(v) of the vertex
v is equal to the number of signals it has to receive. Hence we have a weighted graph, that is a pair (G, p),
where G is a graph and p a weight function on the vertex set of G. We can model the frequencies by
colours. Therefore, to each vertex, we associate a set C(v) of p(v) distinct colours. If in total l colours
are used, the mapping C is called an l-colouring of (G, p).

In a simplified version, the intensity I of the noise created by a signal is independent of the frequency
and the receiver. Hence to distinguish its signal from noises, a receiver must be in the noise area of at
most k =

⌊

T
I

⌋

receivers listening signals on the same frequency. In terms of colouring this property is
equivalent to say that for any colour c, the set of vertices having one colour c induces a graph of degree
at most k. Such a colouring is called k-improper. The k-improper chromatic number of (G, p), denoted
χk(G, p), is the smallest l such that (G, p) admits a k-improper l-colouring. Note that a 0-improper
colouring corresponds to a proper colouring.

In [1] this problem is studied via linear programming. The objective of this paper is to build algorithms
giving k-improper colourings of weighted graphs of a certain class with as few colours as possible. An
algorithm that gives a k-improper colouring of each weighted graph (G, p) in this class with at most c1 ×
χk(G, p)+ c2 colours for some constants c1 and c2, is said to be c1-approximate or to have approximation
ratio c1.

For any integer q we denote by q the constant weight function q(v) = q for all v. For any weight
function p, we set pmax = maxv(p(v)).

Proposition 1 If there exists a k-improper colouring of (G,q) with r colours, then there exists a k-

improper colouring of (G, p) with r
⌈

pmax

q

⌉

colours.

In particular, if χk(G,q) ≤ r, then χk(G, p) ≤ r
⌈

pmax

q

⌉

.

Proof. Observe that if we have a k-improper r1-colouring of (G, p1) and a k-improper r2-colouring of
(G, p2), one can easily derive a k-improper (r1 + r2)-colouring of (G, p1 + p2) by using the union of these
colourings on two disjoint sets of colours. Doing this repeatedly λ times with p = q, we obtain a λr-

colouring of (G, λq). For λ =
⌈

pmax

q

⌉

, we obtain a k-improper colouring of (G, p) since p(v) ≤ pmax ≤ λq

for every vertex v ∈ V (G). �

If we have a k-improper r-colouring (G,q) then the above proposition yieldsan immediate (r/q)-
approximate algorithm for k-improper (G, p)-colouring because χk(G, p) ≥ pmax . In this paper, we
present improvements of Proposition 1. For any graph G, we denote ρk(H,G, p), the maximum of
χk(H ′, p) over the subgraphs H ′ of G isomorphic to H. For example, ρk(K1, G, p) = pmax and ρ0(K2, G, p) =

RR n° 7250



4 Jean-Claude Bermond , Frédéric Havet , Florian Huc , Claudia Linhares Sales

max{p(u) + p(v) | uv ∈ E(G)} so ρ0(K2, G, p) ≤ 2pmax. If k ≥ 1, then ρk(K2, G, p) = pmax. By ex-
tension, if H is a family of graphs (finite or not), ρk(H, G, p) is the maximum of ρk(H,G, p) over all
graphs H ∈ H. Obviously, for any family H, ρk(H, G, p) ≤ χk(G, p). The idea to design approximate
algorithms for k-improper colouring graphs of some given class consists of finding a finite family of graphs
Hk such that any weighted graph (G, p) in the class, satisfies χk(G, p) ≤ c1.ρk(Hk, G, p) + c2 with c1 a
small constant (ideally 1) and c2 another constant. Hence, by computing χk(H ′, p) for all the subgraphs
H ′ isomorphic to a graph in Hk, we obtain a c1-approximate algorithm for χk(G, p). Moreover, we also
exhibit algorithms that produce the corresponding c1-approximate k-improper colouring.

We first show approximate algorithms for general graphs. We then make further improvements for
specific graphs, namely the grid graphs and the hexagonal graphs. The next subsections recall the results
known for grid graphs and hexagonal graphs and present ours.

1.1 Grid graphs

The (two-dimensionnal) grid is the graph GL defined as follows: the vertices are all integer linear combi-
nations af1 + bf2 of the two vectors f1 = (1, 0) and f2 = (0, 1). Thus, we may identify the vertices with
the ordered pairs (a, b) of integers. Two vertices are adjacent when the Euclidean distance between them
is 1. Hence each vertex x = (a, b) has four neighbours: its left neighbour (a − 1, b), its right neighbour
(a+1, b), its top neighbour (a, b+1) and its down neighbour (a, b−1). A grid graph is an induced subgraph
of the two-dimensionnal grid.

f2

f1

(a, b − 1)

(a + 1, b)(a − 1, b)

(a, b + 1)

Figure 1: The two-dimensionnal grid and a grid graph.

As a grid graph G has maximum degree 4, k-improper colourings of G are trivial for k ≥ 4: it suffices
to give any set of p(v) colours to every vertex v to produce a k-improper colouring. Hence, for any k ≥ 4,
its k-improper chromatic number equals its maximum weight χk(G, p) = pmax.

Regarding proper (0-improper) colourings, by Proposition 1, χ0(G, p) ≤ 2pmax as a grid graph is
bipartite. This upper bound is tight when there is an edge uv such that p(u) = p(v) = pmax. But such
an edge may not exist. However, one can find the weighted chromatic number of a grid graph and more
generally of any weighted bipartite graph.

Theorem 2 (McDiarmid and Reed [8]) Let G = ((A, B), E) be a bipartite graph. Then for any
weight p, χ0(G, p) = ρ0({K1, K2}, G, p).

Proof. Let us colour every vertex a of A with {1, 2, . . . , p(a)} and every vertex b of B with {l, l −
1, . . . , l − p(b) + 1} where l = ρ0({K1, K2}, G, p). �

In Section 3, for 1 ≤ k ≤ 3, we provide αk-approximate polynomial algorithms that compute a
k-improper colouring of a weighted grid graph with α1 = 13/9, α2 = 27/20 and α3 = 19/16.

It would be nice to solve the following problem:

Problem 3 For any fixed 1 ≤ k ≤ 3, is it NP-complete to find the k-improper chromatic number of a
weighted grid graph?

INRIA



Improper colouring of weighted grid and hexagonal graphs 5

1.2 Hexagonal graphs

The triangular lattice graph TL may be described as follows. The vertices are all integer linear combina-

tions ae1 + be2 of the two vectors e1 = (1, 0) and e2 = ( 1
2 ,

√
3

2 ). Thus we may identify the vertices with
the ordered pairs (a, b) of integers. Two vertices are adjacent when the Euclidean distance between them
is 1. Therefore, each vertex x = (a, b) has six neighbours: its left neighbour (a − 1, b), its right neighbour
(a+1, b), its leftup neighbour (a−1, b+1), its rightup neighbour (a, b+1), its leftdown neighbour (a, b−1)
and its rightdown neighbour (a + 1, b − 1). A hexagonal graph is an induced subgraph of the triangular
lattice.

e1

e2

(a − 1, b + 1) (a, b + 1)

(a + 1, b)(a − 1, b)

(a + 1, b − 1)(a, b − 1)

Figure 2: The triangular lattice and a hexagonal graph.

For any k ≥ 6, the k-improper chromatic number of a hexagonal graph is its maximum weight because
it has maximum degree 6.

McDiarmid and Reed [8] showed that it is NP-complete to decide whether the chromatic number
of a weighted hexagonal graph is 3 or 4. Hence, there is no polynomial time algorithm for finding
the weighted chromatic number of hexagonal graphs (unless P = NP). Therefore, one has to find
approximate algorithms. The better known so far has approximation ratio 4/3 and is based on the
following result:

Theorem 4 (McDiarmid and Reed [8]) For any weigthed hexagonal graph (G, p),

χ0(G, p) ≤
4

3
ρ0({K1, K2, K3}, G, p).

A distributed algorithm which guarantees the 4
3ρ0({K1, K2, K3}, G, p) bound is reported by Narayanan

and Schende [7]. However, one expects to have approximate algorithms with ratios better than 4/3. In
particular, Reed and McDiarmid conjecture that, for big weights, the ratio may be decreased to almost
9/8.

Conjecture 5 (McDiarmid and Reed [8]) There exists a constant c such that for any weigthed hexag-
onal graph (G, p),

χ0(G, p) ≤
9

8
ρ0({K1, K2, K3}, G, p) + c.

Note that the ratio 9/8 in the above conjecture is the best possible. Indeed, consider a 9-cycle C9

with constant weight q. A colour can be assigned to at most 4 vertices, so χ0(C9, q) ≥ 9q
4 . Clearly,

ρ0({K1, K2, K3}, C9, q) = 2q. So χ0(C9, q) ≥ 9
8ρ0({K1, K2, K3}, C9, q). An evidence for this conjecture

has been given by Havet [2], who proved that if a hexagonal graph G is triangle-free (i.e. has no K3)
then χ0(G, p) ≤ 7

6ρ0({K1, K2}, G, p) + 5. See also [10] for an alternative proof and [5] for a distributed
algorithm for colouring triangle-free hexagonal graphs with 5

4ρ0({K1, K2}, G, p) + 3 colours.
Regarding improper colouring, Havet, Kang and Sereni [3, 4, 9] generalized the above mentionned

NP-completeness result of McDiarmid and Reed:

RR n° 7250



6 Jean-Claude Bermond , Frédéric Havet , Florian Huc , Claudia Linhares Sales

Theorem 6 (Havet, Kang and Sereni [3, 4, 9]) For 0 ≤ k ≤ 5, the following problem is NP-
complete:
Instance: a weighted hexagonal graph (G, p).
Question: is (G, p) k-improper 3-colourable?

Hence one cannot expect to have polynomial algorithm to find the k-improper chromatic number of
weighted hexagonal graphs. In Section 4, for 1 ≤ k ≤ 5, we provide αk-approximate polynomial algo-
rithms that compute a k-improper colouring of a weighted hexagonal graph with α1 = 20/11, α2 = 12/7,
α3 = 18/13, α4 = 80/63 and α5 = 41/36.

2 General algorithms

If S is a set of vertices of G, we denote by G〈S〉 the subgraph of G induced by the vertices of S.
We extend the weight function to sets of vertices and to subgraphs in the following intuitive way: the

weight of a set of vertices X ⊂ V (G) is p(X) =
∑

x∈X p(x) while the weight of a subgraph H ⊂ G is
p(H) = p(V (H)).

In this section, we improve Proposition 1. To do so, instead of considering only pmax, we consider the
number of colours that a vertex and its neighbours may require. As shown by the following proposition,
this number may be larger than pmax. The graph K1,k+1 is the graph with k + 2 vertices and k + 1 edges
linking one vertex, called the centre to the k + 1 others, called spikes.

Proposition 7 For every weight function p, χk(K1,k+1, p) ≥
1

k + 1

∑

v∈V (K1,k+1)

p(v) =
p(K1,k+1)

k + 1
.

Proof. Let u be the centre of K1,k+1 and v1, . . . , vk+1 its spikes. Consider a k-improper colouring
C of K1,k+1. For 1 ≤ i ≤ k + 1, set q(vi) = |C(vi) \ C(u)|. The colouring C uses at least M =

max1≤i≤k+1{q(vi) + p(u)} ≥ p(u) + 1
k+1

∑k+1
i=1 q(vi) colours. But a colour in C(u) is assigned to at most

k of the spikes because the colouring is k-improper. Thus
∑k+1

i=1 q(vi) ≥
∑k+1

i=1 p(vi) − kp(u). It follows

M ≥ 1
k+1

(

p(u) +
∑k+1

i=1 p(vi)
)

. �

We call (k + 1)-star, or simply star, a subgraph of G isomorphic to K1,k+1.
We set θk(G, p) = max{p(H)/(k + 1) | H (k + 1)-star of G} and ωk(G, p) = max{pmax, θk(G, p)}.

According to Proposition 7, ωk(G, p) ≤ ρk({K1, K1,k+1}, G, p) ≤ χk(G, p).
The idea of our general algorithm is to, step by step, decrease ωk(G, p) by priorizing the colouring of

the vertices with high weights, which directly affect this parameter. Once fixed a k-improper colouring
C of (G,q) with r colours, at each round of the algorithm, C is repeated several times, spending so, at
each round, a multiple of r new colours, in order to assign packets of q colours to these heavy vertices.
Also, the colouring of the vertices with small weights is postponed, in such way that, at the last step, the
number of colours required to finish the k-improper colouring of G is under control. The next theorem
gives this general algorithm.

Theorem 8 Let G be a graph with bounded degree ∆ fixed. Let C be a k-improper colouring C of (G,q)

with r colours, for some integer q. Let ak(r, q) = (k + 1)r − q, αk(r, q) = ak(r,q).r+rq

ak(r,q).q+rq
= (k+1)r2

(k+2)rq−q2 ,

γk(r, q) = max{(k + 2)(rq − 1), (k + 1)rq + kq2, ak(r, q)q + rq} and βk(r, q) = r
⌈

γk(r,q)
q

⌉

.

There is a polynomial algorithm which returns a k-improper colouring of (G, p) with at most αk(r, q)×
ωk(G, p) + βk(r, q) colours.

In particular, if χk(G,q) ≤ r, then χk(G, p) ≤ αk(r, q) × ωk(G, p) + βk(r, q).

INRIA



Improper colouring of weighted grid and hexagonal graphs 7

Proof. To make the proof more readable, we omit the parameters k, q and r which are fixed. So
a = ak(r, q), α = αk(r, q), γ = γk(r, q), β = βk(r, q) and ω(G, p) = ωk(G, p). Consider the following
algorithm :

Algorithm 1 0. Initialisation: (G0, p0) := (G, p), S := ∅ and i = 0.

1. Add the vertices of low weight to S that will be treated at the end (Step 3):
Si := {v ∈ V (G) | pi(v) ≤ γ}, S := S ∪ Si and for all v ∈ Si, s(v) := pi(v). Gi+1 := Gi − Si.

2. If Gi+1 is not empty:

2.1. Give to each vertex v of Gi+1 a certain number ni(v) of colours among a set of ar+rq colours,
in such a way that ω(Gi+1, pi − ni) ≤ ω(Gi, pi) − (aq + rq).

2.2. Set pi+1 := pi − ni and i := i + 1 and go to Step 1.

3. Colour (G〈S〉, s) with β colours. This is possible by Proposition 1 using
⌈

γ
q

⌉

times the colouring

C, since smax ≤ γ.

At each Step 2, ar + rq colours are used and ω(Gi, pi) decreases by at least aq + rq. So after

m = ⌊ω(G,p)
aq+rq

⌋ steps, the remaining ω(Gm, pm) is at most aq + rq ≤ γ (by the choice of γ). Therefore,

Algorithm 1 yields a k-improper colouring of (G, p) with at most αω(G, p) + β colours and the theorem
will be proved if we can perform step 2.1 as indicated.

Let us now describe precisely Step 2.1. Set ωi = ωk(Gi, pi). We distinguish several kinds of vertices
depending on their own weight and the one of their neighbours. A big vertex is a vertex such that
pi(v) > ωi − rq. A small vertex is a non-big vertex. Moreover, a small vertex is goofy if it is adjacent to
a big vertex, and regular, otherwise.

At each step 2.1, we first use a times the colouring C : with ar colours, each vertex receives aq of
them. Then we use rq additional colours in the following way: we assign all of them to the big vertices,
and we use q times colouring C on the graph induced by the regular vertices. As a result, each big vertex
receives rq additional colours and each regular vertex receives q2 ones. Hence ni(v) = aq + rq if v is big,
ni(v) = aq + q2 if v is regular, and ni(v) = aq, if v is goofy.

Let us first check that this colouring is k-improper.
Suppose by way of contradiction that it is not k-improper. The only possibility is that some additional

colour has been assigned to a vertex v and k+1 of its neighbours since otherwise we were using C which is
k-improper. Hence v is the centre of a star H whose vertices are all big. Then pi(H) ≥ (k+2)(ωi−rq+1) =
(k + 1)ωi + ωi − (k + 2)(rq − 1). But, since Gi+1 is not empty, ωi ≥ pi

max > γ ≥ (k + 2)(rq − 1). So
pi(H) > (k + 1)ωi which contradicts the definition of ωi.

Let us now check that ωi+1 ≤ ωi − (aq + rq).
For a vertex v, pi+1(v) ≤ pi(v) − ni(v). If v is big ni(v) = aq + rq and, if v is small, ni(v) ≥ aq and

pi(v) ≤ ωi − rq. In both cases, pi+1(v) ≤ ωi − (aq + rq).
So pi+1

max ≤ ωi − (aq + rq).

Consider now a star H of Gi+1. It is big if pi(H) ≥ (k + 1)ωi − q2.

Claim 1 A big star H has a vertex which is not goofy.

RR n° 7250



8 Jean-Claude Bermond , Frédéric Havet , Florian Huc , Claudia Linhares Sales

Proof. By the contrapositive. Let H be a star whose vertices are all goofy. Let u be its centre and
v1, . . . , vk+1 its spikes with pi(v1) ≥ · · · ≥ pi(vk+1).

There exists a big vertex v0 adjacent to u. The vertex v0 is not one of the vi, because all of them
are small. Let H ′ be the star with centre u and spikes v0, . . . , vk. Set S =

∑k

j=1 pi(vj). We have

pi(H ′) = pi(u) + S + pi(v0) ≤ (k + 1)ωi and pi(v0) > ωi − rq. Hence S < kωi + rq − pi(u). But

pi(vk+1) ≤
S
k
, so pi(vk+1) < ωi + rq

k
− pi(u)

k
.

Observe that pi(H) = pi(u) + S + pi(vk+1) and so, by consequence of the above inequalities, pi(H) <

(k+1)ωi+rq(k+1
k

)− pi(u)
k

. As u ∈ Gi+1, we have pi(u) > γ ≥ (k+1)rq+kq2, thus pi(H) < (k+1)ωi−q2.
Hence H is not big. �

Each vertex of H receives at least aq colours. Hence if H is not big, pi+1(H) ≤ pi(H) − (k + 2)aq ≤
(k+1)ωi−q2− (k+2)aq. If H is big, at least one vertex of H is not goofy and so receives at least aq +q2

colours. Thus in both cases

pi+1(H) ≤ (k + 1)ωi − (k + 2)aq − q2 ≤ (k + 1)(ωi − (aq + rq)),

because a = (k + 1)r − q.
Thus θk(Gi+1, pi+1) ≤ ωi−(aq+rq). Hence, since pi+1

max ≤ ωi−(aq+rq), we get ωi+1 ≤ ωi−(aq+rq).

Algorithm 1 requires to compute the value of ωk(G, p). Since there are at most n
(

∆
k+1

)

k + 1-stars in

a graph on n vertices with maximum degree ∆, it can be done in O
(

n
(

∆
k+1

)

)

operations. �

For 1-improper colouring, changing slightly the parameters of Algorithm 1 yields a better approxima-
tion ratio. Replacing β1(r, q) by a slightly higher value β′

1(r, q) allows us to replace a1(r, q) by a smaller

value a′
1(r, q) which yields a better approximation ratio α′

1(r, q) =
a′

1(r,q).r+rq

a′

1
(r,q).q+rq

.

Theorem 9 Let r and q be two integers. Set a′
1(r, q) = 2r − 2q if r ≥ 2q, a′

1(r, q) = r if r ≤ 2q,

α′
1(r, q) =

a′

1(r,q).r+rq

a′

1
(r,q).q+rq

, γ′
1(r, q) = 3rq and β′

1(r, q) = 3r2. There is a polynomial algorithm that, given a

weighted graph G and a 1-improper colouring C of (G,q) with r colours, produces a 1-improper colouring
of (G, p) with at most α′

1(r, q) × ω1(G, p) + β′
1(r, q) colours.

In particular, if χ1(G,q) ≤ r, then χ1(G, p) ≤ α′
1(r, q) × ω1(G, p) + β′

1(r, q).

Proof. We use Algorithm 1 with β = β′
1(r, q), a = a′

1(r, q), α = α′
1(r, q) and γ = γ′

1(r, q).
Note that γ ≥ 3rq implies γ ≥ aq + rq as aq + rq = 3rq − 2q2 if r ≥ 2q and aq + rq = 2rq if r ≤ 2q.
The beginning of the proof is the same as that of Theorem 8. Note that the condition needed for the

k-improper property is γ ≥ 3(rq−1) which is satisfied. Like in Theorem 8, we have pi+1
max ≤ ωi−(aq+rq).

(recall that ωi = ω1(G
i, pi)). So in order to show that ωi+1 ≤ ωi − (aq + rq), it remains to show that

θk(Gi+1, pi+1) ≤ ωi − (aq + rq), that is for any 2-star H of Gi+1, ρi+1(H) ≤ 2(ωi − (aq + rq)).
For that let us redefine a big star in Gi as a 2-star with pi(H) > 2ωi − 2rq + aq.

Claim 2 A big star contains either a big vertex or two regular vertices.

Proof. Suppose H is a 2-star with centre u and spikes v1 and v2. Assume, moreover, that two of these
vertices are goofy and none is big. W.l.o.g. there is a big vertex b1 adjacent to v1 and a big vertex b2

adjacent to u or v2. As b1, v1 and u form a 2-star, by the definition of ωi, pi(b1) + pi(v1) + pi(u) ≤ 2ωi.
Similarly, pi(b2)+pi(u)+pi(v2) ≤ 2ωi. Summing these two inequalities, we obtain pi(v1)+pi(u)+pi(v2) ≤
4ωi − pi(b1)− pi(b2)− pi(u) ≤ 2ωi − pi(u)+2rq− 2. Since u is in Gi+1, pi(u) ≥ γ ≥ 4rq− aq− 1 because
4rq − aq = 2rq + 2q2 ≤ 3rq if r ≥ 2q, and 4rq − aq = 3rq if r ≤ 2q. So pi(H) ≤ 2ωi − 2rq + aq. �

INRIA



Improper colouring of weighted grid and hexagonal graphs 9

Each vertex receives at least aq colours. Hence, if H is not big, then pi+1(H) ≤ pi(H) − 3aq ≤
2ωi − 2rq − 2aq

Suppose now that H is big. Then, by Claim 2, H contains a big vertex or two regular ones. Hence
pi+1(H) ≤ pi(H) − 3aq − min{rq, 2q2}. By our choice of a, we get pi+1(H) ≤ 2(ωi − (aq + rq)). �

When ∆(G) = k + 1, one can also get a better approximation ratio. To do so, we need to change the
parameters ak(r, q), αk(r, q) and βk(r, q) but also to modify slightly Step 2.1 of Algorithm 1. We take
advantage of the condition ∆(G) = k + 1 to more precisely allow the rq additional colours.

Theorem 10 Let r and q be two integers. Set a′′
k(r, q) = (k + 1)r − 2q if r ≥ 2q, and a′′

k(r, q) = kr

if r ≤ 2q, and α′′
k(r, q) =

a′′

k (r,q).r+rq

a′′

k
(r,q).q+rq

, γ′′
k (r, q) = max{(k + 2)(rq − 1), a′′

k(r, q)q + rq} and β′′
k (r, q) =

r
⌈

γ′′(r,q)
q

⌉

. There exists a polynomial algorithm that given a graph G with maximum degree k + 1 and a

k-improper colouring C of (G,q) with r colours, produces a k-improper colouring of (G, p) with at most
α′′

k(r, q) × ωk(G, p) + β′′
k (r, q) colours.

In particular, if χk(G,q) ≤ r, then χk(G, p) ≤ α′′
k(r, q) × ωk(G, p) + β′′

k (r, q).

Proof. We use an algorithm globally identical to Algorithm 1 with β = β′′
k (r, q), a = a′′

1(r, q), γ = γ′′
k (r, q)

and α = α′′
1(r, q) in place of βk(r, q), ak(r, q) and αk(r, q) respectively.

Only Step 2.1 is slightly modified in the following way.
As before ωi = ωk(Gi, pi). Big, small, goofy and regular vertices are defined as in the proof of

Theorem 8. A regular vertex is isolated if it is adjacent to no regular vertex.
As in the proof of Theorem 8, at each Step 2.1, we first use a times the colouring C : with ar colours,

each vertex receives aq of them. But the rq additional colours are assigned in a slightly different way: we
give all of them to the big and isolated regular vertices, and we use q times colouring C on the non-isolated
regular vertices, so that each them get q2 additional colours. Hence ni(v) = aq + rq if v is big or isolated
regular, ni(v) = aq + q2 if v is non-isolated regular, and ni(v) = aq if v is goofy.

One shows that the obtained colouring is k-improper in the same way as in the proof of Theorem 8.
We need to check that for each i, ωi+1 ≤ ωi − (aq + rq).

Identically to the proof of Theorem 8, as γ ≥ (k + 2)(rq − 1), one shows that pi+1
max ≤ ωi − (aq + rq).

Claim 3 A star H contains a big vertex or an isolated regular vertex x or two non-isolated regular
vertices.

Proof. Let u be the centre of H and v1, . . . , vk+1 its spikes. Since G has maximum degree k + 1 the
only neighbours of u are the vi’s. Hence, if no vertex of H is big, then u is regular. Moreover, if u is not
isolated, one of the vi’s is also regular. �

Consider a star H of Gi+1. Observe that each vertex of H receives at least aq colours. Moreover,
by Claim 3, H contains a vertex that receives at least aq + rq colours or two vertices receiving at least
aq + q2 colours each. Consequently, pi+1(H) ≤ pi(H)− (k + 2)qa−min{rq, 2q2}. By our choice of a, we
get pi+1(H) ≤ (k + 1)(ωi − (aq + rq)).

Thus θk(Gi+1, pi+1) ≤ ωi − aq − rq, and so ωi+1 ≤ ωi − aq − rq. �

3 Grid graphs

3.1 General algorithms applied to grid graphs

In order to apply Theorems 8 and 10 to grid graphs, we determine χk(GL,q) for every positive integer
q and 1 ≤ k ≤ 3.
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We first prove a preliminary lemma. Let C be a colouring of a weighted graph (G, p). We denote by
cu,v the number of colours assigned to both u and v, that is cu,v = |C(u) ∩ C(v)|. We use the standard
notation N(u) for the neighborhood of u.

Lemma 11 Let C be a k-improper colouring of a weighted graph (G, p).

(i)
∑

v∈N(u)

cu,v ≤ kp(u);

(ii) ∀u, v, C uses at least p(u) + p(v) − cu,v colours;

(iii) ∀u, v, w, C uses at least p(u) + p(v) + p(w) − cu,v − cu,w − cv,w.

Proof. (i) A colour assigned to u is assigned to at most k neighbours of u because C is k-improper.
(ii) and (iii) follow from the Inclusion-Exclusion Formula:

|C(u) ∪ C(v)| = |C(u)| + |C(v)| − |C(u) ∩ C(v)| = p(u) + p(v) − cu,v;

|C(u) ∪ C(v) ∪ C(w)| = |C(u)| + |C(v)| + |C(w)| − |C(u) ∩ C(v)| − |C(u) ∩ C(w)| − |C(v) ∩ C(w)|

+|C(u) ∩ C(v) ∩ C(w)|

≥ p(u) + p(v) + p(w) − cu,v − cu,w − cv,w.

�

Theorem 12 For the grid GL, we have:

(i) χ1(GL,q) = 2q,

(ii) χ2(GL,q) =
⌈

3q
2

⌉

, and

(iii) χ3(GL,q) =
⌈

5q
4

⌉

.

Proof. Let us first show the k-improper colourings of (GL,q) with the required number of colours.
(i) The grid is bipartite so (GL,q) has a 0-improper (and thus also 1-improper) colouring with 2q

colours.
(ii) For 1 ≤ j ≤ 3, let Uj = {(a, b) | a + b = j mod 3}. Assign the colours

⌈

(j−1)q
2

⌉

+ 1, . . . ,
⌈

jq
2

⌉

to

vertices which are not in Uj . See Figure 3 for q = 2.

1,3 1,2

1,3 1,21,3 1,2

1,2 1,2 1,3 1,22,3 1,3

2,3 1,3 1,2 1,3 1,2

1,3 1,2 1,3 1,2 1,3

1,2 1,3 1,22,3

2,3 2,3 2,3

2,3

2,3

2,3

2,3

2,3

2,3

Figure 3: A 2-improper colouring of the square grid.
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1,2,3,4 2,3,4,5 1,3,4,5 1,2,4,5 1,2,3,5 1,2,3,4 2,3,4,5

2,3,4,5 1,3,4,5 1,2,4,5

2,3,4,5 1,3,4,5 1,2,3,51,2,4,5 1,2,3,4 2,3,4,5

1,2,3,51,2,3,41,2,4,5 1,2,3,5

1,2,3,5 2,3,4,5 1,3,4,5 1,2,4,5 1,2,3,41,2,3,5

1,3,4,5 1,2,4,5

1,2,3,4

1,2,3,5 1,2,3,4 2,3,4,5 1,3,4,5 1,2,4,5

1,3,4,5

Figure 4: A 3-improper colouring of the square grid.

(iii) For 1 ≤ j ≤ 5, let Tj be the set of vertices obtained from the vertex (j, 0) by adding the linear

combinations of the vectors 2f1 + f2 and 5f1. For 1 ≤ j ≤ 5, assign the colours
⌈

(j−1)q
4

⌉

+ 1, . . . ,
⌈

jq
4

⌉

to

vertices not in Tj . See Figure 4 for q = 4.

Let us now show that these colourings are optimal. To do this, let C be a k-improper colouring of
(GL,q) with χk(GL,q) colours. If k = 1, consider a 4-cycle in GL. A colour may be used on at most
two of these vertices. Hence 2q colours are needed. Now, suppose that 2 ≤ k ≤ 3 and let u be a vertex
of GL. Applying Lemma 11 (ii) to the four neighbours of u, we obtain: 4χk(GL,q) ≥ 8q−

∑

v∈N(u) cu,v.

Now by Lemma 11 (i), 4χk(GL,q) ≥ (8 − k)q. Therefore, we have respectively χ2(GL,q) ≥ 3q
2 and

χ3(GL,q) ≥ 5q
4 . �

Corollary 13 For 1 ≤ k ≤ 3, there are αk-approximate algorithms for finding a k-improper colouring of
a weighted grid graph, where α1 = 3

2 , α2 = 27
20 , and α3 = 19

16 .

Proof. Theorems 9 and 12 give the result for k = 1. Theorems 8 and 12 give the result for k = 2.
Theorems 10 and 12 give the result for k = 3. �

The following theorem improves the last result for 1-improper colouring of weighted grid graphs:

Theorem 14 There is a 13
9 -approximate algorithm for finding a 1-improper colouring of weighted grid

graph.

Proof. The general idea of the algorithm is still similar, but this time we take advantage of the position
of big vertices and quasi-big vertices (a new type of vertex to be described) to 1-improper colour the grid
graph (cf Claim 4).

Algorithm 2 0. Initialisation: (G0, p0) := (G, p), S := ∅ and i = 0.

1. Add the vertices of low weight to S that will be treated at the end (Step 3):
Si := {v ∈ V (G) | pi(v) < pinf} with pinf = 133, S := S ∪ Si and for all v ∈ Si, s(v) := pi(v).
Gi+1 := Gi − Si.

2. If Gi+1 is not empty:

2.1. Give to each vertex v of Gi+1 a certain number ni(v) of colours among a set of 156 colours, in
such a way that ωk(Gi+1, pi − ni) ≤ ωk(Gi, pi) − 108.

2.2. Set pi+1 := pi − ni and i := i + 1, and go to Step 1.
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12 Jean-Claude Bermond , Frédéric Havet , Florian Huc , Claudia Linhares Sales

3. Colour (G〈S〉, s) with 264 colours. It is possible as smax ≤ pinf − 1 = 132 and χ1(GL, q) = 2q.

Algorithm 2 yields a 1-improper colouring of (G, p) with at most 156
108ωk(G, p) + 264 colours.

Here again we set ωi = ω1(G
i, pi). Let us now describe precisely how to perform Step 2.1. A big

vertex is a vertex such that pi(v) > ωi − d1 with d1 = 24. A small vertex v is a non-big vertex. It is goofy
if it is adjacent to a big vertex (we note Goof the set of goofy vertices), it is quasi-big if pi(v) > ωi − d2

with d2 = 67, and it is regular, otherwise. A 2-star is big if its weight is bigger than 2ωi−d3 with d3 = 45.

Claim 4 Let u and v be two vertices which are big or quasi-big in Gi. In Gi+1, they are at distance at
least 3 or form a connected component.

Proof. Suppose that u and v are at distance at most 2. If they do not form a connected component in
Gi+1, there is a vertex w ∈ V (Gi+1) such that the subgraph induced by u, v and w is a 2-star. Hence
pi(u)+pi(v)+pi(w) ≤ 2ωi. But pi(u)+pi(v)+pi(w) > 2ωi −2d2 +1+pinf = 2ωi, a contradiction. Thus
u and v form a connected component. �

Set a = 48, b = 6 and c = 3. At each step 2.1, we give all the 2a + 8b + 4c colours to the vertices in
the connected components of order 2.

For the vertices not in such small components, we use three different colourings. The two first are
based on the following eight sets of vertices:

• U1 = {(0, 0) + 2if1 + i′(f1 − 2f2), (0, 1) + 2if1 + i′(f1 − 2f2)},

• U2 = {(1, 0) + 2if1 + i′(f1 − 2f2), (1, 1) + 2if1 + i′(f1 − 2f2)},

• U3 = {(0, 1) + 2if1 + i′(f1 − 2f2), (0, 2) + 2if1 + i′(f1 − 2f2)},

• U4 = {(1, 1) + 2if1 + i′(f1 − 2f2), (1, 2) + 2if1 + i′(f1 − 2f2)},

• U5 = {(0, 0) + 2if2 + i′(2f1 − f2), (1, 0) + 2if2 + i′(2f1 − f2)},

• U6 = {(0, 1) + 2if2 + i′(2f1 − f2), (1, 1) + 2if2 + i′(2f1 − f2)},

• U7 = {(1, 0) + 2if2 + i′(2f1 − f2), (2, 0) + 2if2 + i′(2f1 − f2)},

• U8 = {(1, 1) + 2if2 + i′(2f1 − f2), (2, 1) + 2if2 + i′(2f1 − f2)}.

We first assign 2a colours such that each vertex of U1 receive a colours and each vertex of U2 receives
a other colours. Since U1 and U2 form a partition of V , each vertex receives a colours, and since G〈U1〉
and G〈U2〉 have maximum degree 1, the colouring we obtain is 1-improper.

Then we use 8b colours denoted by (i, j), 1 ≤ i ≤ b, 1 ≤ j ≤ 8. We give all these colours to the big
vertices. Then, for 1 ≤ j ≤ 8, we give to each small vertex of Uj \ Goof the colours (i, j), 1 ≤ i ≤ b.
A vertex appears in four of the Uj , so each non-goofy vertex receives 4b colours. Finally, by Claim 4, a
goofy vertex u has a unique big neigbour v. Thus, there is an integer j such that both u and v are in Uj .
We assign to u the colours (i, j), 1 ≤ i ≤ b. Doing so, each goofy vertex receives b colours.

Finally, we use four sets of c colours At, Ad, Al and Ar. Each big or quasi-big vertex receives the
colours of all these sets and each top (resp. down, left, right) neighbour receives the colours of At (resp.
Ad, Al and Ar). This is 1-improper, by Claim 4.

Let us now check that ωi+1 ≤ ωi − 108. Let v be a vertex. If it is big then ni(v) = a + 8b + 4c; if it is
quasi-big, then ni(v) = a+4b+4c; if it is goofy, then ni(v) = a+b+c; if it is regular, then ni(v) ≥ a+4b,
and if, in addition, it is adjacent to a quasi-big vertex, then ni(v) ≥ a + 4b + c. Hence, by our choice of
a, b, c d1 and d2, we have

pi+1
max ≤ ωi − min{a + 8b + 4c, d1 + a + 4b + 4c, d2 + a + b + c, d2 + a + 4b} ≤ pi

max − 108. (1)
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U1 U2 U3 U4

U5 U6 U7 U8

Figure 5: The sets Ui, 1 ≤ i ≤ 8. In each figure, the bold vertices are those of Ui and the bottom left
vertex is (0, 0).

Claim 5 Let H be a big 2-star in (Gi+1, pi). Then, the following hold:

(i) if the centre of H is goofy, then H has a big vertex;

(ii) if H has two goofy vertices, then the third one is big;

(iii) if H has a goofy vertex, then it has a big or quasi-big vertex.

Proof. Let u be the centre of H and v1 and v2 its spikes.
(i) Suppose that u is goofy. Let w be its big neighbour. Suppose for a contradiction that w /∈ {v1, v2}.

Considering the two 2-stars with vertex sets {w, u, v1} and {w, u, v2}, we obtain that pi(v1) + pi(u) ≤
2ωi − pi(w) ≤ ωi + d1 − 1 and pi(v2) + pi(u) ≤ 2ωi − pi(w) ≤ ωi + d1 − 1. Hence 2ωi + 2d1 − 2 ≥
pi(v1) + pi(v2) + 2pi(u) ≥ pi(u) + pi(H) ≥ pi(u) + 2ωi − d3 + 1, and so pi(u) ≤ 2d1 + d3 − 3. But then u
is in Si, which is a contradiction.

(ii) Suppose, by way of contradiction, that H has two goofy vertices and no big vertex. By (i), v1

and v2 are the goofy vertices. Let w1 (resp. w2) be the big neighbour of v1 (resp. v2). (We may have
w1 = w2). As in (i), considering the two 2-stars with vertex sets {w1, v1, u} and {w2, v2, u}, we obtain
pi(v1) + pi(u) ≤ ωi + d1 − 1 and pi(v2) + pi(u) ≤ ωi + d1 − 1. These inequalities yield the contradiction
as in (i).

(iii) If u is goofy, then H has a big vertex by (i). Suppose now that one spike of H, say v1, is
goofy. Let w be the big neighbour of v1. If w = u, we have the result. Assume now that w 6= u.
Considering the 2-star induced by {w, v1, u}, we obtain pi(v1) + pi(u) ≤ ωi + d1 − 1. Since H is big,
pi(v1) + pi(u) + pi(v2) ≥ 2ωi − d3 + 1. So pi(v2) ≥ ωi − d1 − d3 + 2, that is, v2 is quasi-big. �

Let H be a 2-star. If it is not big, its weight decreases by at least 3a + 3b + 3c. Hence

pi+1(H) ≤ 2ωi − 45 − (3a + 3b + 3c) = 2wi − 216 (2)

If H is big, then by Claim 5, it has either three non-goofy vertices, in which case its weight decreases
by at least 3a + 12b, or one big vertex and two goofy vertices, in which case its weight decreases by
3a + 10b + 6c, or one big vertex, one regular vertex and one goofy vertex, in which case its weight
decreases by 3a + 13b + 5c, or one quasi-big vertex, one regular vertex adjacent to this quasi-big vertex
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and one goofy vertex, in which case its weight decreases by 3a + 9b + 6c. Hence, by our choice of a, b, c,
for a big star H, we have:

pi+1(H) ≤ pi(H) − min(3a + 12b, 3a + 9b + 6c, 3a + 13b + 5c) ≤ pi(H) − 216. (3)

We conclude the proof observing that Inequalities (1), (2) and (3) yield ωi+1 ≤ ωi − 108. �

4 Hexagonal graphs

4.1 General algorithms applied to hexagonal graphs

Theorem 15 For the triangular lattice TL, we have:

(i) χ1(TL,q) =
⌈

5q
2

⌉

,

(ii) χ2(TL,q) = 2q,

(iii) χ3(TL,q) =
⌈

3q
2

⌉

,

(iv) χ4(TL,q) =
⌈

4q
3

⌉

and

(v) χ5(TL,q) =
⌈

7q
6

⌉

.

Proof. Let us first show the k-improper colourings of (TL,q) with the required number of colours.
(i) For 1 ≤ j ≤ 5, let Aj be the set of vertices obtained from the vertex (j, 0) by adding the linear

combinations of the vectors 2e1 + e2 and 5e1. For 1 ≤ j ≤ 5, assign the colours
⌈

(j−1)q
2

⌉

+ 1, . . . ,
⌈

jq
2

⌉

to vertices of Aj ∪ Aj+1 (with A6 = A1) (see Figure 4.1 for q = 2).

1,25,14,53,41,25,1 2,3

1,25,14,53,41,25,1 2,3

1,2 4,52,33,4 3,45,14,5

1,2 4,52,33,4 3,45,14,5

1,25,14,53,41,25,1 2,3

Figure 6: A 1-improper colouring of the triangular lattice.

(ii) Colour a vertex (a, b) with 1, . . . , q if a is even, and with q + 1, . . . , 2q, otherwise.
(iii) For 1 ≤ j ≤ 3, let Sj be the set of vertices obtained from the vertex (j, 0), by adding the linear

combinations of the vectors e1 + e2 and 3e1. Assign the colours
⌈

(j−1)q
2

⌉

+ 1, . . . ,
⌈

jq
2

⌉

to the vertices

which are not in Sj .
(iv) For 0 ≤ j1 ≤ 1 and 1 ≤ j2 ≤ 2, T2j1+j2 = {(a, b) | a ≡ j1 mod 2 and b ≡ j2 mod 2}. Assign

the colours
⌈

(j−1)q
3

⌉

+ 1, . . . ,
⌈

jq
3

⌉

to the vertices which are not in Tj .

(v) For 1 ≤ j ≤ 7, let Uj be the set of vertices obtained from the vertex (j, 0) by adding the linear

combinations of the vectors 2e1 + e2 and 7e1. Assign the colours
⌈

(j−1)q
6

⌉

+ 1, . . . ,
⌈

jq
6

⌉

to the vertices

which are not in Uj .
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Let us now show that these colourings are optimal. For this, let C be a k-improper colouring of
(TL,q) with χk(TL,q) colours and u be a vertex of TL.

Applying Lemma 11 (i) and (ii) to u and its six neighbours, we obtain that 6χk(TL,q) ≥ (12 − k)q.
For k = 3, 4 or 5, we have, respectively, χ3(TL,q) ≥ 3q

2 , χ4(TL,q) ≥ 4q
3 and χ5(TL,q) ≥ 7q

6 .
For 1 ≤ k ≤ 2, we need an extra argument. Let u and v be two adjacent vertices and t and w their

two common neighbours. Set f(u, v) = cu,t + cu,v + cu,w.
Consider now the ordered pair (u, v) which minimizes f(u, v), i.e. f(u, v) = fmin . Then f(v, u) =

cv,t + cu,v + cv,w, and therefore, f(u, v)+f(v, u) = (cu,t + cu,v + cv,t)+ (cu,w + cu,v + cv,w). By Lemma 11
(iii), we have f(u, v) + f(v, u) ≥ 6q − 2χk(TL,q).

Let u′ be the vertex symmetrical to u compared to v. By Lemma 11 (i), f(v, u) + f(v, u′) ≤ kq, so
f(v, u′) ≤ kq − f(v, u) ≤ kq − 6q + 2χk(TL,q) + fmin.

For k = 1, if χk(TL,q) < 5q
2 , we would have f(v, u′) < fmin. Similarly, for k = 2, if χk(TL,q) < 2q,

we would have f(v, u′) < fmin. In both cases, it contradicts the minimality of f in (u, v). �

Corollary 16 For 1 ≤ k ≤ 5, there are αk-approximate algorithms for finding a k-improper colouring of
a weighted hexagonal graph, where α1 = 20

11 , α2 = 12
7 , α3 = 18

13 , α4 = 80
63 , and α5 = 41

36 .

Proof. Theorems 9 and 15 give the result for k = 1. Theorems 8 and 15 give the result for 2 ≤ k ≤ 4.
Finally, Theorems 10 and 15 give the result for k = 5. �

5 Conclusion

We have proposed several approximate algorithms whose approximation ratios are summarized in the
Table 1.

k = 1 k = 2 k = 3 k = 4 k = 5
Grid 13/9 27/20 19/16 1 1

Hexagonal 20/11 12/7 18/13 80/63 41/36

Table 1: Summary of the approximation ratios.

A natural continuation of this work would be to improve the above ratios. It would be very nice to
prove the existence of a Polynomial Time Approximation Scheme or some unapproximability results for
these problems. In this direction, the first thing to do regarding grid graphs is to answer Problem 3, i.e.
to find whether or not optimally improper colouring a weighted grid graph is NP-complete. We strongly
believe that it must be NP-complete.
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