
HAL Id: inria-00379408
https://hal.inria.fr/inria-00379408v2

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LiFTinG: Lightweight Freerider-Tracking Protocol in
Gossip

Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Maxime
Monod, Swagatika Prusty

To cite this version:
Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Maxime Monod, Swagatika
Prusty. LiFTinG: Lightweight Freerider-Tracking Protocol in Gossip. [Research Report] RR-6913,
INRIA. 2010, pp.21. �inria-00379408v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50095544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00379408v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

13
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

LiFTinG: Lightweight protocol for
Freerider-Tracking in Gossip

Rachid Guerraoui — Kévin Huguenin — Anne-Marie Kermarrec — Maxime Monod —

Swagatika Prusty

N° 6913

December 2009

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip

Rachid Guerraoui∗ , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod∗ ,
Swagatika Prusty†

Thème : Réseaux, systèmes et services, calcul distribué
Équipes-Projets Asap

Rapport de recherche n° 6913 — December 2009 — 21 pages

Abstract: This report presents LiFTinG, the first protocol to detect freeriders, including colluding
ones, in gossip-based content dissemination systems with asymmetric data exchanges. LiFTinG relies
on nodes tracking abnormal behaviors by cross-checking the history of their previous interactions, and
exploits the fact that nodes pick neighbors at random to prevent colluding nodes from covering up each
others’ bad actions.

We present a methodology to set the parameters of LiFTinG based on a theoretical analysis. In
addition to simulations, we report on the deployment of LiFTinG on PlanetLab. In a 300-node system,
where a stream of 674 kbps is broadcast, LiFTinG incurs a maximum overhead of only 8% while providing
good results: for instance, with 10% of freeriders decreasing their contribution by 30%, LiFTinG detects
86% of the freeriders after only 30 seconds and wrongfully expels only a few honest nodes.

Key-words: Peer-to-peer systems, Gossip-based protocols, Freeriders, Accountability

∗ Laboratoire de programmation distribuée (LPD), École Polytechnique Fédérale de Lausanne (EPFL)
† IIT Guwahati

LiFTinG : un protocole léger de détection de pair égöıste

Résumé :

Mots-clés :

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 3

1 Introduction

Gossip protocols have recently been successfully applied to decentralize large-scale high-bandwidth con-
tent dissemination [5,7]. Such systems are asymmetric: nodes propose packet identifiers to a dynamically
changing random subset of other nodes. These, in turn, request packets of interest, which are subse-
quently pushed by the proposer. In such a three-phase protocol, gossip is used to disseminate content
location whereas the content itself is explicitly requested and served. These protocols are commonly used
for high-bandwidth content dissemination with gossip, e.g., [5, 7, 8, 21] (similar scheme is also present in
mesh-based systems, e.g., [20, 25,26]).

The efficiency of such protocols highly relies on the willingness of participants to collaborate, i.e., to
devote a fraction of their resources, namely their upload bandwidth, to the system. Yet, some of these
participants might be tempted to freeride [19], i.e., not contribute their fair share of work, especially
if they could still benefit from the system. Freeriding is common in large-scale systems deployed in
the public domain [1] and may significantly degrade the overall performance in bandwidth-demanding
applications such as streaming. In addition, freeriders may collude, i.e., collaborate to decrease their
individual and common contribution to the system and cover each other up to circumvent detection
mechanisms.

By using the Tit-for-Tat (TfT) incentives (inspired from file-sharing systems [4]), TfT-based content
dissemination solutions (e.g., [21]) force nodes to contribute as much as they benefit by means of balanced
symmetric exchanges. As we review in related work (Section 7), those systems do not perform as well
as asymmetric systems in terms of efficiency and scalability.

In practice, many proposals (e.g., [5, 20, 25, 26]) consider instead asymmetric exchanges where nodes
are supposed to altruistically serve content to other nodes, i.e., without asking anything in return, where
the benefit of a node is not directly correlated to its contribution but rather to the global health of
the system. The correlation between the benefit and the contribution is not immediate. However, such
correlation can be artificially established, in a coercive way, by means of verification mechanisms that
ensure that nodes which do not contribute their fair share do not benefit anymore from the system.
Freeriders are then defined as nodes that decrease their contribution as much as possible while keeping
the probability of being expelled low.

We consider a generic three-phase gossip protocol where data is disseminated following an asymmetric
push scheme. In this context, we propose LiFTinG, a lightweight mechanism to track freeriders. To the
best of our knowledge, LiFTinG is the first protocol to secure asymmetric gossip protocols against possibly
colluding freeriders.

At the core of LiFTinG lies a set of deterministic and statistical distributed verification procedures
based on accountability (i.e., each node maintains a digest of its past interactions). Deterministic pro-
cedures check that the content received by a node is further propagated following the protocol (i.e., to
the right number of nodes within short delay) by cross-checking nodes’ logs. Statistical procedures check
that the interactions of a node are evenly distributed in the system using statistical techniques. Interest-
ingly enough, the high dynamic and strong randomness of gossip protocols, that may be considered as a
difficulty at first glance, happens to help tracking freeriders. Effectively, LiFTinG exploits the very fact
that nodes pick neighbors at random to prevent collusion: since a node interacts with a large subset of
the nodes, chosen at random, this drastically limits its opportunity to freeride without being detected,
as it prevents it from deterministically choosing colluding partners that would cover it up.

LiFTinG is lightweight as it does not rely on heavyweight cryptography and incurs only a very low
overhead in terms of bandwidth. This overhead can be dynamically adjusted and potentially reduced
to zero when the system is healthy. In addition, LiFTinG is fully decentralized as nodes are in charge
of verifying each others’ actions and monitoring each others’ behavior. Finally, LiFTinG provides a
good probability of detecting freeriders while keeping the probability of false positive, i.e., inaccurately
classifying a correct node as a freerider, very low.

To evaluate LiFTinG, we give analytical results backed up with simulations, providing means to set
up the parameters of LiFTinG in a real environment. Additionally, we deployed LiFTinG over PlanetLab,
where a stream of 674 kbps is broadcast to 300 PlanetLab nodes having their upload bandwidth capped
to 1000 kbps. In the presence of freeriders, the health of the system (i.e., the proportion of nodes able
to receive the stream in function of the stream lag) degrades significantly compared to a system where
all nodes follow the protocol. Figure 1 shows a clear drop between the plain line (no freeriders) and the
dashed line (25% of freeriders).

RR n° 6913

4 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

In this context, LiFTinG incurs a maximum network overhead of only 8%. When freeriders decrease
their contribution by 30%, LiFTinG detects 86% of the freeriders and wrongly expels 12% of honest nodes,
after only 30 seconds. Most of wrongly expelled nodes deserve it, in a sense, as their actual contribution
was smaller than required. However, this is due to poor capabilities, as opposed to freeriders that
deliberately decrease their contribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60fr
ac

ti
on

of
n
o
d
es

v
ie

w
in

g
a

cl
ea

r
st

re
am

stream lag (s)

No freeriders
25% freeriders

25% freeriders (LiFTinG)

Figure 1: System efficiency in the presence of freeriders.

Gossip protocols are almost not impacted by crashes [6, 16]. However, high-bandwidth content dis-
semination with gossip clearly suffers more from freeriders than from crashes. When content is pushed
in a single phase, a freerider is equivalent to a crashed node. In three-phase protocols, crashed nodes do
not provide upload bandwidth anymore but they do not consume any bandwidth either, as they do not
request content from proposers after they crash. On the contrary, freeriders decrease their contribution,
but still request content.

The rest of the paper is organized as follows. Section 2 describes our illustrative gossip protocol
and Section 3 lists and classifies the opportunities for nodes to freeride. Section 4 presents LiFTinG and
Section 5 formally analyzes its performance backed up by extensive simulations. Section 6 reports on the
deployment of LiFTinG over the PlanetLab testbed. Section 7 reviews related work. Section 8 concludes
the paper.

2 Gossip Protocol

We consider a system of n nodes that communicate over lossy links (e.g., UDP) and can receive incoming
data from any other node in the system (i.e., the nodes are not guarded/firewalled, or there exists a means
to circumvent such protections [17]). In addition we assume that nodes can pick uniformly at random a
set of nodes in the system. This is usually achieved using full membership or a random peer sampling
protocol [14, 18]. Such sampling protocols can be made robust to byzantine attacks using techniques
such as Brahms [3].

A source broadcasts a stream to all nodes using a three-phase gossip protocol [5, 7]. The content is
split into multiple chunks uniquely identified by ids. In short, each node periodically proposes a set of
chunks it received to a set of random nodes. Upon reception of a proposal, a node requests the chunks it
needs and the sender then serves them. All messages are sent over UDP. The three phases are illustrated
in Figure 2b.

Propose phase A node periodically, i.e., at every gossip period Tg, picks uniformly at random a set
of f nodes and proposes to them (as depicted in Figure 2a) the set P of chunks it received since its last
propose phase. The size f of the node set, namely the fanout, is the same for all nodes and kept constant
over time (the fanout is typically slightly larger than ln (n) [16], that is f = 12 for a 10, 000-node system).
Such a gossip protocol follows an infect-and-die process as once a node proposed a chunk to a set of
nodes, it does not propose it anymore.

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 5

p0

p1

p8

p5

p6































































































f nodes

propose(3, 7, 9)

...

(a) Gossip dissemination

k · Tg propose(3, 7, 9)

request(3, 9)

serve(c3, c9)

serve(c3, c7)

serve(c9)
p0 p1

(b) Three phases

Figure 2: Three-phase generic gossip.

Request phase Upon reception of a proposal of a set P of chunks, a node determines the subset of
chunks R it needs and requests these chunks.

Serving phase When a proposing node receives a request corresponding to a proposal, it serves the
chunks requested. If a request does not correspond to a proposal, it is ignored. Similarly, nodes only
serve chunks that were effectively proposed, i.e., chunks in P ∩R.

3 Freeriding

Nodes are either honest or freeriders. Honest nodes strictly follow the protocol, including the proposed
verifications of LiFTinG. Freeriders allow themselves to deviate from the protocol in order to minimize
their contribution while maximizing their benefit. In addition, freeriders may adopt any behavior not
to be expelled, including lying to verifications, or cover up colluding freeriders’ bad actions. Note that
under this model, freeriders do not wrongfully accuse honest nodes. Effectively, making honest nodes
expelled (i) does not increase the benefit of freeriders, (ii) does not prevent them from being detected, i.e.,
detection is based solely on the suspected node’s behavior regardless of other nodes’ behaviors (details
in Section 5.1), and finally (iii) leads to an increased proportion of freeriders, degrading the benefit of
all nodes. This phenomenon is known as the tragedy of the commons [11]. We denote by m the number
of freeriders.

Freeriders may deviate from the gossip protocol in three ways: (i) bias the partner selection, (ii)
drop messages they are supposed to send, or (iii) modify the content of the messages they send. In the
sequel, we exhaustively list all possible attacks in each phase of the protocol, discuss their motivations
and impacts, and then extract and classify those that may increase the individual interest of a freerider
or the common interest of colluding freeriders. In the sequel, attacks that require or profit to colluding
nodes are denoted with a ‘⋆’. The analysis on the possible freeriding attacks to the three-phase protocol
is at the core of LiFTinG.

3.1 Propose phase

During the first phase, a freerider may (i) communicate with less than f nodes, (ii) propose less chunks
than it should, (iii) select as communication partners only a specific subset of nodes, or (iv) reduce its
proposing rate.

(i) Decreasing fanout By proposing chunks to f̂ < f nodes per gossip period, as illustrated in
Figure 3, the freerider trivially reduces the potential number of requests, and thus the probability
of serving chunks. Therefore, its contribution in terms of the amount of data uploaded is decreased.

(ii) Invalid proposal A proposal is valid if it contains every chunk received in the last gossip period.
Proposing only a subset of the chunks received in the last period, as illustrated in Figure 4, obviously
decreases the number of requested chunks. However, a freerider has no interest in proposing chunks
it does not have since, contrarily to TfT-based protocols, uploading chunks to a node does not imply

RR n° 6913

6 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty







f nodes

propose

...

(a) Honest node







f̂ < f nodes

propose

...

(b) Freerider

Figure 3: A freerider communicates with f̂ < f partners.

that the latter sends chunks in return. In other words, proposing more (and possibly fake) chunks
does not increase the benefit of a node and does thus not need to be considered.

propose(a, b, c)

serve(a, c)

serve(b)

(a) Honest node

propose(a, b)

serve(a, c)

serve(b)

(b) Freerider

Figure 4: A freerider deliberately removes some chunks (c here) from its proposal.

(iii) Biasing the partners selection (⋆) Considering a group of colluding nodes, a freerider may
want to bias the random selection of nodes to privilege its colluding partners, so that the group’s
benefit increases, as illustrated in Figure 5.

all nodes

pick partners
(uniform)

(a) Honest node

all nodes

freeriders
pick partners

(biased)

(b) Colluding freeriders

Figure 5: An honest node picks communication partners uniformly at random from the set of all nodes
whereas a freerider biases the partner selection to pick mainly colluding nodes.

(iv) Increasing the gossip period A freerider may increase its gossip period, leading to less frequent
proposals advertising more, but “older”, chunks per proposal as illustrated in Figure 6. This implies
a decreased interest of the requesting nodes and thus a decreased contribution for the sender. This
is due to the fact that an old chunk has a lower probability to be of interest as it becomes more
replicated over time.

3.2 Pull request phase

Nodes are expected to request only chunks they have been proposed. A freerider would increase its benefit
by opportunistically requesting extra chunks (even from nodes that did not propose these chunks). The
dissemination protocol itself prevents this misbehaving by automatically dropping such requests.

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 7

propose(a, b)

serve(a)

serve(b)

propose(c, d, e)

serve(c, e)

serve(d)







gossip period







gossip period

(a) Honest node

propose(a, b, d)

serve(a)

serve(b)

serve(c, e)

serve(d)







> gossip period







> gossip period

(b) Freerider

Figure 6: With a larger gossip period, some proposed chunks are unlikely to be requested (e.g., a and b
here).

3.3 Serving phase

In the serving phase, freeriders may (i) send only a subset of what was requested or (ii) send junk. The
first obviously decreases the freeriders’ contribution as they serve fewer chunks than they are supposed
to. However, as we mentioned above, in the considered asymmetric protocol, a freerider has no interest
in sending junk data, since it does not receive anything in return of what it sends.

3.4 Summary

Analyzing the basic gossip protocol in details allowed to identify the possible attacks. Interestingly
enough, these attacks share similar aspects and can thus be gathered into three classes that dictate the
rationale along which our verification procedures are designed.

The first is quantitative correctness that characterizes the fact that a node effectively proposes to the
correct number of nodes (f) at the correct rate (1/Tg). Assuming this first aspect is verified, two more
aspects must be further considered: causality that reflects the correctness of the deterministic part of the
protocol, i.e., received chunks must be proposed in the next gossip period as depicted in Figure 2b, and
statistical validity that evaluates the fairness (with respect to the distribution specified by the protocol)
in the random selection of communication partners.

4 Lightweight Freerider-Tracking in Gossip

LiFTinG is a Lightweight protocol for Freerider-Tracking in Gossip that encourages nodes, in a coercive
way, to contribute their fair share to the system, by means of distributed verifications. LiFTinG consists
of (i) direct verifications and (ii) a posteriori verifications. Verifications that require more information
than what is available at the verifying node and the inspected node are referred to as cross-checking.
In order to control the overhead of LiFTinG, the frequency at which such verifications are triggered is
controlled by a parameter pcc, as described in Section 4.2. Verifications can either lead to the emission
of blames or to expulsion depending on the gravity of the misbehavior.

Direct verifications are performed regularly, while the protocol is running: the nodes’ actions are
directly checked. They aim at checking that all chunks requested are served and that all chunks served
are further proposed to a correct number of nodes, i.e, they check the quantitative correctness and
causality. Direct verifications are composed of (i) direct checking and (ii) direct cross-checking.

A posteriori verifications are run sporadically. They require each node to maintain a log of its past
interactions, namely a history. In practice, a node stores a trace of the events that occurred in the last
h seconds, i.e., corresponding to the last nh = h/Tg gossip periods. The history is audited to check the
statistical validity of the random choices made when selecting communication partners, namely entropic
check. The veracity of the history is verified by cross-checking the involved nodes, namely a posteriori
cross-checking.

RR n° 6913

8 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

p

p’s managers (AVMON)

update/checkp’s score
(L IFTING)

(3-PHASEGOSSIP)

push content

push content

checkp’s actions
(L IFTING)

checkp’s actions
(L IFTING)

blame

blame

blacklistpblacklistp

(GOSSIP REVOCATION)(GOSSIP REVOCATION)

Figure 7: Overview of LiFTinG

We present the blaming architecture in Section 4.1 and present direct verifications in details in
Section 4.2. Since freeriders can collude not to be detected, we expose how they can cover up each
other’s misbehaviors in Section 4.3 and address this in Section 4.4.

We analyze the message complexity of LiFTinG in Section 4.5. The different attacks and corresponding
verifications are summarized in Table 1.

Attack Type Detection

fanout decrease (f̂ < f) quantitative direct cross-check
partial propose (P) causality direct cross-check
partial serve (|S| < |R|) quantitative direct check
bias partners selection (⋆) entropy entropic check, a posteriori cross-check

Table 1: Summary of attacks and associated verifications.4.1 Blaming architecture

In LiFTinG, the detection of freeriders is achieved by means of a score assigned to each node. When a node
detects that some other node freerides, it emits a blame message containing a blame value against the
suspected node. Summing up the blame values of a node results in a score. For scores to be meaningful,
blames emitted by different verifications should be comparable and homogeneous. In order to collect
blames targeting a given node and maintain its score, each node is monitored by a set of other nodes
named managers, distributed among the participants. Blame messages towards a node are sent to its
managers. When the score of a node p drops beyond a fixed threshold (the design choice of using a fixed
threshold is explained in details in Section 5.1), the managers spread – through gossip – a revocation
message against p making the nodes of the system progressively remove p from their membership. A
representation of blame messages sent to p’s managers and revocation messages gossiped from those
managers to other participants in case p’s score goes below a threshold is synthesized in Figure 7.

The blaming architecture of LiFTinG is built on top of the AVMON [23] monitoring overlay. In
AVMON, nodes are assigned a fixed-size set of M random managers consistent over time which make it
very appealing in our setting, namely a dynamic peer-to-peer environment subject to churn with possibly
colluding nodes. The fact that the number M of managers is constant makes the protocol scalable as
the monitoring load at each node is independent from the system size. Randomness prevents colluding
freeriders from covering each other up and consistency enables long-term blame history at the managers.
The monitoring relationship is based on a hash function and can be advertised in a gossip-fashion by
piggybacking node’s monitors in the view maintenance messages (e.g., exchanges of local views in the
distributed peer-sampling service). Doing so, nodes quickly discover other nodes’ managers – and are
therefore able to blame them if necessary – even in the presence of churn. In addition, nodes can locally
verify (i.e., without the need for extra communication) whether the mapping, node to managers, is correct
by hashing the nodes’ ip addresses, preventing freeriders from forging fake or colluding managers. In
case a manager does not map correctly to a node, a revocation against the concerned node is sent.

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 9

4.2 Direct verifications

In LiFTinG, two direct verifications are used. The first aims at ensuring that every requested chunk is
served, namely a direct check. Detection can be done locally and it is therefore always performed. If
some requested chunks are missing, the requesting node blames the proposing node by f/ |R| (where R
is the set of requested chunks) for each chunk that has not been delivered.

The second verification checks that received chunks are further proposed to f nodes within the next
gossip period. This is achieved by a cross-checking procedure that works as follows: a node p1 that
received a chunk ci from p0 acknowledges to p0 that it proposed ci to a set of f nodes. Then, p0 sends
confirm requests (with probability pcc) to the set of f nodes to check whether they effectively received a
propose message from p1 containing ci. The f witnesses reply to p0 with answer messages confirming or
infirming p1’s acknowledgment sent to p0.

propose(i)

request(i)

serve(ci)

serve(ci)

ack[i](p2, p3)

answer: yes/no

(pcc)? confirm[i](p1)

t

k · Tg

p0 p1 p2 p3

Figure 8: Cross-checking protocol.

Figure 8 depicts the message sequence composing a direct cross-checking verification (with a fanout
of 2 for the sake of readability). The blaming mechanism works as follows: (i) if the ack message is not
received, the verifier p0 blames the verified node p1 by f , and (ii) for each missing or negative answer
message, p0 blames p1 by 1.

Since the verification messages (i.e., ack, confirm and confirm responses) for the direct cross-checking
are small and in order to limit the subsequent overhead of LiFTinG, direct cross-checking is done exclu-
sively with UDP. The blames corresponding to the different attacks are summarized in Table 2.

Attacks Blame values

fanout decrease (f̂ < f) f − f̂ from each verifier
partial propose 1 (per invalid proposal) from each verifier
partial serve (|S| < |R|) f · (|R| − |S|)/ |R| from each requester

Table 2: Summary of attacks and associated blame values.

Blames emitted by the direct verification procedures of LiFTinG are summed into a score reflecting
the nodes’ behaviors. For this reason, blame values must be comparable and homogeneous. This means
that two misbehaviors that reduce a freerider’s contribution by the same amount should lead to the same
value of blame, regardless of the misbehaviors and the verification.

We consider a freerider pf that received c chunks and wants to reduce its contribution by a factor

δ (0 ≤ δ ≤ 1). To achieve this goal, pf can: (i) propose the c received chunks to only f̂ = (1 − δ) · f
nodes, (ii) propose only a proportion (1− δ) of the chunks it received, or (iii) serve only (1− δ) · |R| of
the |R| chunks it was requested. For the sake of simplicity, we assume that f̂ , c · δ, c/f and δ · |R| are all
integers. The number of verifiers, that is, the number of nodes that served the c chunks to pf is called
the fanin (fin). On average, we have fin ≃ f and each node serves c/f chunks [9].

We now derive, for each of the three aforementioned misbehaviors, the blame value emitted by the
direct verifications.

RR n° 6913

10 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

(i) Fanout decrease (direct cross-check): If pf proposes all the c chunks to only f̂ nodes, it is blamed

by 1 by each of the fin verifiers, for each of the f − f̂ missing “propose target”. This results in a
blame value of fin · (f − f̂) = fin · δ · f ≃ δf2.

(ii) Partial propose (direct cross-check): If pf proposes only (1− δ) · c chunks to f nodes, it is blamed
by f by each of the node that provided at least one of the missing chunks. A freerider has therefore
interest in removing from its proposal chunks originating from the smallest subset of nodes. In this
case, its proposal is invalid from the standpoint of δ · fin verifiers. This results in a blame value of
δ · fin · f ≃ δ · f2.

(iii) Partial serve (direct check): If pf serves only (1 − δ) · |R| chunks, it is blamed by f/ |R| for each
of the δ · |R| missing chunk by each of the f requesting nodes. This again results in a blame value
of f · (f/ |R|) · δ · |R| = δ · f2.

The blame values emitted by the different direct verifications are therefore homogeneous and compa-
rable on average since all misbehaviors lead to the same amount of blame for a given degree of freeriding
δ. Thus, they result in a consistent and meaningful score when summed up.

4.3 Fooling the direct cross-check (⋆)

Considering a set of colluding nodes, nodes may lie to verifications to cover each other up. Consider the
situation depicted in Figure 9a, where p1 is a freerider. If p0 colludes with p1, then it will not blame p1,
regardless of p2’s answer. Similarly, if p2 colludes with p1, then it will answer to p0 that p1 sent a valid
proposal, regardless of what p1 sent. Even when neither p0 nor p2 collude with p1, p1 can still fool the
direct cross-checking thanks to a colluding third party by implementing a man-in-the-middle attack as
depicted in Figure 9b. Indeed, if a node p7 colludes with p1, then p1 can tell p0 it sent a proposal to p7
and tell p2 that the chunk originated from p7. Doing this, both p0 and p2 will not detect that p1 sent an
invalid proposal. The a posteriori verifications presented in the next section address this issue.

p0 p1 p2

serve propose

confirm

yes/no
(a) Direct cross-checking

p
0

p⋆

1

p⋆

7

p
2

serve propose

confirm

yes

confirm

yes/no

(b) Man-in-the-middle attack

Figure 9: Direct cross-checking and attack. Colluding nodes are denoted with a ‘⋆’.

4.4 A posteriori verifications

As stated in the analysis of the gossip protocol, the random choices made in the partners selection must
be checked. In addition, the example described in the previous section, where freeriders collude to circum-
vent direct cross-checking, highlights the need for statistical verification of a node’s past communication
partners.

The history of a node that biased its partner selection contains a relatively large proportion of
colluding nodes. If only a small fraction of colluding nodes is present in the system, they will appear
more frequently than honest nodes in each other’s histories and can therefore be detected. Based on this
remark, we propose an entropic check to detect the bias induced by freeriders on the history of nodes,
illustrated in Figure 10.

When inspecting the local history of a node, the verifier computes the number of occurrences of each
node in the set of proposals sent by p during the last h seconds. Defining Fh as the multiset of nodes
to whom p1 sent a proposal during this period (a node may indeed appear more than once in Fh), the
distribution d̃h of nodes in Fh characterizes the randomness of the partners selection. We denote by
d̃h,i the number of occurrences of node i (i ∈ {1, . . . , n}) in Fh normalized by the size of Fh. Assessing

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 11

p1, p3, p5
p0, p4, p7
p2, p3, p5

nh entries







history
Fh = {p0, p1, p2, p3, p3, p4, p5, p5, p7}

d̃h =

fr
eq

ue
nc

y

node0 1 2 3 4 5 6 7

H(d̃h)
?
> γ

entropy

Figure 10: Entropic check on proposals (f = 3).

the uniformity of the distribution d̃ of p1’s history is achieved by comparing its Shannon entropy to a
threshold γ (0 ≤ γ ≤ log2(nhf)).

H(d̃h) = −
∑

i

d̃h,i log2(d̃h,i) (1)

The entropy is maximum when every node of the system appears at most once in Fh (assuming n >
|Fh| = nhf). In that case, it is equal to log2(nhf). Since the peer selection service may not be perfect,
the threshold γ must be tolerant to small deviation with respect to the uniform distribution to avoid
false positives (i.e., honest nodes being blamed). Details on how to dimension γ are given in Section 5.2.

An entropic check must be coupled with an a posteriori cross-checking verification procedure to
guarantee the validity of the inspected node’s history. Cross-checking is achieved by polling all or a
subset of the nodes mentioned in the history for an acknowledgment. The inspected node is blamed by 1
for each proposal in its history that is not acknowledged by the alleged receiver. Therefore, an inspected
freerider replacing colluding nodes by honest nodes in its history in order to pass the entropic check will
not be covered by the honest nodes and will thus be blamed accordingly.

Because of the man-in-the middle attack presented in Section 4.2, a complementary entropic check
is performed on the multi-set of nodes F ′

h that asked the nodes in Fh for a confirmation, i.e., direct
cross-checking. On the one hand, for an honest node p0, F ′

h is composed of the nodes that sent chunks
to p0 – namely its fanin. On the other hand, for a freerider p⋆0 that implemented the man-in-the-middle
attack, the set F ′

h of p⋆0 contains a large proportion of colluding nodes – the nodes that covered it up for
the direct cross-checking – and thus fail the entropic check. If the history of the inspected node does not
pass the entropic checks (i.e, fanin and fanout), the node is expelled from the system.

Local history auditing verifications are sporadically performed by the nodes using TCP connections.
The reasons to use TCP are that (i) the overhead of establishing a connection is amortized since local
history auditing happens sporadically and carries out a large amount of data, i.e., proportional to h, and
(ii) local auditing is very sensitive to message losses as it can lead to expulsion from the system.

4.5 Communication costs

In this section, we evaluate the overhead incurred by LiFTinG. To this end, we compute the maximum
number of verification and blame messages sent by a node during one gossip period. The overheads of
the verifications are summarized in Table 3. Note that we do not consider statistical verifications in this
section as it does not imply a regular overhead but only sporadic message exchanges.

Direct check Verifying that what was requested is actually served does not require any exchange of
verification messages as direct check consists only in comparing the number of chunks requested by the
verifier to the number of chunks it really received. However, direct check may lead to the emission of f
blames, i.e., a blame for each sender (to M managers). The communication overhead caused by direct
checking is therefore O(M · f) messages.

Direct cross-checking In order to check that the chunks it sent during the previous gossip period
are further proposed, the verifier polls the f partners of its f partners with probability pcc, i.e., sending
confirm messages. Similarly, a node is polled by pcc ·f2 nodes per gossip period on average and therefore
sends pcc · f2 answers to confirm messages. Finally, a node sends the list of its current partners (i.e., ack
messages) to the f nodes (on average) that served chunks to it in the last gossip period, i.e., sending of

RR n° 6913

12 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

the ack messages. In addition, since a node inspects its f partners, direct cross-checking may lead to the
emission of a maximum of f blames (to M managers). The communication overhead caused by direct
cross-checking is therefore O(pcc · f2 + pcc ·M · f + f) messages.

The number of messages sent by LiFTinG is O(M · f + f2). This has to be compared to the number of
messages sent by the three-phase gossip protocol itself, namely f(2 + |S|), where S is the set of served
chunks, the two additional messages being the proposal and the request. The overhead of LiFTinG is
negligible when taking into account the size of the chunks sent by a node, which is several orders of
magnitude larger than the verification and blame messages. Note that M is a system parameter defining
the number of managers of a node and does not depend on the size of the system. Finally, since f ∼ ln(n),
both the three-phase protocol and LiFTinG scale with the number of nodes.

direct verifications (messages) 0
direct verifications (blames) O(M · f) for the verifier

direct cross-check (messages)
O(pccf2) for the verifier (confirm messages)
O(pccf) for the inspected node (ack messages)
O(pccf2) for each witness (answer messages)

direct cross-check (blames) O(pcc ·M · f) for the verifier

Table 3: Overhead of verifications.

5 Parametrizing LiFTinG

This section provides a methodology to set LiFTinG’s parameters. To this aim, the performance of
LiFTinG with respect to detection is analyzed theoretically. Closed form expressions of the detection and
false positive probabilities function of the system parameters are given. Theoretical results allow the
system designer to set the system parameters, e.g., detection thresholds. Theoretical results are obtained
by simulations.

This section is split in two. First, the design of the score-based detection mechanism is presented and
analyzed taking into account message losses. Second, the entropy-based detection mechanism is analyzed
taking into account the underlying peer-sampling service. Both depend on the degree of freeriding and
on the favoring factor, i.e., how freeriders favor colluding partners.

Principal notations used in this section are summarized in Table 4 (page 18).

5.1 Score-based detection

Due to message losses, a node may be wrongfully blamed, i.e., blamed even though it follows the protocol.
Freeriders are additionally blamed for their misbehaviors. Therefore, the score distribution among the
nodes is expected to be a mixture of two components corresponding respectively to those of honest
nodes and freeriders. In this setting, likelihood maximization algorithms are traditionally used to decide
whether a node is a freerider or not. Such algorithms are based on the relative score of the nodes and
are thus not sensitive to wrongful blames. Effectively, wrongful blames have the same impact on honest
nodes and freeriders.

However, in the presence of freeriders, two problems arise when using relative score-based detection:
(i) freeriders are able to decrease the probability of being detected by wrongfully blaming honest nodes,
and (ii) the score of a node joining the system is not comparable to those of the nodes already in
the system. For these reasons, in LiFTinG, the impact of wrongful blames, due to message losses, is
automatically compensated and detection thus consists in comparing the nodes’ compensated scores to
a fixed threshold η. In short, when the compensated score of a node goes below η, the managers of that
node broadcast a revocation message expelling the node from the system using gossip.

Considering message losses independently drawn from a Bernoulli distribution of parameter pl (we
denote by pr = 1− pl the probability of reception), we derive a closed-form expression for the expected
value of the blames applied to honest nodes by direct verifications during a given timespan. Periodically
increasing all scores accordingly leads to an average score of 0 for honest nodes. This way, the fixed
threshold η can be used to distinguish between honest nodes and freeriders. To this end, we analyze,
for each verification, the situations where message losses can cause wrongful blames and evaluate their

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 13

average impact. For the sake of the analysis, we assume that (i) a node receives at least one chunk
during every gossip period (and therefore it will send proposals during the next gossip period), and (ii)
each node requests a constant number |R| of chunks for each proposal it receives. We consider the case
where cross-checking is always performed, i.e., pcc = 1.

Direct check (dc) For each requested chunk that has not been served, the node is blamed by f/ |R|.
If the proposal is received but the request is lost (i.e., pr(1 − pr)), the node is blamed by f ((a) in
Equation 2). Otherwise, when both the proposal and the request message are received (i.e., p2r), the
node is blamed by f/ |R| for each of the chunks lost (i.e., (1− pr) |R|) ((b) in Equation 2). The expected
blame applied to an honest node (by its f partners), during one gossip period, due to message losses is
therefore:

b̃dc = f ·
[

(a)
︷ ︸︸ ︷

pr(1− pr) · f +

(b)
︷ ︸︸ ︷

p2r · (1− pr) |R| · f

|R|

]

= pr(1− p2r) · f2 (2)

Direct cross-checking (dcc) On average, a node receives f proposals during each gossip period.
Therefore a node is subject to f direct cross-checking verifications and each verifier asks for a confirmation
to the f partners of the inspected node. Let p1 be the inspected node and p0 a verifier. First, note that p0
verifies p1 only if it served chunks to p1, which requires that its proposal and the associated request have

been received (i.e., p2r). If at least one chunk served by p0 or the ack has been lost (i.e., 1− p
|R|+1
r), p0

will blame p1 by f regardless of what happens next, since all the f proposals sent by p1 are invalid from
the standpoint of p0 ((a) in Equation 3). Otherwise, that is, if all the chunks served and the ack have

been received (i.e., p
|R|+1
r), p0 blames p1 by 1 for each negative or missing answer from the f partners of

p1. This situation occurs when the proposal sent by p1 to a partner, the confirm message or the answer
is lost (i.e., 1− p3r) ((b) in Equation 3).

b̃cc = f · p2r
[

(a)
︷ ︸︸ ︷

(1− p|R|+1
r) · f +

(b)
︷ ︸︸ ︷

f · p|R|+1
r (1− p3r)

]

= p2r(1− p|R|+4
r) · f2 (3)

A posteriori cross-checking This procedure asks the nodes that appear in the inspected node’s
history for confirmation which can cause wrongful blames. Effectively, if a proposal sent by the inspected
node has not been received by the destination node, due to message losses, the latter will not acknowledge
reception when asked. This leads again to wrongful blames. However, since the nodes are polled using
TCP, the polling message and the answer are not subject to message losses. On average, only pr · nhf
proposals in the inspected node history are confirmed by the destination leading to an average blame of:

b̃apcc = (1− pr) · nhf (4)

Similarly to direct verifications, the wrongful blames applied by the local auditing must be compensated.
However, this should be done only sporadically, i.e., only when a node is effectively audited, since these
verifications are not triggered at each gossip period.

From the previous analysis, we obtain a closed-form expression for the expected value of the blame
b applied to an honest node by direct verifications due to message losses:

b̃ = b̃dc + b̃cc = pr(1 + pr − p2r − p|R|+5
r) · f2 . (5)

Following the same line of reasoning, a closed form expression for the standard deviation σ(b) of b
can be derived.

Figure 11 depicts the distribution of scores after one gossip period in a simulated network of 10, 000
honest nodes in steady state (where both direct verifications and direct cross-checking are performed
with pcc = 1). The message loss rate pl has been set to 7%, the fanout f to 12 and |R| = 4. The scores of
the nodes have been increased by −b̃ = 72.95, according to Formula (5). We observe that, as expected,
the average score (dotted line) is close to zero (< 0.01) which means that the wrongful blames have been
successfully compensated. The experimental standard deviation is σ(b) = 25.6.

A node can be expelled from the system either when its score drops beyond a fixed threshold (η) or
upon a local auditing procedure. We now evaluate the ability of LiFTinG to detect freeriders (probability

RR n° 6913

14 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

0

0.005

0.01

0.015

-250 -200 -150 -100 -50 0 50

fr
a
ct
io
n
o
f
n
o
d
es

score

a
v
er
a
g
e

honest nodes

Figure 11: Impact of message losses.

of detection α) and the proportion of honest nodes wrongfully expelled from the system (probability of
false positives β) in both situations.

As mentioned above, the score-based detection mechanism uses a fixed threshold η to which the scores
of the nodes are compared. To this aim, the score of each node is adjusted (to compensate wrongful
blames) and normalized by the number of gossip periods r the node spent in the system. At the t-th
gossip period, the normalized score of a node writes:

s = −1

r

r∑

i=0

(bt−i − b̃), (6)

where bi is the value of the blames applied to the node during the i-th gossip period. From the previous
analysis, we get the expectation and the standard deviation of the blames applied to honest nodes at
each round due to message losses, therefore, assuming that the bi are i.i.d. (independent and identically
distributed) we get E[s] = 0 and σ(s) = σ(b)/

√
nT . Using Bienaymé-Tchebychev’s inequality we derive

an upper bound for the probability of false positive:

β = P (s < η) ≤ P (|s| > −η) ≤ σ(b)2

r · η2

The probability α to catch a freerider depends on its degree of freeriding that characterizes its deviation
to the protocol. Formally, we define the degree of freeriding as a 3-uple ∆ = (δ1, δ2, δ3), 0 ≤ δ1, δ2, δ3 ≤ 1,
so that a freerider contacts only (1− δ1) · f nodes per gossip period, proposes the chunks received from
a proportion (1− δ2) of the nodes that served it in the previous gossip period, and serves (1− δ3) · |R|
chunks to each requesting node. The gain in terms of the upload bandwidth saved is therefore 1− (1−
δ1)(1− δ2)(1− δ3).

Following the same line of reasoning as in the previous section, we can derive a closed form expression
for the expected blame applied to a freerider as a function of ∆:

b̃′(∆) = (1− δ1) · pr
(
1− p2r(1− δ3)

)
· f2 + δ2 · f2 +

(1− δ2) · p2r ·
[

p|R|+1
r (1− p3r(1− δ1)) + (1− p|R|+1

r)
]

· f2

Similarly to σ(b), a closed form expression for the standard deviation σ(b′(∆)) of b′(∆) can be obtained.
Similarly to the probability of false positives β, the probability of detection α can be lower bounded:

α ≥ 1− σ(b′(∆))2

r · (b̃′(∆)− η)2

Note that under the assumption that losses are independently drawn from a Bernoulli distribution the
performance of LiFTinG increases over time. Effectively, as the detection threshold is fixed and the

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 15

0

0.025

0.05

0.075

0.1

-50 -40 -30 -20 -10 0 10

fr
a
c
t
io
n
o
f
n
o
d
e
s

score

honest nodes

freeriders

(a) probability density function (pdf)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10

fr
a
c
t
io
n
o
f
n
o
d
e
s

score

threshold

false positives (β)

detection (α)

honest nodes

freeriders

(b) cumulative distribution function (cdf)

Figure 12: Distribution of normalized scores in the presence of freeriders (∆ = (0.1, 0.1, 0.1)).

standard deviations of the score distributions tend to zero when the time spend in the system increases,
the probability of detection α increases to one and the probability of false positive β decreases to zero.

Figure 12 depicts the distribution of normalized scores in the presence of 1, 000 freeriders of degree ∆ =
(0.1, 0.1, 0.1) in a 10, 000-node system after r = 50 gossip periods. We plot separately the distribution
of scores among honest nodes and freeriders. As expected, the probability density function (Figure 12a)
is split into two disjoint modes separated by a gap: the lowest (i.e., left most) mode corresponds to
freeriders and the highest one to honest nodes. Figure 12b depicts the cumulative distribution function
of scores and illustrates the notion of detection and false positives for a given value of the detection
threshold (i.e., η = −9.75).

We set the detection threshold η to −9.75 so that the probability of false positive is lower than 1%,
we assume that freeriders perform all possible attacks with the same probability (δ1 = δ2 = δ3 = δ) and
we observe the proportion of freeriders detected by LiFTinG for several values of δ. Figure 13 plots α
and β as functions of δ. For instance, we observe that for a node freeriding by 5%, the probability to
be detected by LiFTinG is 65%. Beyond 10% of freeriding, a node is detected over 99% of the time. It
is commonly assumed that users are willing to use a modified version of the client application only if it
increases significantly their benefit (resp. decreases their contribution). In FlightPath [21], this threshold
is assumed to be around 10%. With LiFTinG, a freerider achieves a gain of 10% for δ = 0.035 which
corresponds to a probability of being detected of 50% (Figure 13).

0

0.2

0.4

0.6

0.8

1

fr
ac
ti
on

of
fr
ee
ri
d
er
s

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

fr
ac
ti
on

of
u
p
lo
ad

b
an

d
w
id
th

degree of freeriding (δ)

detection

gain

Figure 13: Proportion of freeriders detected by LiFTinG.

5.2 Entropy-based detection

For the sake of fairness and in order to prevent colluding nodes from covering each other up, LiFTinG
includes an entropic check assessing the statistical validity of the partner selection. To this end, the
entropy H of the distribution of the inspected node’s former partners is compared to a threshold γ,
which is a parameter of the system. The distribution of the entropy of honest nodes’ histories depends

RR n° 6913

16 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

on the peer sampling algorithm used and can be estimated by simulations. Figure 14a depicts the
distribution of entropy for a history of nhf = 600 partners (nh = 50 and f = 12) of a 10, 000-node
system using a full membership-based partner selection. The observed entropy ranges from 9.11 to 9.21
for a maximum reachable value of log2 (nhf) = 9.23. Similarly, the entropy of the fanin multi-set F ′

h,
e.g., nodes that selected the inspected node as partner, is depicted in Figure 14b. The observed entropy
ranges from 8.98 to 9.34. Note that the size of F ′

h can be greater than nhf (but is nhf on average) and
therefore the bound log2 (nhf) does not apply to the entropy of fanin.

The presented results show that the probability of wrongfully expelling an inspected node during
local auditing is negligible when the threshold γ is set to 8.95. This threshold is used for both fanout
and fanin entropic check.

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
a
ct
io
n
o
f
n
o
d
es

entropy

honest nodes

(a) entropy of fanout

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
a
ct
io
n
o
f
n
o
d
es

entropy

honest nodes

(b) entropy of fanin

Figure 14: Distribution of the entropy H of the nodes’ histories using a full membership-based partner
selection.

We now analytically determine to what extent a freerider can bias its partner selection without being
detected by local auditing, given a threshold γ and a number of colluding nodes m′. A first requirement
to be able to detect colluding nodes is that the number of proposals in a node’s history must be greater
than the number of colluding freeriders. Otherwise, by proposing chunks only to other freeriders in a
round-robin manner, a node may still be able to achieve a maximized entropy. We therefore set h so
that nhf ≫ m′. Consider a freerider that biases partner selection in order to favor colluding freeriders
by picking a freerider as partner with probability pm and an honest node with probability 1 − pm. We
seek the maximum value p⋆m for pm, function of γ and m′. Defining the probability law of the partner

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 17

selection among colluding nodes (resp. honest nodes) by X (resp. by Y), the entropy of its fanout writes:

H(Fh) = −
∑

p(n) log2(p(n))

= −
∑

n∈X

p(n) log2(p(n))−
∑

n∈Y

p(n) log2(p(n))

= −
∑

n∈X

pmpX(n) log2(pmpX(n))−
∑

n∈Y

(1− pm)pY (n) log2((1− pm)pY (n))

= −pm
∑

n∈X

(pX(n) log2(pX(n)) + pX(n) log2(pm))

−(1− pm)
∑

n∈Y

(pY (n) log2(pY (n)) + pY (n) log2(1− pm))

= −pm










log2(pm)
∑

n∈X

pX(n)

︸ ︷︷ ︸

=1

+
∑

n∈X

(log2(pX(n)) · pX(n))

︸ ︷︷ ︸

=−H(X)










−(1− pm)










log2(1− pm)
∑

n∈Y

py(n)

︸ ︷︷ ︸

=1

+
∑

n∈Y

(log2(pY (n)) · pY (n))
︸ ︷︷ ︸

−H(Y)










= −pm log2 pm − (1− pm) log2 (1− pm) + pmH(X) + (1− pm)H(Y) ,

since X and Y are independent. This quantity is maximized when X and Y are the uniform distribution.
Therefore, to maximize the entropy of its history, a freerider must choose uniformly at random its partners
in the chosen class, i.e., honest or colluding. Therefore, given a threshold γ and a maximum number
of colluding nodes m′, we can determine the maximum colluding factor p⋆m a freerider can use without
being detected. We first derive an expression of H(X) knowing the number of occurrences of each m′

colluding freeriders in the fraction of the history composed of freeriders (pm ·nh ·f), that is pm·nh·f
m′

. The
probability of a given freerider to appear at a given position in this fraction of the history is therefore
pm·nh·f

m′
/(pm · nh · f) = 1/m′, and thus we have H(X) = −∑

m′

1
m′

log2
(

1
m′

)
= − log2 (m

′) and

H(Y) = −

∑

nh·f(1−pm)

1

nh · f(1− pm)
log2

(

1

nh · f(1− pm)

)

= − log2

(

1

nh · f(1− pm)

)

.

Finally, we get

γ = −p
⋆
m log2 p

⋆
m − (1− p

⋆
m) log2 (1− p

⋆
m)− p

⋆
m log2

(

1

m′

)

+ (1− p
⋆
m)(− log2

(

1

nh · f(1− p⋆m)

)

= −p
⋆
m log2

(

p⋆m
m′

)

− (1− p
⋆
m) log2

(

1

nh · f

)

(7)

where p⋆m is the maximum value for the favoring factor pm that a freerider can use without being
detected. Inverting numerically Formula (7), we deduce that for γ = 8.95 a freerider colluding with 25
other nodes can serve its colluding partners 15% of the time, without being detected. In this setting, a
freerider can therefore decrease its contribution by 15%.

6 Evaluation and experimental results

We now evaluate LiFTinG on top of the gossip-based streaming protocol described in [7], over the Plan-
etLab testbed.

RR n° 6913

18 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

Notations Descriptions

n, m number of nodes / freeriders
|R|, |S| number of chunks requested, resp. served
f fanout
nh size of history
Fh,F

′
h

multi-set of fanout / fanin in history
pcc probability to trigger cross-checking
pl probability of message loss (pr = 1− pl)

b̃ average value of wrongful blames
σ(b) standard deviation of wrongful blames
r number of gossip periods spent in the system
s normalized score
∆ = (δ1, δ2, δ3) degree of freeriding (3-uple)
δ = δ1 = δ2 = δ3 degree of freeriding

b̃(∆) average value of blames (freeriders)
σ(b′(δ)) standard deviation of blames (freeriders)
η detection threshold (blame-based detection)
α probability of detection (blame-based detection)
β probability of false positive (blame-based detection)
γ detection threshold (entropy-based detection)

Table 4: Summary of principal notations.

6.1 Experimental setup

We have deployed and executed LiFTinG on a 300 PlanetLab node testbed, broadcasting a stream of
674 kbps in the presence of 10% of freeriders. The freeriders (i) contact only f̂ = 6 random partners
(δ1 = 1/7), (ii) propose only 90% of what they receive (δ2 = 0.1) and finally (iii) serve only 90% of what
they are requested (δ3 = 0.1). The fanout of all nodes is set to 7 and the gossip period is set to 500ms.
The blaming architecture uses M = 25 managers for each node.

6.2 Practical cost

Table 5 gives the bandwidth overhead of the direct verifications of LiFTinG for three values of pcc. Note
that the overhead is not null when pcc = 0 since ack messages are always sent. Yet, we observe that
the overhead is negligible when pcc = 0 (i.e., when the system is healthy) and remains reasonable when
pcc = 1 (i.e., when the systems needs to be purged from freeriders).

cross-checking and blaming overhead

pcc 0 0.5 1
674 kbps stream 1.07% 4.53% 8.01%
1082 kbps stream 0.69% 3.51% 5.04%
2036 kbps stream 0.38% 1.69% 2.76%

Table 5: Practical overhead

6.3 Experimental results

We have executed LiFTinG with pcc = 1 and pcc = 0.5. Figure 15 depicts the scores obtained after 25, 30
and 35 seconds when running direct verifications and cross-checking. The scores have been compensated
as explained in the analysis, assuming a loss rate of 4% (average value observed on PlanetLab).

The two cumulative distribution functions for honest nodes and freeriders are clearly separated. The
threshold for expelling freeriders is set to −9.75 (as specified in the analysis). In Figure 15b (pcc = 1,
after 30 s) the detection mechanism expels 86% of the freeriders and 12% of the honest nodes. In other
words, after 30 seconds, 14% of freeriders are not yet detected and 12% represent false positives, mainly
corresponding to honest nodes that suffer from very poor connection (e.g., limited connectivity, message
losses and bandwidth limitation). These nodes do not deliberately freeride, but their connection does not
allow them to contribute their fair share. This is acceptable as such nodes should not have been allowed
to join the system in the first place. As expected, with pcc set to 0.5 the detection is slower but not twice
as slow. Effectively, with nodes freeriding with δ3 > 0 (i.e., partial serves) the direct checking blames

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 19

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(a) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20
fr

ac
ti

on
of

n
o
d
es

score

honest nodes
freeriders

(b) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(c) After 35 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(d) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(e) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(f) After 35 seconds.

Figure 15: Cumulative distribution functions of scores with pcc = 1 (above) and pcc = 0.5 (below).

freeriders without the need for any cross-check. This explains why the detection after only 35 seconds
with pcc = 0.5 (Figure 15f) is comparable with the detection after 30 seconds with pcc = 1 (Figure 15b).

As stated in the analysis, we observe that the gap between the two cumulative distribution functions
widens over time. However, the variance of the score does not decrease over time (for both honest nodes
and freeriders). This is due to the fact that we considered in the analysis that the blames applied to a
given node during distinct gossip periods were independent and identically distributed (i.i.d.). In practice
however, successive gossip periods are correlated. Effectively, a node with a poor connection is usually
blamed more than nodes with high capabilities, and this remains true over the whole experiment.

7 Related Work

TfT distributed incentives have been broadly used to deal with freeriders in file sharing systems based
on symmetric exchanges, such as BitTorrent [4]. However, there is a number of attacks, mainly targeting
the opportunistic unchoking mechanism (i.e., asymmetric push), allowing freeriders to download contents
with no or a very small contribution [22,24].

FlightPath (built on top of BAR Gossip) [21] is a gossip-based streaming application that fights
against freeriding using verifications on partner selection and chunk exchanges. FlightPath operates in a
gossip fashion for partner selection and is composed of opportunistic pushes performed by altruistic nodes
(essential for the efficiency of the protocol) and balanced pairwise exchanges secured by TfT. Randomness
of partner selection is verified by means of a pseudo-random number generator with signed seeds, and
symmetric exchanges are made robust using cryptographic primitives. FlightPath prevents attacks on
opportunistic pushes by turning them into symmetric exchanges: each peer must reciprocate with junk
chunks when opportunistically unchoked. This results in a non-negligible waste of bandwidth. It is
further demonstrated in [12] that BAR Gossip presents scalability issues, not to mention the overhead
of cryptography.

PeerReview [10] deals with malicious nodes following an accountability approach. Peers maintain
signed logs of their actions that can be checked using a reference implementation running in addition
to the application. When combined with CSAR [2], PeerReview can be applied to non-deterministic
protocols. However, the intensive use of cryptography and the sizes of the logs maintained and exchanged

RR n° 6913

20 Rachid Guerraoui , Kévin Huguenin , Anne-Marie Kermarrec , Maxime Monod , Swagatika Prusty

drastically reduce the scalability of this solution. In addition, the validity of PeerReview relies on the
fact that messages are always received which is not the case over the Internet.

The case of malicious participants was considered in the context of generic gossip protocols, i.e.,
consisting of state exchanges and updates [13]. This system relies on cryptography for signing messages
between peers and do not consider malicious behaviors that stem from the partner selection, i.e., biasing
the random choices. In addition, they do not tackle the problem of collusion.

The two approaches that relate the most to LiFTinG are the distributed auditing protocol proposed
in [12] and the passive monitoring protocol proposed in [15]. In the first protocol, freeriders are detected
by cross-checking their neighbors’ reports. The latter focuses on gossip-based search in the Gnutella
network. The peers monitor the way their neighbors forward/answer queries in order to detect freeriders
and query droppers. Yet, contrarily to LiFTinG – which is based on random peer selection – in both
protocols the peers’s neighborhoods are static, forming a fixed mesh overlay. These techniques thus
cannot be applied to gossip protocols. In addition, the situation where colluding peers cover each other
up (not addressed in the papers) makes such monitoring protocols vain.

8 Conclusion

We presented LiFTinG, a protocol for tracking freeriders in gossip-based asymmetric data dissemination
systems. Beyond the fact that LiFTinG deals with the inherent randomness of the protocol, LiFTinG
precisely relies on this randomness to robustify its verification mechanisms against colluding freeriders
with a very low overhead. We provided a theoretical analysis of LiFTinG that allows system designers
to set its parameters to their optimal values and characterizes its performance backed up by extensive
simulations. We reported on our experimentations on PlanetLab which prove the practicability and
efficiency of LiFTinG.

We believe that, beyond gossip protocols, LiFTinG can be used to secure the asymmetric compo-
nent of TfT-based protocols, namely opportunistic unchoking, which is considered to constitute their
Achile’s heel [22,24]. We can consider for instance a gossip protocol, secured by LiFTinG, to disseminate
fresh chunks in the system, coupled with a protocol based on symmetric exchanges to complete the
dissemination using traditional swarming and TfT incentives.

References

[1] E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5, 2000.

[2] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh. CSAR: A Practical and Provable Technique
to Make Randomized Systems Accountable. In NDSS, 2009.

[3] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms: Byzantine Resilient Random
Membership Sampling. Computer Networks, 53:2340–2359, 2009.

[4] B. Cohen. Incentives Build Robustness in BitTorrent. In P2P Econ, 2003.

[5] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian, and S. Mehrotra. CREW:
A Gossip-based Flash-Dissemination System. In ICDCS, 2006.

[6] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec. Lightweight
Probabilistic Broadcast. TOCS, 21:341–374, 2003.

[7] D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod, and V. Quéma. Stretching Gossip with Live
Streaming. In DSN, 2009.

[8] D. Frey, R. Guerraoui, B. Koldehofe, A.-M. Kermarrec, M. Mogensen, M. Monod, and V. Quéma.
Heterogeneous Gossiping. In Middleware, 2009.

[9] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. SCAMP: Peer-to-peer Lightweight Membership
Service for Large-scale Group Communication. In NGC, 2001.

INRIA

LiFTinG: Lightweight protocol for Freerider-Tracking in Gossip 21

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical Accountability for Distributed
Systems. In SOSP, 2007.

[11] G. Hardin. The Tragedy of the Commons. Science, 162:1243–1248, 1968.

[12] M. Haridasan, I. Jansch-Porto, and R. Van Renesse. Enforcing Fairness in a Live-Streaming System.
In MMCN, 2008.

[13] M. Jelasity, A. Montresor, and O. Babaoglu. Detection and Removal of Malicious Peers in Gossip-
Based Protocols. In FuDiCo, 2004.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-based Peer
Sampling. TOCS, 25:1–36, 2007.

[15] M. Karakaya, I. Körpeoğlu, and O. Ulusoy. Counteracting Free-riding in Peer-to-Peer Networks.
Computer Networks, 52:675–694, 2008.

[16] A.-M. Kermarrec, L. Massoulié, and A. Ganesh. Probabilistic Reliable Dissemination in Large-Scale
Systems. TPDS, 14:248–258, 2003.

[17] A.-M. Kermarrec, A. Pace, V. Quéma, and V. Schiavoni. NAT-resilient Gossip Peer Sampling. In
ICDCS, 2009.

[18] V. King and J. Saia. Choosing a Random Peer. In PODC, 2004.

[19] R. Krishnan, M. Smith, Z. Tang, and R. Telang. The Impact of Free-Riding on Peer-to-Peer
Networks. In HICSS, 2004.

[20] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the New Coolstreaming:
Principles, Measurements and Performance Implications. In INFOCOM, 2008.

[21] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson, L. Alvisi, and M. Dahlin. FlightPath:
Obedience vs Choice in Cooperative Services. In OSDI, 2008.

[22] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent is Cheap. In HotNets,
2006.

[23] R. Morales and I. Gupta. AVMON: Optimal and Scalable Discovery of Consistent Availability
Monitoring Overlays for Distributed Systems. TPDS, 20:446–459, 2009.

[24] M. Sirivianos, J. Park, R. Chen, and X. Yang. Free-riding in BitTorrent with the Large View
Exploit. In IPTPS, 2007.

[25] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous Unstructured Tree-
Based Peer-to-Peer Multicast. In ICNP, 2006.

[26] M. Zhang, Q. Zhang, L. Sun, and S. Yang. Understanding the Power of Pull-Based Streaming
Protocol: Can We Do Better? JSAC, 25:1678–1694, 2007.

RR n° 6913

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

