
HAL Id: inria-00473270
https://hal.inria.fr/inria-00473270

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Taylor Function Calculus for Hybrid System Analysis:
Validation in Coq

Pieter Collins, Milad Niqui, Nathalie Revol

To cite this version:
Pieter Collins, Milad Niqui, Nathalie Revol. A Taylor Function Calculus for Hybrid System Analy-
sis: Validation in Coq. NSV-3: Third International Workshop on Numerical Software Verification.,
Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom.
�inria-00473270�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50095473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00473270
https://hal.archives-ouvertes.fr


A Taylor Function Calculus for

Hybrid System Analysis: Validation in Coq

(Extended Abstract)

Pieter Collins1, Milad Niqui1, and Nathalie Revol2

1 Centrum Wiskunde & Informatica, The Netherlands
{Pieter.Collins,M.Niqui}@cwi.nl

2 INRIA, LIP (UMR 5668 CNRS - ENS de Lyon - INRIA - UCBL), Université de
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Abstract. We present a framework for the verification of the numerical
algorithms used in Ariadne, a tool for analysis of nonlinear hybrid sys-
tem. In particular, in Ariadne, smooth functions are approximated by
Taylor models based on sparse polynomials. We use the Coq theorem
prover for developing Taylor models as sparse polynomials with floating-
point coefficients. This development is based on the formalisation of an
abstract data type of basic floating-point arithmetic . We show how to
devise a type of continuous function models and thereby parametrise the
framework with respect to the used approximation, which will allow us
to plug in alternatives to Taylor models.

1 Introduction

Hybrid systems are used to model phenomena involving both discrete and con-
tinuous state space. The usual way of verifying hybrid systems is to apply model
checking, e.g. based on methods such as the predicate abstraction, and to de-
vise a hybrid automata model. In practice this approach is helpful in verifying
several types of properties of systems, however model checking can be prone
to state explosion. A satisfactory solution is to combine model-checking with
theorem proving in the logically rich environment of a theorem prover. This en-
ables one to validate the correctness of model checking algorithms. Further on,
one can enhance and simplify model checking algorithms by proving properties
about classes of systems such as modular decomposition and symmetry reduc-
tion. This is the approach we take in this work: we use the Coq theorem prover,
to implement and verify the algorithms of Ariadne [2] which is a tool for the
analysis of nonlinear hybrid systems. Coq is an integrated theorem prover and a
logical framework that is also capable of formalising mathematics. This means
that in addition to the model checking of hybrid automata, we can use Coq to
verify the algorithms for approximating elementary functions and for numerical
differentiation and ultimately for solving ODEs. In the long run this will result
in a hybrid systems analyser embedded in Coq. This analyser will enable the
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user to state and prove properties by model checking or other techniques and it
will use the Ariadne tool as an oracle for computations.

2 Ariadne

Ariadne is a tool written in C++ for the analysis of nonlinear hybrid systems.
It has algorithms to analyse evolution, reachability and safety problems. The
reachability analysis is performed using a predicate abstraction method [1] which
is based on reducing the state space to a finite one. The new states correspond to
a subdivision of the (bounded) state space into a grid. Each element of the grid
is defined by guards, by reset values and by the solutions of the flow equation
governing the dynamics of the system. For solving these equations, a numerical
function calculus is implemented, based on Taylor models with floating-point
coefficients: it yields approximations with guaranteed bounds on the errors.

Validating Ariadne Algorithms using Coq

Our aim is to provide a framework to validate Ariadne’s analysis, in order to
increase user’s confidence in its results. We aim to do this by:

(1) verifying, in Coq, Ariadne’s primitives for function calculus (Ariadne’s ker-
nel), which are based on Taylor models;

(2) verifying, in Coq, Ariadne’s algorithms for reachability analysis.

In this article we describe how to tackle (1). This will be achieved by formalis-
ing the algorithms for basic operations on Taylor models, considered as sparse
polynomials with floating-point coefficients. To this end we first describe our use
of floating-point numbers and then demonstrate how to deal with the specific
algorithms for basic arithmetic on floating-point Taylor models.

An important point is that we would like a framework that is easy to adapt
to future changes in the Ariadne tool. For example, at the moment Ariadne uses
Taylor models to approximate functions. Thus we would like our framework to be
parametrised over the current specific implementation of Taylor models, but also
over any other approximation model for smooth functions. To this end we present
in Section 5 how to devise an abstract data type for computable functions that
can be used for parametrising the main properties of the approximation models.

3 Floating-point Data Type

We describe our implementation of an abstract data type for the floating-point
numbers: we introduce a type Float together with some of the basic IEEE 754
operations. Let us point out the fact that operations with various rounding mode
are directly added to the signature of our abstract data type. For instance there
are three addition operations ⊕u, ⊕d and ⊕n for summing up two floating-point
numbers using respectively upwards, downwards and to-nearest rounding. In
the long run, we plan to extend our axiomatisation to a library compatible with
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IEEE-754 specification of the basic operations (+,×,−,÷,
√

) and the recom-
mended elementary functions. At the moment we only handle operations that
are necessary in formalising the proofs for Taylor models.

Our axiomatisation includes a type F together with the binary operations
⊕u,⊕d,⊕n,⊗u,⊗d,⊗n, the unary operation − and the constants 0F and 1F.
Note that currently F is not handled as a bounded set and that there is no
reciprocal and no symbols for NaN and ±Inf. (This will be added in the future.)
The type R from the standard library of Coq is used as the type of idealised real
numbers, and we assume the existence of an injection inj : F −→ R. The rest of
the axioms will govern the arithmetic operations in F and are stated in terms of
inj . For example the axioms for the addition operations are as follows.

Axiom F_0u: ∀ x, x⊕u0F = x.

Axiom F_0d: ∀ x, x⊕d0F = x.

Axiom F_0n: ∀ x, x⊕n0F = x.

Axiom F_0inj: inj(0F) = 0.

Axiom F_1u: ∀ x y, | inj(x⊕ny) - (inj(x) + inj(y)) | ≤

inj(x⊕uy) - (inj(x) + inj(y)).

Axiom F_1d: ∀ x y, | inj(x⊕ny) - (inj(x) + inj(y)) | ≤

(inj(x) + inj(y)) - inj(x⊕dy).

Axiom F_2u: ∀ x y, inj(x) + inj(y) ≤ inj(x⊕uy).

Axiom F_2d: ∀ x y, inj(x⊕dy) ≤ inj(x) + inj(y).

Axiom F_3: ∀ x y, | inj(x⊕ny) - (inj(x) + inj(y)) | ≤
1

2
× inj( (x⊕uy) ⊖u (x⊕dy) ) .

Note that the absolute value and the ≤ are evaluated in R and ⊖u is defined in
terms of the primitives ⊕u and −. Axioms for multiplication are similar.

We can instantiate this abstract data type by providing the required oper-
ations and proving the axioms, although this is not needed in current project.
Nevertheless the concrete type in [4] provides instances for these axioms.

4 Taylor Models based on Floating-Point

Taylor models [6] provide an approximation of continuous functions by polyno-
mials along with bounds or enclosures of the approximation and roundoff errors.
In this work we are interested in basic scalar operations, addition, multiplication
of Taylor models as these are the main ingredients of the Ariadne’s function cal-
culus kernel. The rigorous proof of correctness of these algorithms is given in [7].
The present work can be considered as a formalisation of [7] in Coq. There are
several other developments of Taylor models in theorem provers: in Coq [8] using
as coefficients the constructive real numbers; or in PVS [3] using rational interval
arithmetic. Our work is different in that we use floating-point coefficients. As
pointed out in [8] this makes the formalisation more cumbersome but it enables
us to be as close to the actual Ariadne kernel as possible. As a final note, here we
present the formalisation for univariate polynomials and one-dimensional func-
tions. In the future we will extend this to any dimension using Coq’s dependent
data type for vectors.



4 P. Collins, M. Niqui, N. Revol

First we need a type for univariate sparse polynomials with coefficients in F,
which is simply a record.

Record Sparse_polynom := { polynom:> list (nat*F)

; polynom_sparse: is_sorted polynom}.

Here is sorted(l) is an inductively defined predicate l specifying that l (which
is a list of pairs consisting of degrees and coefficients) is sorted with respect to
to the degrees. The precise definition is given in Appendix A. A Taylor model is
a pair composed of such a sparse polynomial and a floating-point error bound.

Record Taylor_model := { spolynom :> Sparse_polynom

; error: F }.

The function eval Taylor model that evaluates (recursively, by descending de-
grees) a Taylor model in a point in R is given in Appendix A.

Then the binary predicate Models(〈t, ǫ〉, f) between a Taylor model and a
function f : R −→ R specifies that f is approximated by t with error ǫ on interval
[−1, 1] (cf. the containment property in [7]).

Definition Models (t: Taylor_model) (f:R → R) :=

∀x, -1 ≤ x ≤ 1 → |(eval_Taylor_model t x) - f(x)| ≤ inj(t.(error)).

We define the following basic operation on Taylor models
scalar mult Taylor : F × Taylor model −→ Taylor model ,
monomial mult Taylor : Taylor model −→ Taylor model ,
add Taylor : Taylor model× Taylor model −→ Taylor model ,
mult Taylor : Taylor model× Taylor model −→ Taylor model ,
which respectively correspond with scalar multiplication by a float, multiplica-
tion by the unit monomial, addition and multiplication of Taylor models. As an
example the algorithm, in Coq, for add Taylor is given in Appendix B.

From now on, proving the correctness of the above algorithms with respect
to the Models predicate is tantamount to formalising the correctness proofs in
[7, § 4.4,§ 5.4,§ 6.4]. For example, the correctness theorem for addition will have
the following type.

Theorem add_Taylor_correct:

∀ t1 t2 f1 f2, Models t1 f1 → Models t2 f2 →

Models (add_Taylor t1 t2) (λx⇒ f1(x)+ f2(x)).

5 Data type for Abstract Function Models

Taylor models provide useful approximations for continuous real functions. How-
ever, especially for dealing with transcendental functions, other approximation
models may lead to better relative errors [5]. For this purpose we intend to ax-
iomatise a type of function approximations for continuous or even measurable
functions. Such a type will be augmented with operations and predicates for
specifying the domain, the evaluation of these function models on computable
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real numbers, floating-point numbers and interval values, and the composition

of two function models, or of a computable function with a function model.
The goal is to use only operations and properties of the abstract models when

performing higher-level operations, such as solving algebraic equations and inte-
grating differential equations. If this can be realised, then the generic algorithms
can be implemented in a way which is provably correct for all instantiations.

6 Conclusion

In hybrid systems, different phases of modelling deal with different mathematical
objects. Table below shows the objects, from left to right, in the increasing order
of approximation (uncountable, countable and finite in the first line).

Real number Rational Interval Floating-point number
Real Function Taylor Model Taylor Approximation

Since we base our validation work on a rich logical environment where all these
objects can coexist (we provide the missing ones), we can reason about all these
facets in combination and interaction with each other: the actual C++ func-
tions working with the floating-point numbers are translated to Coq and their
behaviour is validated using the idealised notion of real numbers R. We apply
this methodology both to the kernel of the Ariadne tool (current work) as well
as to the higher level algorithms for analysing hybrid systems (future work).

We focused here on the Ariadne tool, but the theories that we develop in
Coq deal with fundamental objects such as floating-point numbers and Taylor
models, thus they could be applied to the implementation of other tools in Coq.
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3. F. J. Cháves Alonso. Utilisation et certification de l’arithmétique d’intervalles dans
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A Auxiliary Coq Types and Terms for Taylor Model

Inductive is_sorted {A:Type} : list (nat*A) → Prop :=

| is_sorted_nil : is_sorted nil

| is_sorted_one : ∀ m a, is_sorted (cons (m,a) nil)

| is_sorted_cons : ∀ m (a:A) xs a0, head xs = Some a0 → (m<fst a0) →

is_sorted xs → is_sorted (cons (m,a) xs).

Fixpoint eval_polynom (p: list nat*F) (x:R) {struct p} : R :=

match p with

| nil ⇒ 0

| fn :: p0 ⇒ inj_R(snd fn)*x^(fst fn) + eval_polynom p0 x

end.

Definition eval_Sparse_polynom (sp : Sparse_polynom) (x:R) : R :=

match sp with

| Build_Sparse_polynom p H ⇒ eval_polynom p x

end.

Definition eval_Taylor_model (t: Taylor_model) (x:R) : R :=

match t with

| Build_Taylor_model sp _ ⇒ eval_Sparse_polynom sp x

end.

B Addition of Two Taylor Models in Coq

(* coefficients *)

Function pre_merge (κ1:F→F) (κ2:F→F→F) (pp:list(nat*F) * list(nat*F))

{measure (λll⇒ length (fst ll) + length (snd ll)) pp}

: list (nat*F) :=

match pp with

| (nil, nil) ⇒ nil

| (nil, fn2 :: p2’) ⇒ fn2 :: p2’

| (fn1 :: p1’, nil) ⇒ fn1 :: p1’

| (fn1 :: p1’, fn2 :: p2’) ⇒

match lt_eq_lt_dec (fst fn1) (fst fn2) with

| inleft (left _) ⇒

(fst fn1, κ1(snd fn1)) :: pre_merge κ1 κ2 (p1’,(fn2 :: p2’))

| inleft (right _) ⇒

(fst fn1, κ2 (snd fn1) (snd fn2)) :: pre_merge κ1 κ2 (p1’,p2’)

| inright _ ⇒

(fst fn2, κ1(snd fn2)) :: pre_merge κ1 κ2 ((fn1 :: p1’),p2’)

end

end.

Lemma pre_merge_sorted: ∀ κ1 κ2 (p1 p2: list (nat*F)),

is_sorted p1 → is_sorted p2 → is_sorted (pre_merge κ1 κ2 (p1,p2)).



A Taylor Function Calculus for Hybrid System Analysis: Validation in Coq 7

Definition pre_merge_add_near (p1 p2: list (nat*F)) : list (nat*F) :=

pre_merge id ⊕n (p1,p2).

Definition pre_merge_add_near_sorted:= pre_merge_sorted id ⊕n.

Definition merge_add_near (sp1 sp2: Sparse_polynom) : Sparse_polynom :=

match sp1, sp2 with

| Build_Sparse_polynom p1 H1, Build_Sparse_polynom p2 H2 ⇒

Build_Sparse_polynom (pre_merge_add_near (p1,p2))

(pre_merge_add_near_sorted p1 p2 H1 H2)

end.

(* error *)

Function pre_merge_error (pp:list(nat*F) * list(nat*F))

{measure (λll⇒ length (fst ll) + length (snd ll))}

: list (nat*F) :=

match pp with

| (nil, nil) ⇒ nil

| (nil, fn2 :: p2’) ⇒ nil

| (fn1 :: p1’, nil) ⇒ nil

| (fn1 :: p1’, fn2 :: p2’) ⇒

match lt_eq_lt_dec (fst fn1) (fst fn2) with

| inleft (left _) ⇒ pre_merge_error (p1’,(fn2 :: p2’))

| inleft (right _) ⇒

(fst fn1, (snd fn1 ⊕u snd fn2)⊖u(snd fn1 ⊕d snd fn2)

:: pre_merge_error (p1’,p2’)

| inright _ ⇒ pre_merge_error ((fn1 :: p1’),p2’)

end

end.

Definition sum_add_up := fold_right (λnf⇒ ⊕u(snd nf)) 0F.

Definition error_add (t1 t2: Taylor_model) : F :=

t1.(error) ⊕u

( t2.(error) ⊕u

sum_add_up (pre_merge_error (t1.(spolynom),t2.(spolynom)))).

(* addition of Taylor models *)

Definition add_Taylor (t1 t2: Taylor_model) : Taylor_model :=

Build_Taylor_model (merge_add_near t1.(spolynom) t2.(spolynom))

(error_add t1 t2).


