
HAL Id: inria-00475707
https://hal.inria.fr/inria-00475707

Submitted on 22 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative Programming from a Domain-Specific
Language Viewpoint

Charles Consel

To cite this version:
Charles Consel. Generative Programming from a Domain-Specific Language Viewpoint. Unconven-
tional Programming Paradigms, Sep 2004, Mont Saint Michel, France. �inria-00475707�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50093327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00475707
https://hal.archives-ouvertes.fr


Generative Programming from a DSL Viewpoint

Charles Consel

INRIA/LaBRI
ENSEIRB � 1, avenue du docteur Albert Schweitzer,

Domaine universitaire - BP 99
33402 Talence Cedex, France

consel@labri.fr http://compose.labri.fr

1 Introduction

A domain-speci�c language (DSL) is typically created to model a program fam-
ily [1]. The commonalities found in the target program family suggest abstrac-
tions and notations that are domain speci�c. In contrast with general-purpose
languages (GPL), a DSL is readable for domain experts, often concise, and usu-
ally declarative. As an illustration, consider a program family aimed to com-
municate data in a distributed heterogeneous system. Such a layer is commonly
needed in a variety of distributed applications and relies on a mechanism like
the Sun Remote Procedure Call (RPC) [2]. The XDR layer of the Sun RPC
consists of marshaling and un-marshaling both arguments and returned value
to/from a machine-independent format. The program family, represented by all
the possible (un-)marshaling variations, has lead to the development of a DSL
that allows a programmer to concisely express the type of the remote procedure
arguments and returned value, and to obtain the corresponding marshaling layer
on both the client and server sides.

From a DSL viewpoint, generative programming [3] provides a variety of
approaches and techniques to produce and optimize a DSL implementation such
as the marshaling layer in the XDR case.

Outline. Section 2 discusses how generative tools can be used to compile DSL
programs into GPL programs, from a DSL interpreter. When compiled into a
GPL, a DSL program can be processed by existing generative tools for vari-
ous purposes, including optimization, instrumentation and veri�cation. In this
context, the generative tools are driven by domain-speci�c information that is
translated into di�erent forms: declarations (Section 3), annotations (Section 4),
and meta-programs (Section 5). In essence, these forms enable a DSL to be
interfaced with existing generative tools.

2 High-Level Compilation

Some level of compilation can be achieved by specializing an interpreter with
respect to a DSL program. Traditionally, this approach has been used to generate



2

compilers from denotational-style language de�nitions [4, 5]. This approach was
later promoted by Consel and Marlet in the context of DSLs, where the language
user base often forbids major compiler development. Furthermore, the high-level
nature of DSLs facilitates the introduction of optimizations.

An example of such a compilation strategy was used for a DSL, named Plan-
P, aimed to specify application-speci�c protocols (e.g., stream-speci�c degra-
dation policies) to be deployed on programmable routers [6]. Program special-
ization was used at run time to achieve the e�ect of a Just In Time compiler,
by specializing the Plan-P interpreter with respect to a Plan-P program. The
resulting compiled programs ran up to 50 times faster than their interpreted
counterparts [6]. Importantly, such late compilation process enabled the safety
and security of programs to be checked at the source level by the programmable
routers, before being deployed. The use of specialization allowed to achieve late
compilation without requiring any speci�c development, besides writing the in-
terpreter.

At a lower level, meta-programming provides an alternative approach to de-
riving a compiler from an interpreter [7, 8]. This approach involves a careful
annotation, and sometimes re-structuring, of the interpreter.

3 From a DSL Program to Declarations

A key feature of the DSL approach is to make domain-speci�c information an in-
tegral part of the programming paradigm. As such the programmer can be viewed
as being prompted by the language to provide domain-speci�c information. This
information may take the form of domain-speci�c types, syntactic constructs
and notations. This language enrichment over GPLs is typically geared towards
collecting su�cient information to make some domain-speci�c properties decid-
able [9] and thus to enable domain-speci�c veri�cations and optimizations. The
collection of information may be achieved by dedicated program analyses, which
are, by design of the DSL, simpler than the ones developed for GPLs.

Because the scope of computations to be expressed by a DSL is usually
narrow, GPL constructs and operations are restricted or excluded. Furthermore
this language narrowing may also be necessary to enable key properties to be
statically determined. In fact, a DSL is commonly both a restricted and an
enriched version of a GPL.

Once key properties are exhibited, the DSL program can be compiled into
a GPL program. To retain domain-speci�c information, the generated program
needs to be accompanied by some form of declarations specifying its properties.
Of course, the declarations are tailored to a set of veri�cation and/or optimiza-
tion tools.

In the XDR case, an XDR description often de�nes �xed-size RPC argu-
ments. When this description is compiled into GPL code, it can be accompanied
by declarations aimed to drive some transformation tool. This situation is illus-
trated by the XDR compiler that conventionally generates C code gluing calls to
a generic library. We have modi�ed the XDR compiler to generate binding-time



3

information about the RPC argument sizes, besides the marshaling code. As a
result, a declaration is attached to the marshaling code of each data item to
be transmitted. This declaration de�nes the size parameter as static, if it cor-
responds to a data item that has a �xed size; it is dynamic otherwise1. In this
work, the generated declarations are targeted for a program specializer for C,
named Tempo [10]. This tool performs a number of optimizations on both the
marshaling code and the generic XDR library, including the removal of bu�er
over�ow checks and the collapsing of function layers.

The XDR case is interesting because it demonstrates that, although a DSL
introduces a new programming paradigm, it can still converge with and re-use
GPL technology. Additionally, because GPL tools are often used in a narrow
context, the results may be more predictable. In the XDR case for instance,
since the compilation schemas, the XDR library, and the specialization contexts
are �xed, specialization is fully predictable. This situation obviously does not
exist for an arbitrary program with an arbitrary specialization context.

Aspect-oriented declarations could also be generated from a DSL program.
For example, one could imagine adding a data compression phase to marshaling
methods when invoked with data greater than a given size. In this case, the
pointcut language has to be expressive enough to enable any program point of
interest to be used to insert the compression phase. Alternatively, annotations
can be directly injected in the generated program.

4 From a DSL Program to Annotations

Instead of generating a GPL program together with declarations, annotations
can be directly inserted into the generated program. This strategy allows infor-
mation to be accurately placed in the program. Like declarations, these annota-
tions are geared towards speci�c tools. They can either be processed at compile
time or run time.

At compile time, annotations can be used to guide the compilation process
towards improving code quality or code safety. In the XDR case, for example,
one could imagine a library where there would be two sets of bu�er operations,
with or without over�ow checks. The selection of an operation would depend on
annotations inserted in the program.

At run time, annotations can trigger speci�c actions upon run-time values.
For instance, a data of an unknown size could be tested before being transmitted
and be compressed if it is larger than a given threshold.

5 From a DSL Program to Meta-programming

A DSL program can also bene�t from meta-programming technology. In this
context, the compilation of a DSL program produces a code transformer and

1 Note that these declarations go beyond data sizes. A detailed description of the
language of specialization declarations and its application to the XDR example can
be found elsewhere [10, 11].



4

code fragments. For example, in a multi-stage language like MetaOCaml [7], the
code transformer consists of language extensions that enable to concisely express
program transformations.

In the XDR case, multi-stage programming would amount to generate code
that expects some data size and produces code optimized for that size. Like
program specialization, multi-stage programming corresponds to GPL tools that
are directly used by a programmer. In the context of DSLs, these tools can
implement a speci�c phase of an application generator.

6 Conclusion

We examined generative programming approaches and techniques from a DSL
viewpoint. We showed that a DSL can make use of these approaches and tech-
niques in very e�ective ways. In essence, the DSL approach exposes information
about programs that can be mapped into the realm of generative programming
and be translated into declarations or annotations, which would normally be
provided by a programmer. This situation illustrates the high-level nature of the
DSL approach.

References

1. Consel, C.: From A Program Family To A Domain-Speci�c Language. Number
3016 in Lecture Notes in Computer Science, State-of-the-Art Survey. In: Domain-
Speci�c Program Generation; International Seminar, Dagstuhl Castle. Springer-
Verlag (2004) 19�29

2. Sun Microsystem: NFS: Network �le system protocol speci�cation. RFC 1094, Sun
Microsystem (1989)

3. Czarnecki, K., Eisenecker, U.: Generative Programming. Addison-Wesley (2000)
4. Consel, C., Danvy, O.: Tutorial notes on partial evaluation. In: Conference Record

of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages, Charleston, SC, USA, ACM Press (1993) 493�501

5. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. International Series in Computer Science. Prentice-Hall (1993)

6. Thibault, S., Consel, C., Muller, G.: Safe and e�cient active network program-
ming. In: 17th IEEE Symposium on Reliable Distributed Systems, West Lafayette,
Indiana (1998) 135�143

7. Taha, W.: A Gentle Introduction to Multi-stage Programming. Number 3016
in Lecture Notes in Computer Science, State-of-the-Art Survey. In: Domain-
Speci�c Program Generation; International Seminar, Dagstuhl Castle. Springer-
Verlag (2004) 30 � 50

8. Czarnecki, K., O'Donnell, J.T., Striegnitz, J., Taha, W.: DSL Implementation in
MetaOCaml, Template Haskell, and C++. Number 3016 in Lecture Notes in Com-
puter Science, State-of-the-Art Survey. In: Domain-Speci�c Program Generation;
International Seminar, Dagstuhl Castle. Springer-Verlag (2004) 51 � 72

9. Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. In Palamidessi, C., Glaser, H., Meinke, K., eds.: Proceedings of the
10th International Symposium on Programming Language Implementation and



5

Logic Programming. Number 1490 in Lecture Notes in Computer Science, Pisa,
Italy (1998) 170�194

10. Consel, C., Lawall, J., Le Meur, A.F.: A tour of Tempo: A program specializer for
the C language. Science of Computer Programming (2004)

11. Le Meur, A.F., Lawall, J., Consel, C.: Specialization scenarios: A pragmatic ap-
proach to declaring program specialization. Higher-Order and Symbolic Compu-
tation 17 (2004) 47�92


