
HAL Id: inria-00477530
https://hal.inria.fr/inria-00477530

Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Test-Driven Approach to Developing Pointcut
Descriptors in AspectJ

Romain Delamare, Benoit Baudry, Sudipto Ghosh, Yves Le Traon

To cite this version:
Romain Delamare, Benoit Baudry, Sudipto Ghosh, Yves Le Traon. A Test-Driven Approach to Devel-
oping Pointcut Descriptors in AspectJ. ICST ’09: Proceedings of the 2nd International Conference on
Software Testing, Verification, and Validation, 2009, Denver, Colorado, USA, United States. �inria-
00477530�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50091682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00477530
https://hal.archives-ouvertes.fr

A Test-Driven Approach to Developing Pointcut Descriptors in AspectJ

Romain Delamare, Benoit Baudry

IRISA / INRIA Rennes

{romain.delamare,benoit.baudry}@irisa.fr

Sudipto Ghosh

Colorado State University

ghosh@cs.colostate.edu

Yves Le Traon

IT-Telecom Bretagne

yves.letraon@telecom-bretagne.eu

Abstract

Aspect-oriented programming (AOP) languages in-

troduce new constructs that can lead to new types of

faults, which must be targeted by testing techniques. In

particular, AOP languages such as AspectJ use a point-

cut descriptor (PCD) that provides a convenient way

to declaratively specify a set of joinpoints in the pro-

gram where the aspect should be woven. However, a

major difficulty when testing that the PCD matches the

intended set of joinpoints is the lack of precise specifi-

cation for this set other than the PCD itself.

In this paper, we propose a test-driven approach for

the development and validation of the PCD. We devel-

oped a tool, AdviceTracer, which enriches the JUnit API

with new types of assertions that can be used to specify

the expected joinpoints. In order to validate our ap-

proach, we also developed a mutation tool that system-

atically injects faults into PCDs. Using these two tools,

we perform experiments to validate that our approach

can be applied for specifying expected joinpoints and

for detecting faults in the PCD.

Keywords: Aspect-oriented programming, join-

points, pointcut descriptors, mutation analysis, test-

driven development, testing tool

1. Introduction

With the emergence of the aspect-oriented pro-

gramming (AOP) paradigm, the testing community

must adapt existing testing techniques or develop new

ones for systems developed using this paradigm. When

implementing a program with aspects, the core con-

cerns are implemented in a base program and the cross-

cutting concerns are implemented in aspects. An aspect

is composed of two main parts: (1) an advice that im-

plements the behavior of the cross-cutting concern, and

(2) the pointcut descriptor (PCD) that designates a set of

joinpoints in the base program where the advice should

be woven.

A number of researchers have studied the new

types of faults that can be introduced by AOP and

should, thus, be targeted by testing techniques. These

works identify new faults that can occur in the interac-

tions between the base program and the aspect, in the

advice, or in the PCD. This last category of faults is

specific to aspect-oriented languages since they intro-

duce new constructs to define the PCD. As observed by

Ferrari et al. [6], the PCD is the place that is the most

fault-prone in an aspect.

The consequence of an incorrect PCD is that the

advice is woven in unexpected places or is not woven

where it is expected. This is known as the fragile point-

cut problem in AOP [8, 13]. In turn, this introduces

faults in the program resulting from aspect weaving.

Moreover, when aspect-oriented programs evolve, there

is a well-known risk that the PCD may match unin-

tended joinpoints. This is known as the evolution para-

dox issue in AOP [14].

A major challenge to detecting faults in the PCD

is that a PCD is an abstract declaration of a set of join-

points and there is no other specification of the set of

joinpoints that it should match. To cope with this lack

of specification, we propose a test-driven approach to

developing the PCDs, where the tests can be used to

validate that the joinpoints matched by the PCD are the

intended ones. The approach requires the creation of

test cases that specify the intended and unintended join-

points. These test cases should not pass before aspect

weaving and should pass after weaving if the correct set

of joinpoints is matched by the PCD.

In order to write these test cases, we need to build

an oracle that checks that an advice is woven at a partic-

ular point in the program. Currently, using AspectJ and

JUnit, we can only build oracles that check whether an

advice has executed correctly at a specific place in the

base program. This is not satisfactory for us because,

if such a test case fails, it is not possible to determine

if this happened because the advice was not woven (the

fault we are looking for) or because the advice does not

behave as expected. In order to have more precise or-

acles for our test-driven approach, we implemented a

tool called AdviceTracer that can be used with JUnit.

AdviceTracer can determine at runtime which advice

(defined in a particular aspect) is executed and at which

place in the base program. This information can then

be used to build oracles that specifically target the pres-

ence or absence of an advice, and do not just check if

the advice executes correctly.

We also developed a mutation tool, called AjMuta-

tor, that systematically injects faults into the PCD and

checks if a set of test cases is able to detect these faults.

The faults are based on the model proposed by Ferrari

et al. [6]. We performed experiments to evaluate the ef-

fectiveness of the test cases written using AdviceTracer

in terms of their ability to detect faults introduced by

AjMutator in the PCD. We used Tetris and an auction

application as examples. Tetris has three aspects and the

auction system has two. For each of these systems, we

developed test cases that specify the intended joinpoints

and generated mutants for the PCDs in the aspects. We

observed that the test cases are able to detect different

types of faults. We also measured the effort required to

create the test cases that detected these faults.

Section 2 discusses the main issues encountered

when testing a PCD. Section 3 presents the Advice-

Tracer tool and Section 4 presents the AjMutator tool.

Section 5 describes our case studies. Section 6 dis-

cusses related research. We present our conclusions in

Section 7.

2. Testing Pointcut Descriptors

When testing a PCD, we look for four kinds of

faults, as defined by Lemos et al. [9]. Figure 1 illus-

trates them using a set abstraction. The lined set corre-

sponds to the intended joinpoints and the grey set corre-

sponds to the joinpoints actually matched by the PCD.

An fault in the PCD can produce (1) both unintended

and neglected joinpoints, (2) only neglected joinpoints,

or (3) only unintended joinpoints. A PCD with a type

1.a 1.b

2 3

intended

matched

Figure 1. The four types of PCD faults

(1) fault can match intended joinpoints (1.a) or not (1.b).

In order to detect these faults we need an alternate

way to specify the set of intended joinpoints. In this

paper, we propose a test-driven approach for PCD de-

velopment. In test-driven approaches, the test cases are

the specification of the program [3]. Thus, in our ap-

proach the test cases specify the set of joinpoints that

are expected to be matched by the PCD.

Our solution provides a specification of the PCD.

Now, it is possible to check for inconsistencies between

the PCD and this specification. A difference between

the sets of intended and matched joinpoints reveals a

fault. Another advantage of a test-driven approach is

that it provides test suites for regression testing in the

early stages of development. Thus, it becomes possible

to check that no unexpected changes were introduced

both during the development and the evolution of the

program.

A key issue for such a test-driven approach is the

lack of support for oracles that precisely specify the

presence or absence of a joinpoint. In the current state

of AspectJ, to test that a joinpoint was matched by the

PCD at a specific place of the system, a test case needs

to check that the behavior implemented by the joinpoint

executes correctly at this place.

For example, let us consider the aspect in Listing 1.

The expression

pointcut deleteLines(): execution

(* AspectTetris.deleteLines())

is a PCD that will match all the executions of all

deleteLines()methods, irrespective of their return

type. The advice declared in the body of the expression,

after() : deleteLines() {...}

is woven after each joinpoint matched by the PCD.

Suppose that we need to write a test case that spec-

ifies that the advice is expected to be woven each time

deleteLines() of the AspectTetris class is ex-

ecuted. Using JUnit, one would write a test case such as

1 public aspect Counter {

2 pointcut deleteLines() :

3 execution(* AspectTetris.deleteLines())

;

4

5 protected int currentLines;

6 protected int totalLines;

7

8 @AdviceName("deleteLines")

9 after() : deleteLines() {

10 totalLines += currentLines;

11 if(currentLines != 0)

12 System.out.println("Deleted "

13 + currentLines

14 + " lines (Total: "

15 + totalLines + ").");

16 }

17 }

Listing 1. An aspect example extracted from

the Tetris system

testdL() shown in Listing 2. However, testdL()

is not precise enough to specify a joinpoint. The first

problem is that if this test case fails, it is not possible to

conclude that the failure is caused by a fault in the PCD:

• If += is replaced by = in the advice of aspect

Counter, testdL() will fail, but not because

of a fault in the PCD.

• If * is replaced by int in the PCD, testdL()

will fail again, this time because of a fault in the

PCD.

The second problem is that testdL() will not

detect all the faults in the PCD. For example, in List-

ing 1, if the PCD is replaced by execution(*
AspectTetris.*()), testdL() will pass even

though there is a fault in the PCD. This fault is of type

3 as defined in Figure 1, which means that the expected

joinpoints are matched, but the PCD also matches unin-

tended joinpoints. To detect that fault, we need to write

test cases that specify that no advice should be woven

in some places of the code. However, this is not possi-

ble to do with test cases such as testdL(). These test

cases do not explicitly mention the presence or absence

of an advice; they just implicitly assume the presence of

an advice. Not allowing explicit mention of an advice

is a limitation of JUnit-based unit testing.

In order to experiment with a test-driven approach

for PCD validation and overcome the limitations of JU-

nit, we developed a tool called AdviceTracer. This tool

enables us to define an oracle for test cases that explic-

itly specify the presence or absence of an advice at a

specific place in the program.

1 public class TestCounter {

2 @Test

3 public void testdL() {

4 AspectTetris tetris = new

AspectTetris();

5 tetris.startTetris();

6 tetris.deleteLines();

7 assertEquals(tetris.totalLines,1);

8 }

9 }

Listing 2. A JUnit test class for the Counter

aspect

1 public class C {

2 public void m1() { ... }

3 public void m2() {

4 ...

5 m1();

6 }

7 }

Listing 3. A Java class example

3. AdviceTracer

The AdviceTracer tool [4] allows a programmer to

write test cases that focus on checking whether or not a

joinpoint has been matched by the PCD. More precisely,

AdviceTracer is used to specify an oracle that expects

the presence or absence of an advice at a particular point

in the base program. Test cases can specify the PCD

without executing the behavior of the advice.

3.1. Illustrative example

Listings 3, 4 and 5 illustrate the use of Advice-

Tracer. Listing 3 shows a Java class Cwith two methods

m1 and m2; m2 calls m1. Listing 4 shows an Aspect A,

in which an annotation has been added in order to name

the advice, A1. The advice is woven before the execu-

tions of m1 which are in the control flow of m2.

Listing 5 shows two test cases that specify the set of

expected joinpoints. In a textual form the specification

of the expected joinpoints can be expressed as “the ad-

vice A1 should be executed only before the executions

of m1 in the control flow of m2”. This means that we

must specify that the advice A1 is expected when m2

calls m1, and also that it should not be executed when

m1 is executed outside the control flow of m2. In a test-

driven approach, we need two test cases to specify this.

• test1() specifies that no advices should be ex-

ecuted (line 8) when only m1 is called (line 7).

Thus, the test case will pass only if weaving an

aspect (here aspect A) does not introduce the exe-

1 public Aspect A {

2 @AdviceName("A1")

3 before(): execution(void C.m1())

4 && cflow(execution(void C.m2())) {

5 ...

6 }

7 }

Listing 4. An AspectJ aspect example

1 public class Test {

2 @Test

3 public void test1() {

4 C c = new C();

5 addTracedAdvice("A1");

6 setAdviceTracerOn();

7 c.m1();

8 setAdviceTracerOff();

9 assertAdviceExecutionsEquals(0);

10 }

11

12 @Test

13 public void test2() {

14 C c = new C();

15 addTracedAdvice("A1");

16 setAdviceTracerOn();

17 c.m2();

18 setAdviceTracerOff();

19 assertAdviceExecutionsEquals(1);

20 assertExecutedAdviceAtJoinpoint("A1","C

.m1:2");

21 }

Listing 5. A JUnit test class illustrating how to
use AdviceTracer

cution of an advice when executing m1. The test

case will fail if a joinpoint of m1 is matched by the

advice (unintended joinpoint).

• test2() calls m2 and then specifies (at lines 19-

20) that advice A1 should be executed from a join-

point at line 2 of C, within m1. So if the test

case passes, we know that the advice was executed

within the context of execution of m1.

If the PCD of Listing 4 is replaced by execution

(void C.m1()), then test1() fails because the

advice is executed in this test scenario. If the pointcut

is replaced by execution(void C.m2()), then

test2() fails although the advice is executed because

it is woven within m2 instead of m1.

This example also illustrates how AdviceTracer

can handle dynamic PCDs. The PCD of Listing 4 is

dynamic: it matches the execution of m1 in the control

flow of m2. This kind of PCD can only be resolved at

runtime. To specify this PCD we first execute m1 out-

side the control flow of m2 and check that the advice

was not executed (test1 of Listing 5), and then we

execute m1 in the control flow of m2 and check that the

advice was executed at the correct joinpoint (test2 of

Listing 5).

AdviceTracer makes it possible to specify the ex-

pected joinpoints in order to check that there are no ne-

glected joinpoints. In such an approach, there must be

test cases that specify every place in the base program

that should be matched by each PCD.

As shown in test1, it is also possible to write test

cases that specify unintended joinpoints. In Section 5.3,

we present a strategy to reduce the effort required to

write test cases.

3.2. Primitive methods of AdviceTracer

The above two test cases illustrate how the prim-

itive methods of AdviceTracer are used. These primi-

tives are of three distinct types: those that start or stop

AdviceTracer, those that configure the traced advices,

and those that define assertions to specify the oracle.

3.2.1. Starting AdviceTracer. To start tracing,

AdviceTracer must be set on by calling the static

method setAdviceTracerOn(). It should be

called before calling a method where an advice

is expected (or not expected) to be woven. The

static method setAdviceTracerOff() stops

tracing. Between setAdviceTracerOn() and

setAdviceTracerOff(), AdviceTracer stores

information about which advices (identified by their

name) were executed and where they were executed.

3.2.2. Restricting the traced advices. Using Advice-

Tracer each test can specify the advices to be traced.

If a test case does not specify any advice, then all the

advices are traced. On lines 5 and 15 of Listing 5, the

method addTracedAdvice is called. It adds the ad-

vice as a parameter to the collection of traced advices.

Another method, setTracedAdvices, specifies a

collection of advices to be traced. In listing 5, test1

specifies the absence of the advice A1 and test2 spec-

ifies the presence of the advice A1.

The test cases test1 and test2 are said to be

modular because they specify a set of joinpoints where

a specific advice must or must not be woven. A test

case is not modular when it is not specific to a particu-

lar advice; it passes as long as an advice is woven (or no

advice is woven) instead of passing when a specific ad-

vice is woven (or when a specific advice is not woven).

Restricting the traced advices improves the modularity

of the test cases.

The benefit of modular test cases is that they are

less affected by removal or addition of advices in the

aspects. They are only affected by changes made in

the PCDs of the advices they trace. For instance, if a

new advice is woven within C.m1, then the test cases

of Listing 5 will still pass because they only consider

advice A1.

If the PCD changes, the test case needs to be up-

dated. If the base program changes, we may also need

to add more test cases.

3.2.3. Assertions provided by AdviceTracer. Ad-

viceTracer provides three new assertions that are exten-

sions of JUnit assertions.

assertAdviceExecutionEquals(int n) : Passes if n ex-

ecutions of some advices occur, fails otherwise.

assertExecutedAdvice(String advice) : Passes if the

advice, whose name is passed as the parameter,

was executed, fails otherwise.

assertExecutedAdviceAtJoinpoint(String advice,

String joinpoint) : Passes if the specified advice

was executed at the specified joinpoint, fails

otherwise. The format of the joinpoint parameter

is: className.methodName:lineNumber

where lineNumber refers to the line where the

joinpoint is expected.

3.3. Implementation of AdviceTracer

AdviceTracer provides an API consisting of the

primitive methods described above and contains an as-

pect, implemented using AspectJ. The advice in this

aspect retrieves the name of the advice that is being

traced and the location of the joinpoint that triggered

the advice execution. This information is stored in a

TraceElement object, which is a pair of strings, one

for the advice (e.g., A1) and one for the joinpoint (e.g.,

C.m1:2). The string for the advice is its name, spec-

ified with the @AdviceName annotation. The string

for the joinpoint is built with the qualified name of the

method and the line number where it is located (sepa-

rated by the ‘:’ character).

The advice is woven before each joinpoint matched

by all the aspects under test (i.e. before each

execution of an advice). The PCD in the Ad-

viceTracer aspect is “adviceexecution()&& !

within(AdviceTracer)”. This PCD matches the

execution of all the tested advices and not Advice-

Tracer’s own advice.

All the TraceElement objects are stored in a

list that can be retrieved in each test case by calling

a static method (getExecutedAdvices). This list

is reset each time AdviceTracer is set on, and thus

it only contains the TraceElement objects corre-

sponding to the advice execution that were traced be-

PCD

AjMutator

Mutant PCD

Mutant PCD

Mutant PCD

...

Mutant PCD

Mutant

Aspect

Mutant

Aspect

Mutant

Aspect

...

Mutant

Aspect

insertion in
Aspect

Figure 2. The PCD mutation process

Mutant

Aspect

CompilationStop
failure

Equivalent

Mutant ?

success

Stop
yes

Execution of the

Test Cases

no

All Test Cases

Pass ?
Mutant Alive

Mutant Killed by

the Test Cases

yes no

Figure 3. The mutant evaluation process

tween the last calls to setAdviceTracerOn and

setAdviceTracerOff.

4. Mutation Tool

To validate AdviceTracer, we implemented a muta-

tion tool for PCDs in AspectJ, called AjMutator. This

tool is able to automatically insert faults in PCDs to

change the set of matched joinpoints. AjMutator inserts

seven different types of faults based on seven mutation

operators, all defined by Ferrari et al. [6].

PCCE : Pointcut changing by switching execution/

call PCDs. The PCCE operator replaces a call

PCD by an execution PCD or vice versa. It

changes the context where the advice is woven

(with a call PCD, the advice is woven where

the method is called, with an execution PCD,

the advice is woven in the method). It produces

both neglected and unintended joinpoints – type

(1) fault.

PCGS : Pointcut changing by switching get/ set

PCDs: The PCGS operator replaces a set PCD

by a get PCD or vice versa. It produces both ne-

glected and unintended joinpoints.

PCLO : Pointcut changing by changing logical opera-

tors. This operator replaces a conjunction (‘&&’)

by a disjunction (‘||’) or the contrary. It produces

type (3) and type (2) faults, respectively.

PCTT : Pointcut changing by switching this/

target PCDs. The PCTT operator replaces a

this PCD by a target PCD. It produces type

(1) faults.

POEC : Pointcut weakening or strengthening by

changing exception throwing clauses. The POEC

operator adds, removes or changes the throwing

clauses in the PCDs that specify a method. It pro-

duces neglected and/or unintended joinpoints.

POPL : Pointcut weakening or strengthening by

changing parameter lists. The POPL operator

adds, removes or changes the parameters in the

PCDs that specify a method or a constructor. It

produces neglected and/or unintended joinpoints.

PWIW : Pointcut weakening by inserting wildcards

into the PCD. The PWIW operator replaces an

identifier in the PCD by a wildcard (‘*’). It weak-

ens the PCD (i.e., it becomes more general) and

only produces unintended joinpoints – type (3)

fault of Figure 1.

Figure 2 shows the mutation process using AjMu-

tator. AjMutator takes a PCD as input and successively

applies different operators to the PCD. Each operator

can produce several mutants from a single PCD. In or-

der to run the mutation analysis, these mutant PCDs are

then inserted into the aspect to replace the original PCD.

One mutant aspect is generated for each mutant PCD.

Figure 3 shows the mutation analysis process.

First, the mutant is compiled. If the compilation fails,

then the mutant is discarded. For example, the PCLO

operator can generate mutants that do not compile. For

instance, in the NewBlocks aspect of the tetris exam-

ple, the following PCD is used:

pointcut getBlock(int type) : call

(int[][] Blocks.getBlock(int))

&& args(type);

The expression args(type) specifies that the argu-

ment of the method is bound to the parameter of the

pointcut (type). Replacing the conjunction by a dis-

junction results in an inconsistent binding and is re-

ported as an error by the AspectJ compiler.

Table 1. Metrics for Auction and Tetris

System # Class # Method

Test Cases

(Intended/

Unintended)

Auction 41 177 16 (5/11)

Tetris 11 28 41 (14/27)

The second step of the process checks for equiva-

lent mutants and removes them from the set of mutants

to kill. A mutant PCD, p’, is equivalent to the initial

PCD, p, with respect to the base program, BP, if p’

matches exactly the same set of joinpoints as p in BP.

The AspectJ compiler, AJDT, provides the API to ob-

tain information on the set of joinpoints matched by p

and p’. Then, by comparing these two sets, it is pos-

sible to determine if the PCDs are equivalent. Thus, in

our case, the detection of equivalent mutants can be au-

tomated.

After the set of valid mutants is selected, the test

cases are executed with the mutant aspect in the third

step of the process. If at least one test case fails, then

the mutant is considered “killed”, otherwise it is “alive”.

Thus, unlike classical mutation analysis, a mutant is

killed not based on the difference between the behav-

ior of the initial and the mutant program. Instead, we

use the oracle of the test cases to kill the mutants. This

difference is because of the different goals for mutation

analysis. Mutation analysis is generally used to validate

the quality of test data, for which the oracle might not

be available. In our case, mutation analysis serves a dif-

ferent purpose: it aims at validating the quality of the

oracle in test cases that specify intended joinpoints.

5. Evaluation

We evaluated our approach on two AspectJ sys-

tems. For each one we wrote test cases for specify-

ing the different PCDs defined in the aspects. Then we

used our mutation tool to insert faults in the PCDs and

we checked whether the test cases written with Advice-

Tracer can detect the introduced faults.

The auction example is an implementation of an

online auction system where users can buy or sell items.

This system was developed by the Triskell research

group at IRISA. The Reserve aspect allows the user to

add an optional and secret reserve price. If the reserve

price is not reached at the end of the auction, then the

sale is canceled. The AltBid aspect modifies the way

that the price is calculated using the second highest bid.

The tetris example is an implementation of the

classic video game that was developed by Gustav Ev-

Table 2. Mutation scores for PCDs in Tetris and

Auction
Mutants Non-Eq Killed %

Auction

Reserve

31 10 10 100%

AltBid

64 13 13 100%

Tetris

NewBlocks

72 7 7 100%

Counters

51 15 15 100%

Levels

66 12 12 100%

Table 3. Results for Auction with only the test

cases for the intended joinpoints
Mutants Non-Eq Killed %

Reserve

64 13 12 92.3%

AltBid

31 10 8 80%

ertsson [5]. The NewBlocks aspect adds new kinds of

blocks to the game. The Counters aspect counts the

deleted lines and prints them on the game layout. The

Levels aspect adds a level system to the game: each time

a certain number of lines are deleted, the level is in-

creased and the blocks fall faster.

Table 1 shows relevant metrics of the two systems.

The auction example has 41 classes and 177 methods,

and 16 test cases were written to specify the PCDs (5

test cases to specify the intended joinpoints and 11 to

specify the unintended joinpoints). The tetris example

has 11 classes and 28 methods, and 41 test cases were

written to specify the PCDs (14 test cases to specify

the intended joinpoints and 27 to specify the unintended

joinpoints).

5.1. Results for Mutation Analysis

The operators described in 4 were used to generate

mutants. 359 number of mutants were produced, out of

which 75 were non-compilable. Out of the remaining

284 mutants, 57 were non-equivalents mutants.

The PWIW operator produced the most mutants

(224), but 214 of them are equivalent (only 10 non-

equivalent mutants). In most cases, the wildcard in-

troduced by the operator does not allow the selec-

tion of more joinpoints. For instance, if call(

void AspectTetris.deleteLines()) is re-

placed by call(void *.deleteLines()), the

mutant is equivalent as there is no other class

than AspectTetris which has a method called

deleteLines that takes no parameter.

Table 2 shows the results of our evaluation. For

each aspect, it shows the number of mutants, the num-

ber of non-equivalent mutants, and the number of mu-

tants killed.

In the Auction system, 31 mutants were produced

for the Reserve aspect, and 10 of them are non-

equivalent. 64 mutants were produced for the AltBid

aspect, with 13 non-equivalent mutants. All the non-

equivalent mutants were killed by the test cases.

Int Tetris, 72 mutants were produced for the New-

Blocks aspect, with 7 non-equivalent mutants. 51 mu-

tants were produced for the Counters aspect, with 15

non-equivalent mutants. For the Levels aspect, 66

mutants were produced, and 12 of them were non-

equivalents. All the non-equivalent mutants were killed

by the test cases.

These results show that test cases written using Ad-

viceTracer are actually able to detect faults in the PCD,

and thus such test cases can specify PCDs in a test-

driven approach.

Table 3 shows the results of the mutation analy-

sis with only the test cases for the intended joinpoints.

The results for Tetris are the same as in Table 2, which

means that the test cases for the intended joinpoints can

kill all the mutants of Tetris. For the Reserve aspect,

92.3% of the mutants are killed, and for the AltBid, 80%

of the mutants are killed.

The 3 mutants that are not killed were generated

by the PWIW operator. This operator only produces

mutants with unintended joinpoints, so usually mutants

generated by this operator cannot be detected by test

cases for intended joinpoints.

These results allow one to find a tradeoff between

the testing effort and the level of confidence in the PCD.

Writing only the test cases for intended joinpoints is

usually a limited effort and this can guarantee that the

PCD matches at least these joinpoints. Of course, to

validate that the PCD matches only those joinpoints, it

is necessary to write more test cases. In section 5.3 we

discuss a strategy to reduce the cost of generation of

these test cases.

5.2. Evaluation of the AdviceTracer Frame-

work

In section 2 we explained why JUnit was not well

adapted for a test-driven development of PCDs. Here,

we discuss how AdviceTracer is actually better suited

for the development of test cases that specify expected

joinpoints.

Consider the aspect Counter shown in Listing 1.

With AdviceTracer, we can specify the expected set of

joinpoints with testdL1() and testdL2() shown

in Listing 6. These test cases capture the intent of the

specification more precisely than testdL() of Listing

2.

AdviceTracer can make precise oracles that specif-

ically target the PCDs. There are three points that make

test cases made with AdviceTracer more precise than

regular JUnit test cases:

• Test cases written with AdviceTracer do not fail

because of a fault in the advice. If, on line 10

of Listing 1, += is replaced by =, testdL1 and

testdL2 pass but testdL does not.

• Test cases written with AdviceTracer make fault

localization easier. If testdL1 fails, we know

there is a fault in the PCD that produced a ne-

glected joinpoint. If testdL2 fails, we know

there is a fault in the PCD that produced an unin-

tended joinpoint. If testdL fails, we only know

that there is a fault, most likely localized in the

PCD or in the advice.

• Test cases written with AdviceTracer are more

modular. The success of testdL1 and testdL2

only depends on one PCD, changes made on other

aspects do not affect them. New aspect, or changes

within the advice A1 could change the result of

testdL, even if the PCD is unchanged.

5.3. Strategy for specifying the unintended

joinpoints

Unit test cases are well suited for the specification

of intended joinpoints since they target single methods

and intended joinpoints are defined at the level of a sin-

gle method. However, unit test cases might not be as

well adapted for the specification of unintended join-

points. In that case, it is necessary to write unit test

cases for each method where no joinpoint is expected.

This can require a large number of unit test cases since

for most PCDs, the number of intended joinpoints is

small.

We need a strategy for specifying the unintended

joinpoints that can save time and drastically reduce the

number of required test cases. Our strategy is to use

system test cases for specifying unintended joinpoints.

These test cases cover a greater part of the program,

1 public class TestCounter2 {

2 @Test

3 public void testdL1() {

4 AspectTetris tetris =

5 new AspectTetris();

6 tetris.startTetris();

7 addTracedAdvice("deleteLines");

8 setAdviceTracerOn();

9 tetris.deleteLines();

10 setAdviceTracerOff();

11 assertAdviceExecutionsEquals(1);

12 assertExecutedAdviceAtJoinpoint(

13 "deleteLines",

14 "AspectTetris.deleteLines:23");

15 }

16

17 @Test

18 public void testdL2() {

19 AspectTetris tetris =

20 new AspectTetris();

21 tetris.startTetris();

22 addTracedAdvice("deleteLines");

23 setAdviceTracerOn();

24 tetris.gameOver();

25 setAdviceTracerOff();

26 assertAdviceExecutionsEquals(0);

27 }

28 }

Listing 6. A JUnit test class for the Counter
aspect

thereby reaching a larger number of unintended join-

points with less effort. However, system test cases

might also cover intended joinpoints. In that case, the

oracle needs to check that every executed advice corre-

sponds to an intended joinpoint, otherwise the test case

fails. This kind of test cases actually only specify un-

intended joinpoints. If there are neglected joinpoints

and no unintended joinpoints, these test cases will pass.

However, if advices are executed at unintended join-

points by these test cases, then they fail.

This strategy reduce the cost of writing test cases

for the unintended joinpoints. It allowed us to write

only a few test cases specifying unintended joinpoints,

11 for Auction and 24 for Tetris.

6. Related work

Ye et al. [19] tackle the issue of correctness of a

PCD. They propose tools to assist developers in diag-

nosing faults and fixing PCDs. First, according to a

PCD, they compute a set of joinpoints that are almost

matched by this PCD. This means they compute the set

of joinpoints that would be matched if the PCD was

slightly different. That way, a developer who analyzes

these joinpoints can check whether he/she expected one

of these joinpoints to be matched. If this is the case,

then the PCD must be fixed. For this step, Ye et al. also

propose a tool that can explain why a joinpoint is not

matched by the PCD.

The solution proposed by Ye et al. to tackle the

problem of faulty PCDs is thus different from our ap-

proach. Instead of specifying the set of expected join-

points a priori, they provide assistance for manual in-

spection by the developer. The benefit of their approach

is that it does not require additional work from the de-

veloper. In case the aspects evolve, with this approach

the developer has to manually check all the PCDs to be

sure that there are no regressions. With our approach

the developer can run all the test cases again. If a new

advice is added, new test cases must be added to check

its PCD. If existing PCDs are modified, the test cases

for that PCD must be changed. All the other test cases

remain unchanged.

There exist several works related to mutation anal-

ysis in the context of AOP. McEachen et al. [11]

and Baekken et al. [2] propose several fault mod-

els. These works analyze aspect-oriented languages and

identify AOP-specific faults that can occur. In partic-

ular, Baekken et al. focus on different categories of

faults that can occur in PCDs. Anbalagan et al. [1]

also propose mutation analysis of the PCD. Like Ye et

al., they also associate a notion of similarity with the

initial PCD to select a subset of the mutants and limit

the cost of mutation analysis. Ferrari et al. [6] ana-

lyze the different faults models previously proposed for

AOP and study how they map on to different languages

for aspect-oriented programming.

Another work related to our approach is proposed

by Sakurai et al. [12], who propose to describe point-

cuts in unit test cases. Although this approach at first

glance appears to be similar to our work, it is actually

different. They propose a new language for pointcut de-

scription based on unit test cases. Here the test cases

are not meant to validate a pointcut described as a reg-

ular expression. Instead, they are meant to replace the

regular expression. This should allow PCDs to be more

robust with respect to evolution. However, these PCDs

can still be erroneous and the authors do not tackle the

issue of the correctness of their PCDs.

Other work on testing aspect-oriented programs fo-

cus on other aspects of the testing activity. In partic-

ular, some works have focused on unit testing in AOP

and regression testing when the base program or aspects

evolve.

Xu et al. [18] tackle the issue of regression test

selection for AOP. They extended a technique for Java

introduced by Harrold et al. [7] to take aspects into

account. Based on the comparison of the control-flow

graphs for test cases on the program before and after

evolution, they identify the subset of test cases that must

be executed for regression testing.

Xie et al. [15] focus on the automatic generation

of test data for aspect-oriented programs. Their frame-

work, called Aspectra, focuses on the validation of the

behavior implemented in the advice. This tool lever-

ages existing tools for automatic generation of test data

for Java programs. A major issue of automatic test data

generation is that the number of generated data can be

large. To tackle this issue, Xie et al. [16] introduced a

framework for detecting redundant unit tests in AspectJ

programs. The proposed framework removes the test

cases that do not exercise a new behavior.

Xu et al. [17] propose a model-based testing ap-

proach for AOP. The behaviors of the base program and

the advices are modeled with statecharts. The authors

merge these statecharts and generate test data to cover

the paths in the composed statechart that correspond to

interactions between the base program and the advice.

Lopes et al. [10] focus on unit-testing the advices.

Their approach relies on JAML (Java Aspect Markup

Language), an aspect language for Java where the ad-

vices are implemented in regular Java classes and the

PCDs are described in XML. This allows advices to be

called as regular methods, and thus to be unit-tested.

They also provide JamlUnit, a JUnit extension to test

JAML advices.

7. Conclusions and Future Work

Pointcut descriptors in aspects are critical because

they specify the locations where a cross-cutting concern

should be woven in a program. However, as pointed

out by several papers on AOP testing, these pointcut de-

scriptors are fault-prone and should, thus, be tested. In

this paper we identified two major issues related to test-

ing PCDs: the lack of specification for intended join-

points and the limitations of JUnit for explicitly assert-

ing the presence or absence of an advice at a specific

point in the program.

We proposed a test-driven approach for the devel-

opment of PCDs. This approach allows us to tackle

the issue of lack of specification; in our approach the

test cases become the specification of the intended join-

points. We also developed a tool called AdviceTracer

that provides an API to testers so that they can define

oracles that explicitly specify an expected joinpoint or

the expected absence of a joinpoint.

AdviceTracer collects trace information that can

also be used to debug aspect-oriented programs. An-

other possible way to use AdviceTracer is to assess

change impact through dynamic analysis during the

evolution of base program and the aspects.

A second contribution of this work is the develop-

ment of mutation tool for PCDs. Based on mutation

operators defined in other works, AjMutator automat-

ically generates mutants for a PCD. We used this tool

to validate that the test cases developed using Advice-

Tracer can actually detect faults in PCDs. While ex-

perimenting with our test-driven approach, we observed

that unit test cases are indeed able to specify the in-

tended joinpoints and that these test cases can detect

faults in the PCDs. Moreover, we observed that unit

test cases that specify unintended joinpoints also detect

faults in PCDs, but this requires a large number of unit

test cases. The experiments also allowed us to validate

that AdviceTracer is better suited to a test-driven devel-

opment of PCDs than plain JUnit.

In the future, we will investigate the ability of Ad-

viceTracer to detect other types of faults that could not

be injected in the systems studied here. We also want

to study how such a test-driven approach for PCDs can

help detect faults when the base code evolves. Another

point that could be explored is a way to adapt existing

test cases, in particular system tests, in order to reduce

the effort required to specify unintended joinpoints.

References

[1] P. Anbalagan and T. Xie. Efficient mutant generation

for mutation testing of pointcuts in aspect-oriented pro-

grams. In Mutation’2006, pages 51–56, Raleigh, NC,

USA, November 2006.

[2] J. Baekken and R. T. Alexander. A candidate fault model

for AspectJ pointcuts. In ISSRE’06 (Int. Symposium

on Software Reliability Engineering), pages 69 –178,

Raleigh, NC, USA, November 2006 2006.

[3] K. Beck. Test Driven Development: By Example.

Addison-Wesley, Boston, MA, USA, 2003.

[4] R. Delamare. Advicetracer.

http://www.irisa.fr/triskell/

Softwares/protos/advicetracer.

[5] G. Evertsson. Tetris in AspectJ.

http://www.guzzzt.com/coding/

aspecttetris.shtml.

[6] F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation

testing for aspect-oriented programs. In ICST ’08: Pro-

ceedings of the 1st International Conference on Software

Testing, Verification and Validation, 2008.

[7] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,

M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.

Regression test selection for java software. In OOP-

SLA’01: Proceedings of the 16th conference on Object-

Oriented Programming, Systems, Languages, and Ap-

plications, pages 312–326, 2001.

[8] C. Koppen and M. Storzer. Pcdiff: Attacking the fragile

pointcut problem. In European Interactive Workshop on

Aspects in Software (EIWAS), September 2004.

[9] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V.

Lopes. Testing aspect-oriented programming pointcut

descriptors. In WTAOP ’06: Proceedings of the 2nd

Workshop on Testing Aspect-Oriented Programs, pages

33–38, New York, NY, USA, 2006. ACM.

[10] C. V. Lopes and T. Chi Ngo. Unit testing aspectual be-

havior. In Proceedigns of the 1st Workshop on Testing

Aspect-Oriented Programs, 2005.

[11] N. McEachen and R. T. Alexander. Distributing classes

with woven concerns: an exploration of potential fault

scenarios. In AOSD ’05: Proceedings of the 4th in-

ternational conference on Aspect-oriented software de-

velopment, pages 192–200, New York, NY, USA, 2005.

ACM.

[12] K. Sakurai and H. Masuhara. Test-based pointcuts

for robust and fine-grained join point specification. In

AOSD ’08: Proceedings of the 7th international con-

ference on Aspect-oriented software development, pages

96–107, New York, NY, USA, 2008. ACM.

[13] M. Störzer and J. Graf. Using pointcut delta analy-

sis to support evolution of aspect-oriented software. In

ICSM’05, pages 653– 656, Budapest, Hungary, Septem-

ber 2005.

[14] T. Tourwe, J. Brichau, and K. Gybels. On the existence

of the aosd-evolution paradox. In AOSD 2003 Work-

shop on Software-engineering Properties of Languages

for Aspect Technologies, Boston, USA, 2003.

[15] T. Xie and J. Zhao. A framework and tool supports

for generating test inputs of AspectJ programs. In

AOSD’06: Proceedings of the 5th international confer-

ence on Aspect-Oriented Software Development, pages

190–201, 2006.

[16] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detect-

ing redundant unit tests for AspectJ programs. In IS-

SRE’06: Proceedings of the 17th International Sym-

posium on Software Reliability and Engineering, pages

179–190, 2006.

[17] D. Xu and W. Xu. State-based incremental testing of

aspect-oriented programs. In AOSD’06: Proceedings

of the 5th international conference on Aspect-Oriented

Software Development, pages 180–189, 2006.

[18] G. Xu and A. Rountev. Regression test selection for As-

pectJ software. In ICSE ’07: Proceedings of the 29th In-

ternational Conference on Software Engineering, pages

65–74, 2007.

[19] L. Ye and K. D. Volder. Tool support for understanding

and diagnosing pointcut expressions. In AOSD ’08: Pro-

ceedings of the 7th international conference on Aspect-

oriented software development, pages 144–155, New

York, NY, USA, 2008. ACM.

