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Abstract: We report on a generic (uni- and bivariate) algebraic kernel that
becomes available to the public with Cgal 3.7. It comprises complete, cor-
rect, though efficient state-of-the-art implementations on polynomials, roots of
polynomial systems, and the support to analyze algebraic curves defined by bi-
variate polynomials. The kernel is accompanied with a ready-to-use interface to
enable arrangements induced by algebraic curves, that have already been used
as basis for various geometric applications, as arrangements on Dupin cyclides
or the triangulation of algebraic surfaces. We present two novel applications:
arrangements of rotated algebraic curves and Boolean set operations on poly-
gons bounded by segments of algebraic curves. We also provide exhaustive
experiments showing that our implementation is competitive and often outper-
forms existing implementation on non-linear curves available in Cgal, which
demonstrates the general usefulness of the presented software.
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Un noyau algébrique générique pour des

applications géométriques non linéaires

Résumé : Nous décrivons un noyau algébrique générique univarié et bi-
varié, qui est distribué publiquement dans CGAL 3.7. Il contient des im-
plantations complètes correctes et efficaces sur les polynômes et les racines de
systèmes polynomiaux, ainsi que des fonctionnalités pour analyser des courbes
algébriques définies par des polynônes bivariés. Le noyau est accompagné d’une
interface pour calculer des arrangements induits par des courbes algébriques,
qui ont déjà été utilisés comme base pour des calculs géométriques variées,
telles que les arrangements de cyclides de Dupin ou les triangulations de sur-
faces algébriques. Nous présentons deux applications nouvelles : les arrange-
ments de courbes transformés de courbes algébriques par certaines rotations,
et les opérations booléennes sur des ’polygones’ définis par des arcs de courbes
algébriques. Nous fournissons également des résultats expérimentaux exhaus-
tifs montrant que notre implantation est compétitive et surpasse souvent les
implantations existantes dans CGAL sur des courbes. Ceci montre l’utilité du
code présenté.

Mots-clés : noyau algébrique, courbe algébrique, arrangement, opérations
booléennes, calcul géométrique robuste, expériences, CGAL, programmation
générique
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1 Introduction

A considerable amount of work in Computational Geometry is motivated by the
fact that many geometric algorithm, for instance, used in Computer Aided De-
sign systems, are actually not robust. Often, this is caused by the use of fast but
inexact floating point arithmetic, which can lead to wrong (and inconsistent)
decisions within algorithms [28]. On the other hand, Computer Algebra has
developed very general and exact tools that could solve such problems in prin-
ciple, but a naive application of these tools is by far too slow, especially when
applied in geometric settings. Thus, our cardinal research interest is to incorpo-
rate methods from all these areas in order to design and implement geometric
algorithms that are exact, complete, and efficient [30].

In this context Cgal [19], the Computational Geometry Algorithms Library,
was started in 1996 with its first beta release in June 1997. Since that time,
Cgal can be considered as the state-of-the-art in implementing geometric algo-
rithms. While the major focus of the library had been on linear geometry, the
project also raised its attention towards non-linear geometry, see, for instance,
[20, 21, 26, 18]. Evidently, all these examples tackle problems whose solution
require solving polynomial systems, efficient comparison and approximation of
algebraic numbers, etc. This led to the demand [17],[29, ➜13] for an Algebraic

Kernel providing an interchangeable black-box implementation of state-of-the-
art algorithms for the above mentioned functionalities [29, ➜8],[5].

We contribute the first open-source implementation of an algebraic kernel
for polynomials in one and two variables, becoming publicly available with
Cgal 3.7; see Section 2. Our kernel is parameterized in the coefficient type
of the algebraic curves, and thus generically supports various number types,
even beyond integers and rationals. It correctly computes and handles solutions
of univariate and bivariate polynomial systems of any degree including all sorts
of degenerate cases. Internally, it comprises several recent algorithmic results in
real root isolation and topology computations of algebraic curves1 [15] and pairs
of such [14] to achieve efficiency. Its prototypical version has already been an es-
sential building block for numerous geometric applications. While its univariate
part was used to exactly handle parameterized curves defined over extension
fields of degree 2 [12], the bivariate part enabled computing arrangements of
algebraic curves in the plane (see next paragraph), computing arrangements on
quadrics [4] and on ring Dupin cyclides [6], triangulating algebraic surfaces of
arbitrary degree [7], and, most recently, computing Voronoi diagrams for lines
in space [23].

Our second main contribution is a mature and ready-to-use support for ar-
bitrary algebraic curves, or segments of such, in the arrangement2 package of
Cgal 3.7; see Section 3. This is the most general class of objects for which
arrangement computation is currently available. The underlying algorithm has
been exposed in [14], and a preliminary implementation has been described
therein. Since then, the software has undergone a continuous maturation pro-
cess: the implementation properly distinguishes between an algebraic layer (pro-
vided by the algebraic kernel) and a geometric layer that provides the geometric

1An algebraic curve is defined by C := {(x, y) ∈ R
2 | f(x, y) = 0} for a polynomial f in

two variables, called the defining polynomial of C.
2The arrangement A(C) is the subdivision of the plane into 0-, 1-, and 2-dimensional cells

induced by a set of curves C.

RR n➦ 7274
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primitives. Furthermore, it is now possible to define curves over algebraic exten-
sion fields; we demonstrate how this allows to compute arrangements of rotated
algebraic curves with our software. Finally, we newly enabled Boolean set op-
erations for shapes bounded by segments of arbitrary algebraic curves.

Our new software subsumes all previously available Cgal implementations
on curved objects, which are arrangements of circles, conics, rational functions,
and Bézier curves [29, ➜30], [20]. As a final contribution, we experimentally com-
pare our general implementation to all these dedicated solutions; see Section 4:
Our software generally outperforms implementations for conics and rational
functions, is only a constant factor worse than the dedicated classes for circles
and is comparably fast for the case of cubic Bézier curves. We take these results
as a proof for the maturation of our traits class as well as of the underlying
algebraic kernel, and for the general usefulness of the provided software.

2 The Algebraic Kernel Package

Cgal follows the generic programming paradigm, that is, algorithms are formu-
lated and implemented such that they abstract from the actual types, construc-
tions, and predicates. Using the C++ programming language this is realized by
means of class and function templates, respectively. The paradigm is applied
to all layers: Lower layers allow to employ different number types; one example
is the algebraic kernel that we present in this section. Higher levels are written
such that every algorithm and data structure is parameterized by a so-called
traits class, which provides the bundle of types, constructions and predicates
that is required by a particular algorithm or data structure. Section 3 discusses
the arrangement package of Cgal, which supports many types of planar curves
using this technique – the user just needs to provide an appropriate traits class.

The interface of the algebraic kernel [29, ➜8] is subdivided into two parts that
are concerned with univariate polynomials and bivariate polynomial systems,
respectively. According to this structure, we provide two classes,3 a univariate

and bivariate kernel. Following the generic programming paradigm, both kernels
are class templates that allow the user to select his preferred coefficient type.
We consider it as a major achievement of our generic design that a considerable
collection of number types is supported, namely several exact types for integers
or rationals as they are provided by the libraries Gmp, Core, or Leda, and also
types that represent algebraic extensions fields (as demonstrated in Section 3.2).

Both kernels basically consist of three major blocks: (a) a support for poly-
nomials covering fundamental methods such as gcd computation or square free
factorization; (b) a solver for real solutions of polynomial systems; (c) a proper
handling of these solutions such as their certified approximation, exact compar-
ison, and sign evaluation of polynomials at these solutions.

Polynomial Support: This is available as a separate package [29, ➜7]. The
computation of the gcd and the square free factorization heavily utilizes modular
arithmetic. Though generic in the actual coefficient type, we achieve competi-
tive running times to other implementations in dedicated libraries such as the
NTL [22]. The computation of subresultants and Sturm-Habicht sequences [2]

3CGAL::Algebraic kernel 1< Coeff > and CGAL::Algebraic kernel 2< Coeff >

RR n➦ 7274
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is also provided; these operations constitute a major ingredient in our bivariate
kernel. We implemented the algorithm by Ducos [11] for computing subresul-
tants. We next describe the other two building blocks separately for the uni-
and bivariate kernel:

Algebraic kernel 1: Our univariate kernel is flexible in its choice of the em-
ployed root solver. Currently, there are two available solvers which are both
based on Descartes’ rule of signs. The first is a generic implementation of the
algorithm by Collins and Akritas [9], the second is a variant that considers each
coefficient as a bitstream [13]. The later, which is the default, is particularly
useful in case of algebraic coefficients but has also proven to be competitive [24]
to other state-of-the-art solvers that are dedicated to integral polynomial.

A solution, a real algebraic number, is represented as real root of a square free
polynomial where an isolating interval uniquely defines the root. An approxi-
mation of a solution, with respect to any requested absolute or relative error,
is provided by refining the interval. The implemented refinement method is a
slight modification of the one presented in [1], which has quadratic convergence.

Algebraic kernel 2: The bivariate kernel is based on an algorithm comput-
ing a geometry-enhanced topological analysis of a single curve [15] and of a pair
of curves [14] (both analyses essentially are special cases of a cylindrical alge-
braic decomposition [8]). The main idea behind both analyses is to compute
the critical x-coordinates of curves and curve pairs by projection (resultants),
and compute additional information about the critical fibers using subresultants
and Sturm-Habicht sequences. With that information, the fiber at critical x-
coordinates is computed by a variant of the bitstream Descartes method; see
[27] for a comprehensive description of these techniques.

The two described analysis methods are the underpinnings of most of the
kernel methods: For instance, to find the solutions of a system of two bivariate
equations, a curve pair analysis is triggered, and the critical fibers are traversed
subsequently, collecting all intersection points on the way. Such a solution point
is stored to be the i-th fiber point of one of the two curves at the corresponding
x-coordinate (for some i). This representation allows to approximate the coor-
dinates of solutions efficiently (by increasing the precision to the corresponding
fiber in the curve analysis), but it also permits exact operations.

As an example, we discuss the computation of the sign of a bivariate poly-
nomial f at an algebraic point p, where p is represented as the fiber point of
some other curve with defining equation g. We first check whether f(p) = 0.
For that, we consider the curve pair analysis of the curves defined by f and
g and check whether p is an intersection. If not, we can simply evaluate f at
more and more precise approximations of p using interval arithmetic, until we
can certify the (non-zero) sign of f(p). We remark that a lot of special cases
are left out in this discussion for brevity (e.g., overlapping curves, curves with
vertical components), but they are completely handled in our software.

The implementation of our bivariate kernel was guided by the idea of im-
plementing geometric applications, as we present in Section 3. In particular,
we assume that several function calls arise for a certain curve or curve pairs.
Because of that, our bivariate kernel stores all computed analyses in a cache to
avoid costly recomputations. Indeed, for such an analysis, a worst-case com-

RR n➦ 7274
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plexity of O(n10(n + τ)2) has been shown, where n is the degree of the curve,
and τ is the maximal bitsize of its coefficients [27].

3 Geometric Applications

In this section we focus on new geometric applications that are build on top
of our bivariate algebraic kernel. Further applications (that used experimental
versions of the kernel) have been discussed in previous work [12, 4, 6, 7, 23].

3.1 Arrangements of Algebraic Curves

Arrangements are fundamental structures ubiquitous in computational geom-
etry. A modular and efficient realization of two-dimensional arrangements is
available in Cgal [29, ➜30]. Arrangements with arbitrary degeneracies can be
constructed with the help of a sweep-line algorithm or via incremental insertion.
The main class is parameterized by a geometric-traits class4 that provides the
low-level support for the intended family of curves. This includes definitions of
suitable data types for points and (possibly curved) segments, as well as geo-
metric primitives to manipulate and query them, for instance, comparing two
points lexicographically, or aligning two segments on the right of a common
intersection point; see [29, ➜30] for a complete list of requirements.

Through our implementation of this machinery, Cgal 3.7 will contain an
algebraic traits5 that serves the needs for computing arrangements of alge-
braic curves of arbitrary degree, and segments6 of it. All required geometric
types, predicates, and constructions are established with the help of a mediat-
ing layer [3] that translates the geometric primitives into the language of the
algebraic kernel, as previously exposed in [20, 14]. Algebraic curves must be
specified in implicit form, that is, by their defining polynomial. The coefficient
type of the polynomial is given as a template argument to our new traits class.
Profiting from the generic design, we are able to support the same collection of
number types as for the algebraic kernel (see Section 2); a result of this capabil-
ity is exemplified in Section 3.2. Moreover, our new traits defines a user-friendly
interface to construct points and segments. We refer to the manual of Cgal 3.7
for details.

3.2 Rotations of Algebraic Curves

For a curve C with defining polynomial f ∈ Z[x, y] and some angle α, let C ′ be
the curve arising from rotating C by α counterclockwise around the origin. The
defining polynomial of C ′ is given by

f ′(x, y) = f(cos(α)x + sin(α)y,− sin(α)x + cos(α)y).

For certain choices of α, sin(α) and cos(α) can be represented by square root
expressions. This is possible if and only if the angle is constructible with compass
and straightedge. The following well-known result characterizes all possibilities.

4CGAL::Arrangement 2< GeoTraits, ... >
5CGAL::Arr algebraic segment traits 2< Coeff >
6a segment of an algebraic curves C is an x-monotone path of on C not passing a singular

point of C

RR n➦ 7274
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Theorem 1 (Gauss) An angle α is constructible with compass and straight-

edge if and only if α = c · 360

2kp1···ps

where c, k, s ∈ N and p1, . . . , ps are distinct

Fermat primes, that is, primes of the form 22
m

+ 1, m ≥ 0.

Figure 1: An arrange-
ment of a degree 8 curve
rotated by multiples of
30◦.

In the following, we discuss the example of α = 30◦.

In this case, sin(α) = 1

2
and cos(α) =

√
3

2
. That

means, when rotating a curve with integer coefficients
by α, the rotated curve has coefficients from the do-
main Z√

3
:= {a + b

√
3 | a, b ∈ Z} (after clearing de-

nominators); the same holds for every integral multiple
of α. The Cgal number type for square-root exten-
sions7 is used to model Z√

3
. Our algebraic traits can

be instantiated using this type. This enables the com-
putations of arrangements of algebraic curves that are
rotated by multiples of α, as shown on the right.

We have also considered all other integer an-
gles which are constructible with compass and straightedge, namely
45◦, 18◦, 15◦, 9◦, 6◦, and 3◦, and multiples of those. Choosing α to be a small
angle allows finer rotations of the curve, but leads to a performance penalty
due to the more complicated coefficient domain one has to deal with. We refer
to [27, ➜5.2] for a more extensive treatment, that also compares the approach
to an alternative that rotates by approximate angles.

3.3 Boolean Set Operations

We present a straight-forward implementation of Boolean set operations on
shapes bounded by algebraic segments, which can be used to represent semi-

algebraic sets. Such a set is defined by a finite number of algebraic inequalities.
For example, a convex polygon with k edges is given by the point set that
satisfies aix + bix + ci ≥ 0, for 1 ≤ i ≤ k, ai, bi, ci ∈ R, ¬(ai = 0 ∧ bi = 0).

Their implementation is immediate using the possibility to extend the cells
of an arrangement with data and to overlay two such arrangements in Cgal [29,
➜30]: Each vertex, each edge, and each face of an arrangement is enhanced by a
Boolean flag that indicates whether that cell should be contained in a set. The
complement of a set is simply computed by inverting all flags, while a binary
operation – as union, intersection, or (symmetric) difference – is obtained by
overlaying two such enhanced arrangements and updating the resulting flag
according to the operation. A final removal of redundant vertices and edges
simplifies the overall structure; see [10, ➜2] for details. Thus, we achieve arbitrary
semi-algebraic sets, for instance, sets with (partially) open boundaries or with
low-dimensional features as antennas and isolated vertices.

However, practical settings often desire shapes to be closed and free of low-
dimensional features. A regularized Boolean set operation, given by P op⋆ Q =
closure(interior(P op Q)), ensures this property. Cgal’s corresponding pack-
age [29, ➜19] expects as input general polygons with holes,8 which are finite
shapes (not necessarily contractible), bounded by finitely many x-monotone
segments which do not intersect each other in their interior. All internal repre-
sentations and computations are based on planar arrangements. Thus, to enable

7CGAL::Sqrt extension< Integer, Integer >, where Integer must model Z
8CGAL::General polygon with holes 2

RR n➦ 7274
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algebraic polygons we use the algebraic traits presented in Section 3.1. To illus-
trate Boolean set operations on such polygons we extended Cgal’s correspond-
ing demo (that previously only supported polygons bounded by line segments,
circular arcs, and Bézier curves); see Figure 2. Visualization is established by a
certified renderer for algebraic segments [16].

(a) Difference (b) Sym. Difference (c) Intersection (d) Sym. Difference

Figure 2: Boolean set operations on algebraic polygons (red and blue) each de-
fined by a bounded face of a curve’s arrangement. Degree of curves: (a) blue: 10,
red: 7 (b) blue: 16, red: 14, (c+d) blue: 16, red: union of two degree 4 curves

4 Experimental Comparisons

Among the traits classes that are currently existing for Cgal’s arrangement
package, our algebraic traits is clearly the most general one. In fact, all previ-
ously available implementation constitute special cases and can be handled by
our traits, too. This section concentrates on the performance of the specialized
and dedicated traits classes to our general version; we refer to [27] for further
comparisons with alternative (non-Cgal) approaches.

All experiments have been executed on a 2.40GHz 32-bit Intel(R) Core(TM)2
Duo CPU P9400 with 6144 KB cache and 4GB RAM memory, running Fedora 10
(Cambridge). All programs where compiled using g++ version 4.3.2 optimized
with -O3 and -DNDEBUG. For brevity, we only present running time for a few
instances. Appendix ?? shows the complete tables listing every tested instance.

Circles: The simplest class of curved objects are circles and circular arcs. The
circle with center (a, b) and radius r is given as the vanishing set of (x−a)2+(y−
b)2 − r2. For rational a, b, and r, Cgal’s circular traits9 enables arrangement
computation of circular arcs; it only needs to handle algebraic numbers of degree
up to 2 (i.e., square-root expressions) because the coordinates of an intersection
point of two circles can not be of higher algebraic degree.

To compare with our approach, we created instances by creating m random
point triples (a1, b1, r1), . . . , (am, bm, rm) ∈ {1, . . . ,m}3 for fixed m. Each triple
represents a circle with center (ai, bi) and radius ri. We observe from Table 1
that our implementation is roughly a factor of 4 slower than the specialized
Cgal class, and the factor decreases for increasing m. We emphasize that our
traits class is free of any special treatment for circles (and the same is true

9We used CGAL::Arr circle segments traits 2, as it appeared faster than the feature-
identical class CGAL::Arr circular arc traits 2 on the tested instances

RR n➦ 7274
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#Circles #(V,E,F) circular algebraic speedup µs

200 (24268, 48142, 23877) 4.14 20.89 0.19 861
400 (85081, 169374, 84295) 15.69 71.96 0.21 845
600 (192640, 384084, 191447) 36.86 162.00 0.22 840
800 (338786, 675986, 337202) 67.45 284.72 0.23 840
1000 (548041, 1094088, 546050) 110.64 460.84 0.24 840

Table 1: Results for m circles with center on an m × m grid and integer radius
up to m. The last column states the time per vertex in µs.

#Ellipses #(V,E,F) conic algebraic speedup µs

30 (538, 1016, 480) 13.37 0.72 18.52 1341
60 (2200, 4280, 2082) 58.13 2.71 21.43 1232
90 (4656, 9132, 4478) 124.64 5.52 22.57 1186
200 (23744, 47088, 23346) 648.71 27.01 24.01 1137
400 (96502, 192204, 95704) 2660.99 108.94 24.42 1128
600 (214358, 427516, 213160) 5899.76 244.41 24.13 1140

Table 2: Results for m random ellipses. The last column states the time per
vertex in µs.

for any other special case tested in this section) and handles all input with
the same full “algebraic machinery” as for curves of higher degree. Regarding
this, we consider a factor of 4 to be an appreciably small overhead. Also, we
observe that the running time is roughly linear in the complexity of the returned
arrangement.

Conics: A conic is an algebraic curve of degree 2. Their general equation
is ax2 + by2 = cxy + dx + ey + f = 0, thus a conic can be presented by a
six-tuple (a, . . . , f) ∈ Z

6. Although the class of conics contains several non-
trivial curves like ellipses, parabolas and hyperbolas, one can still exploit many
simplifying properties compared to the curves of arbitrary degree. For instance,
no conic has a singular point, except for the special case of two intersecting
lines. Cgal’s conic traits10 supports bounded segments on conic curves; for
all internal algebraic computations, it relies on an exact type for real algebraic
numbers. As recommended, we have tested the traits class instantiated with
the types provided by Core [25].

We compared both implementations for the case of ellipses. For that, we
generated random ellipses with 30-bit coefficients.11 The results presented in
Table 2 show that our implementation is faster by a magnitude, and the ratio
even increases when computing with more ellipses (although the ratio seems
to stabilize at a factor of about 24). We conclude that our implementation
gives faster results for all realistic inputs. This shows that our algebraic kernel
handles the involved operations with algebraic numbers more efficiently than
Core.

10CGAL::Arr conic traits 2
11More precisely, we generated random conics with 30-bit coefficients and repeated the

construction if the result was not an ellipse

RR n➦ 7274
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n, m #(V,E,F) rational algebraic speedup µs

6,10 (114, 254, 141) 2.05 0.25 8.15 2210
6,40 (2074, 4266, 2193) 35.86 3.64 9.85 1755
6,70 (7020, 14238, 7219) 124.78 11.71 10.65 1668
6,100 (13124, 26534, 13411) 223.14 22.82 9.77 1739

3,20 (422, 890, 469) 1.67 0.46 3.61 1096
7,20 (594, 1242, 649) 16.93 1.13 14.90 1912
11,20 (616, 1292, 677) 47.23 1.95 24.16 3173
15,20 (676, 1418, 743) 131.54 3.09 42.45 4583

Table 3: Results for m random rational functions generated by degree n poly-
nomials with 16 bit coefficients. The last column states the time per vertex in
µs.

Rational Functions: There is also specialized traits for rational functions.12

For univariate polynomials P and Q, a rational function is defined by y =
P (x)/Q(x), or equivalently Q(x)y = P (x). The degrees of P and Q can be
chosen arbitrary large; however, the restriction of the y-degree of the defin-
ing equation to 1 of course drastically simplifies the realization of the involved
primitives. Similar to the conic case, the specialized traits class uses an external
number type for algebraic computations (taken from Core by default).

For comparison, we generated m pairs of polynomials (P,Q), each repre-
senting a rational function. The degree of both P and Q was chosen as n, and
each coefficient was chosen randomly with 16 bits. We observe in the first part
of Table 3 that for fixed n our approach is faster by a roughly constant factor
for increasing m. As the second part shows, the gap becomes more significant
if we increase n. Again, the reason for this behavior lies in the more efficient
handling of the underlying algebraic computations by our algebraic kernel.

Bézier Curves: Finally, Cgal provides support for arrangements of Bézier
curves via a Bézier traits.13 A Bézier curve is defined by a sequence of control

points p0, . . . , pn as the image of the function

B : [0, 1] 7→ R
2, (x, y) →

n
∑

k=0

pk

(

n

k

)

tk(1 − t)n−k.

Bézier curves are a widely used class of parameterized curves, with applications
in graphics and computer-aided design. As for conics and rational functions,
Cgal’s traits class relies on an external algebraic number type; however, several
filter techniques are implemented in order to avoid such computations as much
as possible [21].

We compared this Bézier traits class with our class on the most important
case of Bézier curves, namely cubic ones with 4 control points. We tested both
implementations on instances with random control points, and on degenerate
instances where we forced all Bézier curves to pass certain points. The results
were roughly similar for both cases and so, Table 4 only lists the random case. In
general, both traits classes behave equally efficiently in practice, with minimal

12CGAL::Arr rational arc traits 2
13CGAL::Arr Bezier curve traits 2

RR n➦ 7274
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m #(V,E,F) Bézier algebraic speedup µs

20 (259, 417, 160) 0.99 1.38 0.71 5346
40 (732, 1269, 539) 3.84 4.14 0.92 5661
60 (1863, 3439, 1578) 10.10 10.38 0.97 5571
80 (2849, 5293, 2446) 19.00 16.23 1.17 5697
100 (4513, 8581, 4070) 29.02 26.87 1.07 5955

Table 4: Results for m Bézier curves. with 4 randomly chosen control points.
The last column states the time per vertex in µs.

advantages for our software for an increasing number of curves. We remark that
we observed several robustness issues concerning Cgal’s Bézier traits class:
It is not able to handle overlapping curves and crashes frequently for Bézier
curves with self-intersections.14 Also, we observed significant slow-downs for
some instances (possibly due to filter failures), and even a crash on one tested
example. On the other hand, the Bézier traits shows its strength for higher
degree curves, where it outperforms our approach in many examples thanks to
its filter techniques.

5 Conclusions

Our new software introduces full support for algebraic curves in Cgal, achiev-
ing the goals of robustness, usability, and efficiency at the same time. Our
algebraic kernel provides a fundamental layer for certified computation with
curved objects. The design also shows flexibility in order to ease the integra-
tion of improved solutions for sub-algorithms. On top of our kernel, various
geometric applications in 2D and 3D have been developed – this work has pre-
sented two novel ones. We take the considerable amount of derived applications
as a proof of concept of our software, and as a sufficient argument to make it
publicly available. Finally, our experiments clearly show the maturation of our
implementation regarding performance. Some existing applications in Cgal

can directly profit from using our new algebraic traits class; as an example, we
mention the computation of exact offset of polygons [29, ➜24], which currently
use the conic traits class to represent the offset’s boundary. In the long term,
our contribution might also lead to a re-design of the specialized traits classes,
so that they make use of the algebraic kernel.

Acknowledgments: The authors thank Pavel Emeliyanenko for supporting
work on the implementation and Monique Teillaud for her translation of the
abstract to French.
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#Circles #(V,E,F) circular algebraic speedup µs

100 (5459, 10726, 5269) 0.86 4.94 0.17 906
200 (24268, 48142, 23877) 4.14 20.89 0.19 861
300 (52594, 104597, 52005) 9.33 44.52 0.20 846
400 (85081, 169374, 84295) 15.69 71.96 0.21 845
500 (134984, 268973, 133991) 25.00 113.72 0.21 842
600 (192640, 384084, 191447) 36.86 162.00 0.22 840
700 (260519, 519651, 259134) 50.79 218.88 0.23 840
800 (338786, 675986, 337202) 67.45 284.72 0.23 840
900 (440708, 879619, 438914) 88.52 370.61 0.23 840
1000 (548041, 1094088, 546050) 110.64 460.84 0.24 840

Table 5: Complete results for circles (Table 1 is an extract of this). The last
column states the time per vertex in µs.

#Ellipses #(V,E,F) conic algebraic speedup µs

10 (66, 112, 49) 1.33 0.12 10.49 1923
20 (214, 388, 176) 4.91 0.31 15.35 1495
30 (538, 1016, 480) 13.37 0.72 18.52 1341
40 (1070, 2060, 992) 27.58 1.37 20.09 1282
50 (1556, 3012, 1458) 40.55 1.92 21.08 1236
60 (2200, 4280, 2082) 58.13 2.71 21.43 1232
70 (2900, 5660, 2762) 76.79 3.55 21.59 1226
80 (3896, 7632, 3739) 104.14 4.63 22.45 1190
90 (4656, 9132, 4478) 124.64 5.52 22.57 1186
200 (23744, 47088, 23346) 648.71 27.01 24.01 1137
300 (49898, 99196, 49301) 1371.83 56.63 24.22 1135
400 (96502, 192204, 95704) 2660.99 108.94 24.42 1128
500 (157232, 313464, 156235) 4341.85 177.88 24.40 1131
600 (214358, 427516, 213160) 5899.76 244.41 24.13 1140

Table 6: Complete results ellipses (Table 2 is an extract of this). The last
column states the time per vertex in µs.
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n, m #(V,E,F) rational algebraic speedup µs

2,10 (98, 220, 123) 0.23 0.12 1.89 1285
2,20 (360, 766, 407) 0.85 0.36 2.34 1008
2,30 (900, 1862, 963) 1.88 0.75 2.49 840
2,40 (1836, 3766, 1931) 4.16 1.50 2.77 817
2,50 (2306, 4724, 2419) 4.89 1.95 2.50 848
2,60 (3676, 7486, 3811) 7.40 2.92 2.53 794
2,70 (5066, 10298, 5233) 11.07 4.11 2.69 811
2,80 (6110, 12394, 6285) 12.23 4.90 2.49 802
2,90 (7828, 15868, 8041) 16.76 6.42 2.61 820
2,100 (8918, 18056, 9139) 18.00 7.28 2.47 816

6,10 (114, 254, 141) 2.05 0.25 8.15 2210
6,20 (566, 1188, 623) 11.44 0.99 11.54 1750
6,30 (1222, 2526, 1305) 22.54 2.11 10.66 1729
6,40 (2074, 4266, 2193) 35.86 3.64 9.85 1755
6,50 (3268, 6670, 3403) 54.65 5.71 9.56 1749
6,60 (4800, 9764, 4965) 81.60 8.22 9.91 1714
6,70 (7020, 14238, 7219) 124.78 11.71 10.65 1668
6,80 (8636, 17482, 8847) 143.38 14.83 9.66 1718
6,90 (11266, 22790, 11525) 198.75 19.12 10.39 1697
6,100 (13124, 26534, 13411) 223.14 22.82 9.77 1739

3,20 (422, 890, 469) 1.67 0.46 3.61 1096
4,20 (508, 1066, 559) 4.22 0.63 6.64 1251
5,20 (574, 1204, 631) 8.20 0.83 9.87 1447
6,20 (566, 1188, 623) 11.32 0.97 11.60 1724
7,20 (594, 1242, 649) 16.93 1.13 14.90 1912
8,20 (576, 1204, 629) 21.38 1.29 16.51 2247
9,20 (622, 1312, 691) 34.58 1.63 21.16 2626
10,20 (652, 1368, 717) 47.97 1.84 26.01 2827
11,20 (616, 1292, 677) 47.23 1.95 24.16 3173
12,20 (630, 1322, 693) 62.23 2.18 28.51 3464
13,20 (738, 1536, 799) 102.35 2.59 39.43 3517
14,20 (616, 1288, 673) 87.67 2.71 32.24 4414
15,20 (676, 1418, 743) 131.54 3.09 42.45 4583

Table 7: Complete results for rational functions (Table 3 is an extract of this).
The last column states the time per vertex in µs.
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m, d #(V,E,F) Bézier algebraic speedup µs

10,- (100, 155, 57) 0.32 0.48 0.66 4829
20,- (259, 417, 160) 0.99 1.38 0.71 5346
30,- (519, 889, 372) 2.44 2.76 0.88 5328
40,- (732, 1269, 539) 3.84 4.14 0.92 5661
50,- (1352, 2456, 1106) 7.44 7.13 1.04 5276
60,- (1863, 3439, 1578) 10.10 10.38 0.97 5571
70,- (2394, 4441, 2049) 16.03 12.72 1.26 5314
80,- (2849, 5293, 2446) 19.00 16.23 1.17 5697
90,- (3544, 6682, 3140) SegFault 20.54 - 5797
100,- (4513, 8581, 4070) 29.02 26.87 1.07 5955

10,1 (66, 92, 28) 0.22 0.53 0.42 8180
20,1 (211, 338, 129) 0.75 1.58 0.47 7529
30,1 (466, 805, 341) 2.62 3.17 0.82 6814
40,1 (731, 1291, 562) 4.84 5.15 0.94 7055
50,1 (1073, 1941, 870) 6.97 8.04 0.86 7502
60,1 (1567, 2905, 1340) 10.91 11.23 0.97 7168
70,1 (2103, 3924, 1823) 16.43 15.45 1.06 7347
80,1 (2539, 4772, 2235) 19.44 18.27 1.06 7197
90,1 (3270, 6185, 2917) 26.23 25.59 1.02 7828
100,1 (3674, 6939, 3267) 28.47 29.81 0.95 8116

10,2 (78, 117, 41) 0.48 0.62 0.77 8011
20,2 (197, 321, 126) 1.30 1.42 0.91 7257
30,2 (387, 664, 279) 2.03 3.34 0.60 8652
40,2 (684, 1215, 533) 4.31 5.34 0.80 7816
50,2 (1197, 2213, 1018) 8.37 9.34 0.89 7804
60,2 (1584, 2939, 1357) 12.03 12.18 0.98 7690
70,2 (2207, 4139, 1934) 20.22 17.03 1.18 7716
80,2 (2385, 4472, 2089) 22.69 20.32 1.11 8521
90,2 (3147, 5842, 2697) 27.31 25.57 1.06 8126
100,2 (3486, 6530, 3046) 30.28 29.31 1.03 8408

10,3 (49, 50, 7) 1.16 0.58 1.97 11998
20,3 (146, 215, 73) 1.87 1.55 1.20 10669
30,3 (179, 204, 32) 3.00 2.46 1.21 13796
40,3 (490, 851, 363) 10.47 4.10 2.55 8374
50,3 (780, 1360, 582) 11.28 7.79 1.44 9999
60,3 (486, 746, 265) 17.97 5.76 3.11 11858
70,3 (1571, 2901, 1332) Error 14.69 - 9355
80,3 (1325, 2332, 1010) 18.40 14.97 1.22 11303
90,3 (2451, 4452, 2003) 22.52 26.01 0.86 10612
100,3 (3614, 6729, 3117) 33.89 29.48 1.14 8158

Table 8: Complete results for Bézier curves (Table 4 is an extract of this). The
last column states the time per vertex in µs. In the first block, we considered
m Bézier curves with 4 randomly chosen control points In the remaining blocks,
we looked at random Bézier curves constraint to share d common points. For
the instance with 90 curves, a segmentation fault occurred in the Bézier traits
class. The instance 70, 3 could not be handled by the Bézier traits class because
2 curves overlapped.
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