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Performance bound for Approximate Optimistic

Policy Iteration

Christophe Thiery, Bruno Scherrer

We provide here a proof of the performance bound theorem published in
Thiery and Scherrer (2010). This theorem applies to Least-Squares λ Policy It-
eration and more generally approximate, optimistic Policy Iteration algorithms.

Theorem 1 (Performance bound for Approximate Optimistic Policy Iteration)

Let (λn)n≥1 be a sequence of positive weights such that
∑

n≥1
λn = 1. Let Q0

be an arbitrary initialization. We consider an iterative algorithm that generates

the sequence (πk, Qk)k≥1 with

πk+1 ← greedy(Qk),

Qk+1 ←
∑

n≥1

λn(Bπk+1
)nQk + ǫk+1.

ǫk+1 is the approximation error made when estimating the next value function.

Let ǫ be a uniform majoration of that error, i.e. for all k, ‖ǫk‖∞ ≤ ǫ. Then

lim sup
k→∞

‖Q∗ −Qπk‖∞ ≤
2γ

(1− γ)2
ǫ.

Proof

Notations and main idea of the proof We will use the following notations:

• bk = Qk −Bπk+1
Qk is the Bellman error,

• dk = Q∗ − (Qk − ǫk) is the difference between the optimal value function
and the Qk iterate (before error),

• sk = Qk − ǫk −Qπk is the difference between the Qk iterate (before error)
and the (true) value of the policy πk,

• β =
∑

n≥1
λnγ

n (note that 0 ≤ β ≤ γ).
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The distance between the value of the optimal policy and the value of the
current policy can be formulated as

‖Q∗ −Qπk‖∞ = max(Q∗ −Qπk)

= max(Q∗ −Qk + ǫk +Qk − ǫk −Qπk)

= max(dk + sk)

≤ max dk +max sk (1)

The idea of the proof is to compute upper bounds on dk and sk. As we will
see, the bounds we will obtain will both depend on an upper on the Bellman
error bk, that we derive first.

An upper bound on the Bellman error bk: As πk+1 is the greedy policy
with respect to Qk, we have Bπk

Qk ≤ Bπk+1
Qk, which allows us to write

bk = Qk −Bπk+1
Qk

= Qk −Bπk
Qk +Bπk

Qk −Bπk+1
Qk

≤ Qk −Bπk
Qk

= (Qk − ǫk + ǫk)−Bπk
(Qk − ǫk + ǫk)

= (Qk − ǫk)−Bπk
(Qk − ǫk) + ǫk − γPπk

ǫk

=
∑

n≥1

λn [(Bπk
)nQk−1]−

∑

n≥1

λn

[

(Bπk
)n+1Qk−1

]

+ (I − γPπk
)ǫk

=
∑

n≥1

λn

[

(Bπk
)nQk−1]− (Bπk

)n+1Qk−1

]

+ (I − γPπk
)ǫk

=
∑

n≥1

λn(γPπk
)n(Qk−1 −Bπk

Qk−1) + (I − γPπk
)ǫk

=
∑

n≥1

λn(γPπk
)nbk−1 + (I − γPπk

)ǫk.

By using the fact that Pπk
is a stochastic matrix, we have

max bk ≤
∑

n≥1

λnγ
n max bk−1 + (1 + γ)ǫ = βmax bk−1 + (1 + γ)ǫ.

We then deduce by induction that

max bk ≤

k−1
∑

j=0

βj(1 + γ)ǫ+ βk max b0 =
1 + γ

1− β
ǫ+O(γk). (2)

An upper bound on dk : Let us now consider the dk term and its evolution.

dk+1 = Q∗ − (Qk+1 − ǫk+1)

= Q∗ −
∑

n≥1

λn(Bπk+1
)nQk

=
∑

n≥1

λn

[

Q∗ − (Bπk+1
)nQk

]

. (3)
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Since πk+1 is the greedy policy with respect to Qk, we have Bπ∗Qk ≤ Bπk+1
Qk.

Therefore

Q∗ − (Bπk+1
)nQk

= Bπ∗Q∗ −Bπ∗Qk +Bπ∗Qk −Bπk+1Qk +Bπk+1
Qk −

−(Bπk+1
)2Qk + (Bπk+1

)2Qk − . . .+ (Bπk+1
)n−1Qk − (Bπk+1

)nQk

≤ Bπ∗Q∗ −Bπ∗Qk + γPπk+1
(Qk −Bπk+1

Qk) +

+(γPπk+1
)2(Qk −Bπk+1

Qk) + . . .+ (γPπk+1
)n−1(Qk −Bπk+1

Qk)

= γPπ∗(Q∗ −Qk) +

+
[

γPπk+1
+ (γPπk+1

)2 + . . .+ (γPπk+1
)n−1

]

(Qk −Bπk+1
Qk)

= γPπ∗(Q∗ − (Qk − ǫk))− γPπ∗ǫk +

+
[

γPπk+1
+ (γPπk+1

)2 + . . .+ (γPπk+1
)n−1

]

(Qk −Bπk+1
Qk)

= γPπ∗dk − γPπ∗ǫk +
[

γPπk+1
+ (γPπk+1

)2 + . . .+ (γPπk+1
)n−1

]

bk.

As Pπ∗ and Pπk+1
are stochastic matrices, we deduce

max[Q∗ − (Bπk+1
)nQk] ≤ γmax dk + γǫ+ (γ + γ2 + . . .+ γn−1)max bk

= γmax dk + γǫ+
γ − γn

1− γ
max bk.

By using Equation 3, we obtain the following induction on max dk:

max dk+1 ≤ γmax dk + γǫ+
∑

n≥1

λn

[

γ − γn

1− γ
max bk

]

.

With the help of the Bellman error upper bound obtained earlier (Equation 2)
we obtain

max dk+1 ≤ γmax dk + γǫ+
∑

n≥1

λn

[

γ − γn

(1− γ)(1− β)

]

(1 + γ)ǫ+O(γk)

= γmax dk + γǫ+
γ − β

(1− γ)(1− β)
(1 + γ)ǫ+O(γk)

which gives, by taking the limit superior,

lim sup
k→∞

max dk ≤
γ

1− γ
ǫ+

[

γ − β

(1− γ)2(1− β)

]

(1 + γ)ǫ. (4)

An upper bound on sk : Let us now consider the sk term from Equation 1:

sk+1 = Qk+1 − ǫk+1 −Qπk+1

=
∑

n≥1

λn

[

(Bπk+1
)nQk

]

− (Bπk+1
)∞Qk

=
∑

n≥1

λn

[

(Bπk+1
)nQk − (Bπk+1

)∞Qk

]

. (5)
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It can be seen that

(Bπk+1
)nQk − (Bπk+1

)∞Qk

= (Bπk+1
)nQk − (Bπk+1

)n+1Qk + (Bπk+1
)n+1Qk − (Bπk+1

)n+2Qk + . . .

= (γPπk+1
)n(Qk −Bπk+1

Qk) + (γPπk+1
)n+1(Qk −Bπk+1

Qk) + . . .

= (γPπk+1
)n[I + γPπk+1

+ (γPπk+1
)2 + . . .]bk.

As above, by using the stochasticity of Pπk+1
, we obtain

max[(Bπk+1
)nQk − (Bπk+1

)∞Qk] ≤ γn(1+ γ + γ2 + . . .)max bk =
γn

1− γ
max bk.

By using Equation 5, we obtain an upper bound on max sk+1:

max sk+1 ≤
1

1− γ





∑

n≥1

λnγ
n max bk



 .

With the help of the Bellman error upper bound (Equation 2) and by taking
the limit superior, we have

lim sup
k→∞

max sk ≤
1

1− γ





∑

m≥1

λnγ
n 1 + γ

1− β
ǫ



 =
β

(1− γ)(1− β)
(1 + γ)ǫ. (6)

Conclusion of the proof Finally, let us get back to Equation 1 and use the
upper bounds we just derived for dk (Equation 4) and sk (Equation 6):

lim sup
k→∞

‖Q∗ −Qπk‖∞ ≤ lim sup
k→∞

max dk + lim sup
k→∞

max sk

=
γ

1− γ
ǫ+

[

γ − β

(1− γ)2(1− β)
+

β

(1− γ)(1− β)

]

(1 + γ)ǫ.

=
γ

1− γ
ǫ+

[

γ − β + (1− γ)β

(1− γ)2(1− β)

]

(1 + γ)ǫ.

=
γ

1− γ
ǫ+

[

γ

(1− γ)2

]

(1 + γ)ǫ.

=
γ(1− γ) + γ(1 + γ)

(1− γ)2
ǫ

=
2γ

(1− γ)2
ǫ. �
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