
HAL Id: inria-00481818
https://hal.inria.fr/inria-00481818

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-Aware Middleware: An overview
Daniel Romero

To cite this version:
Daniel Romero. Context-Aware Middleware: An overview. Paradigma, Le Lettere, 2008, 2 (3), pp.1-
11. �inria-00481818�

https://hal.inria.fr/inria-00481818
https://hal.archives-ouvertes.fr


Context-Aware Middleware: An overview

Daniel Romero

University of Lille 1, INRIA Lille, Nord Europe, Laboratoire LIFL UMR CNRS 8022

Parc Scientifique de la Haute-Borne 40, Avenue Halley

59650 Villeneuve D’Ascq- France

daniel.romero@inria.fr

Abstract. In this paper we give an overview of context-aware middleware plat-

forms. They are characterized in terms of properties such as communication, con-

text management and adaptation. We present a description of different platforms

and their properties.

key words: context-awareness, middleware platform, pervasive computing.

1 Introduction

Today is normal to find different computational entities that are part of environments

where people develop their daily activities such as home, office and malls. These entities

provide services that can help users in their activities. The entities are also characterized

by their heterogeneity. This means that they use different communication mechanisms,

connection technologies and data representations, and that they provide information

with different processing levels. Some of these devices also change constantly of loca-

tion producing variation in services availability. All these properties are typical of the

so-called pervasive environments.

It would be desirable to access the services present in a pervasive environment throw

devices like laptops, smart phones, and PDA increasingly powerful. However, they need

some kind of mechanism that enable them to do it. Furthermore, it is also required to

detect the changes in the context, which could affect the applications been executed in

user devices. In computing, there exist a discipline that deals with this kind of concerns,

the ”context-aware computing”. As in [1] is established, the context-aware computing

uses the context in order to provide relevant information and services to users. The

context is understood as ”any information that can be used to characterize the situation

of an entity, where an entity can be a person, place, or physical or computation ob-

ject”. Inside of this area, a special kind of application has emerged, the context-aware

middleware solutions. In general, they provide the same functionality associated with

traditional middleware in terms of communication. However, they also provide context

management and adaptation to deal with the different resources present in the environ-

ments. In this paper we give an overview about these middleware platforms and their

different features.

The rest of this paper is organized as follow. In section 2 we present a motivation

scenario. Section 3 describes some relevant properties in this kind of middleware. Sec-

tion 4 presents some context-aware middleware platforms and their characterization in



terms of properties described in section 3. Finally, in section 5 we give some conclu-

sions.

2 Motivation Scenario

In this section we present a simple scenario to contextualize the use of context-aware

middleware platforms. Alice, a philosophy student, goes to the mall. She has a smart

phone device with a context-aware middleware previously installed. The first time that

she gets in the mall, her mobile device detects an available wireless network and ac-

cesses it. Once connected, the middleware platform discovers a location service, adver-

tised with the UPnP [2], which shows Alice position in a mall map and allows device

to locate the different mall stores. In the mall, Alice remembers a letter that she has to

sent. She doesn’t have the printed letter but she has the document on her smart phone.

Using the mobile device, Alice is able to find a printer service, published using Service

Location Protocol (SLP) [3], and prints a copy. Using the location service, Alice knows

where is the printer that she has used and locates the post office in the mall. After send-

ing the letter, Alice goes to a zone in the mall, where her phone detects a Web Service

that provides different day’s promotions in bookstores. By the user preferences, Alice

smart phone knows that she is interested in books related to philosophy subjects. Using

this information, the mobile device is able to inform Alice about promotions related to

this kind of books. The promotion service is provided in three ways: text only, text and

images and video. The phone selects the video option considering the Alice preferences,

the memory capacity and battery level. Alice consults the promotions while she goes to

the melt area. In this area, the promotion service is not available, but Alice doesn’t note

this because her mobile is able to continue using the service. When the device battery

is low, the promotion service is change to text only mode.

3 Context-Aware Middleware: General Characterization

The context-aware middleware platforms are an answer to challenges associated with

service discovery, mobility, environmental changes and context retrieval [4]. These

challenges are typical in ubiquitous computation. Hence, for facing these challenges

it is necessary to provide functionality associated with the properties described below.

1. Context Management: this property is associated with context retrieval and process-

ing. The context retrieval means to deal with different kinds of context providers,

data representation and communication styles. Furthermore, the context informa-

tion has to be processed, composed and distributed. In our scenario, the middleware

has to retrieve information associated with the mobile resources (available memory,

battery level), user preferences (reading interests and kind of favorite services) and

the wireless network. Events and policies are the principal mechanisms used to deal

with context retrieval and processing.

2. Adaptation: it refers to actions that must be triggered when some event occurs in

the environment. This means that the middleware platform should react to context



changes. This reaction consists in structure and/or behavior changes. In our sce-

nario, the two kinds of adaptation are needed. Structural adaptation (i.e. to load

new functionality) can be required in order to use the available services in the mall

(location service, promotion service, printer service). In our scenario, behavioral

adaptation takes place when the middleware has to decide how to chose the qual-

ity of service according to the memory and battery level. But the adaptation is not

only required at runtime. Considering the different kind of entities that is possi-

ble to find in pervasive environments, the middleware should be flexible enough

to support different configurations and to be deployed on diverse devices. Hence,

dynamic and static adaptation are required.

3. Communication: this property is necessary to interact with the different entities

in the environment. The middleware platform should be able to support different

kinds of protocols, interaction paradigms, and communication technologies. The

configuration should be not only static but also at runtime when new services can

require communication mechanisms not been supported until that moment.

4. Service Discovery: it is the capacity for discovering and invoking available services

in the environment. This task is done by means of service discovery protocols.

These protocols define how the services have to be advertised, discovered and in

some cases accessed. Hence, they are built upon communication protocols. It is

possible to find different services discovery protocols developed in the academia,

the industry and by software vendors. Examples from academia are Ninja Service

Discovery Service (SDS) [5] and Intentional Naming System (INS) [6]. Jini [7],

UPnP and Rendezvous[8] were created by software vendors. Salutation, SLP and

Bluetooth SDP [9] are industrial standards. However, despite the existence of these

protocols, some middleware platforms define its own discovery protocols to support

the access of new services. In the scenario, the services are advertised using UPnP

and SLP.

5. Persistence: in some cases it can be useful to storage the context because the user

movements and connection variations cause changes in services availability.

6. Application Building Support: some approaches provide frameworks that help in

the application development and/or adaptation in order to work with the middleware

platform.

7. Paradigms used: it is important to select the suitable paradigms to develop the

platforms in order to satisfy the adaptation issues.

4 Platforms

This section presents some existing context-aware middleware. In the table 1 they have

been characterized using the properties presented in section 3.

4.1 Gaia

Gaia [10, 11] is a distributed middleware that provides similar functionality to an op-

erating system. It allows the coordination of software entities and heterogeneous net-

worked devices in active spaces (physical spaces). Gaia provides services for event



Table 1. Context-Aware Middleware

Middleware Developer Paradigm Adaptation Context Service Communication Persistency Application

Platform Used Static Dynamic Management Discovery Data Context B. S

Gaia University of Illinois Components AL AL First order logic Events Events X X Framework

at Urbana-Campaign and boolean algebra and RPC

Gaia University of Illinois Components AL Services provided GAIA Events

Microserver at Urbana-Campaign by Gaia Proxy and RPC

CORTEX Lancaster Reflection, ML ML SOs SLP, UPnP Events- X

University components, SOs SOS SOAP

component

frameworks

Aura Carnegie Mellon Components ML Situation Aura Connectors X X

University recognition, suppliers

proxies

CARISMA University College Reflection ML Policies associated Not According

London with each supported to applications

application needs

Middlewhere University of Illinois Components Algorithm for Events

at Urbana-Campaign multisensor

location fusion

MobiPADS HK Polytechnic Components, AL, ML Events, Mobilets Events

University reflection mobilets

SOCAM National University Ontologies, AL Situation recognition, SLM service Events X

of Singapore SOA ontologies discovery

RCSM Arizona State Components ML AL Situation R-CDP Messages X

University recognition protocol

CAPNET University of Oulu Components ML Wrappers for Service Events X Framework

context sensors discovery asynchronous

component messages,

that locates RPC,

service TCP/UDP,

provides HTTP,

by other multicast

components



management (that means to distribute events in active spaces), context information

query (in order applications can adapt to the environment), detection of digital and

physical entities, storage of the information associate with entities (space repository),

and file management (by means of a context file system that generates a virtual hierar-

chy associating file to relevant context information). Gaia also provides a framework

for building (or to adapt existing) context-aware applications. The Gaia architecture

can be seen in figure 1.

Fig. 1. Gaia Platform Architecture

4.2 Gaia Microserver

Gaia Microserver [12] is a lightweight middleware platform that extends Gaia

(see section 4.1) in order to support access to the native capabilities of the mobile de-

vices. The middleware exports the functionality oered by the device to Gaia as com-

ponents. The Microserver allows interoperate the native C++ code with the java

code. Gaia uses the platform to deliver dynamic software components and multimedia

contents to users through their mobile devices. The Gaia Microserver compo-

nents are showed in figure 2. In our scenario, Gaia middleware could be used to detect

the different services present in the environment, i.e., the location service, the printer

service and the promotion service. Then, those services could be accessed through the

mobile device using the Microserver. It will allow device to get the new function-

ality required in order to use the services.

Fig. 2. Gaia Microserver Components



4.3 Aura

Aura [13] is an architectural framework for ubiquitous computing applications. It pro-

vides services for managing tasks, applications and context. In Aura, the tasks are

abstract representations of a collection of services. When a user moves to another envi-

ronment, the task representation is migrated and the service providers associated are in-

stantiated in the new location. The services are provided by existing applications. Aura

gives supports for registry and access of services. Context observers provide the context

information and it is used to derive user intents. In the scenario, the service providers

can be considered like the applications that provide the Aura services. The sending of

the letter and the searching of book promotions can be considered as Aura tasks. The

task concerning the letter includes the location service and the printer service. The task

associated with the books comprises only the promotion service. In this last task, the

task migration of Aura can be used in order to continue using the promotion service in

the melt area. Figure 3 shows the Aura architecture.

Fig. 3. Aura Framework Architecture

4.4 CORTEX

CORTEX [14, 15] is a context-aware middleware for pervasive and ad hoc environments.

The platform is based on concepts of sentient objects (SOs) and component frame-

works. SOs are autonomous entities that can get data from the environment and share

information between them. They consume and produce events. SOs are able to make

decisions and perform actions based on the information sensed. The component frame-

works offer services (to the SOs) such as publish-subscribe (used for discovery), group

communication, context retrieval, and QoS management. CORTEX can be reconfigura-

tion at runtime using a reflection API. In our scenario, each service discovery protocol

(SLP, UPnP and Web Services) could be associated to an specific SO. This SO has the

responsibility to enable the device in order to discover and access the services. An-

other SO could consolidate all services (filtering them using the Alice preferences) and

a CORTEX application could use this SO in order to show the available services (by

categories), which would allow Alice to send the letter and to knows the book promo-

tions. QoS management service could be used to select the correct promotion service

considering the battery level and the available memory. This QoS management could



also be used to monitoring those resources (battery and memory) in order to adapt the

QoS. The CORTEX platform is illustrated in figure 4

Fig. 4. CORTEX Platform Architecture

4.5 CARISMA

CARISMA [16] (Context-aware Reflective mIddleware System for Mobile Applica-

tions) uses the reflection paradigm to enhance the adaptive and context-aware mobile

applications development. The idea is to customize the platform considering the appli-

cations needs. In order to do that the middleware behavior, with respect to an applica-

tion, is reified as meta-data in an application profile. This profile contains the descrip-

tion of associations between the service that the middleware customizes, the policies

that can be used in the service invocation and the context configuration that allows the

use of the policies. In each service invocation, the client application passes its profile

to the platform and it determines the policies that can be applied according to the cur-

rent context. CARISMA provides a reflective API that allows, at runtime, to modify the

associations describes in the profile. The conflicts that may arise between profiles are

resolved using a micro-economic approach. In this approach, the system is modeled as

an economy where the consumers (applications) reach an agreement about a limited set

of goods (the policies) using the middleware platform like auctioneer. In the scenario, it

would be possible to have a CARISMA application that accesses the promotion service.

In the profile associated with this application, a policy could express the conditions

(battery level and available memory) that allow the device to invoke the different kinds

of the promotion service.

4.6 MobiPADS

MobiPADS [17] (Mobile Platform for Actively Deployable Service) is a system for

mobile environments. In MobiPADS the services are called mobilets. They can mi-

grate between MobiPADS environments. Each mobilet is divided in slave and master.

The slave resides in the server side, and the master in the client side. The mobilets

are configured as chained objects to provide augmented services and protocols to the



mobile applications. MobiPADS achieves context-awareness with the utilization of an

event notification model. It monitors the status of the interested context and notifies the

changes to the subscribed entities. The event notification model allows the composition

of primitive events into an event graph. In this way, when an event service is built and

subscribed, it has to monitor and analyze the basic events and match them according to

the event graph structure. The adaptation can be made in the platform, based on system

profiles, or in the mobilets, allowing them to change according to the events that they

receive. The figure 5 shows the platform architecture. Using the MobiPADS platform

in the scenario, the location service, printer service and promotion service could be

encapsulated in mobilet objects. Of course, the slaves would reside in the MobiPADS

side and the masters in the user’s mobile device. The migration property of the mobilets

would be used to make available the promotion service in the meal area. The event

model of MobiPADS could be used to monitoring the battery level and memory capac-

ity in order to detect when it is necessary to change the promotion service to the text

only mode.

Fig. 5. MobiPADS Architecture



4.7 MiddleWhere

MiddleWhere [18] is a distributed middleware architecture for location. The plat-

form separates applications from location detection technologies. It allows the addi-

tion of different kinds of sensing technologies and determines the location informa-

tion quality. The applications can make queries about the objects location or they can

subscribe to be notified when a location condition becomes true. The location model

applied in MiddleWhere is hierarchical and it uses three kinds of location: points,

lines, and polygons. The location can be expressed in coordinates and a symbolic way.

MiddleWhere also determines the quality of the location information according to its

freshness (as time goes on, the quality of location data reduces). The platform also pro-

vides persistence for the location information. MiddleWhere has a reasoning engine

that deduces spatial relationships between mobile objects and the physical environment.

The architecture of the platform is showed in figure 6. MiddleWhere could be useful

in the scenario in order to provide the location service that Alice use to know where is

she and where are the printer and post services.

Fig. 6. MiddleWhere Architecture

4.8 SOCAM

Service-oriented Context-Aware Middleware (SOCAM) [19] is a platform to build context-

aware mobile services. SOCAM uses ontologies to model the context. The platform can

supports semantic representation, context reasoning and context-knowledge sharing.

SOCAM is composed by Context Providers, Context Interpreters, Context Database, Lo-

cation Service, and Context-aware Mobile Services. The Context Providers give context

information and represent it as context events in the form of OWL descriptions. The



Context Interpreters provide high-level context information. Hence, they are also Con-

text Providers. The Context Interpreters include Context Reasoners (containing rules

that triggers actions associated with context changes) and Context Databases (that con-

tains instances of the current ontology). The Location Service allows the platform to

locate context providers.. The Mobile Services are applications and services that use the

context information and adapt their behavior according to this information. They can

obtain the context by querying the Context Providers or by listening specific events sent

by the Context Providers. Figure 7 shows the SOCAM architecture. Applying SOCAM to

the scenario, service providers would be represented by context providers in the Context

Middleware Layer that allows the detection and invocations of services. The memory,

battery and user preferences would be associated to Context Providers and Context In-

terpreters in order to adapt the services that depend on them. In Context Application

Layer each service (promotion, service and location) would also have a context-aware

service representation. It would be useful in the promotion service case to adapt the

mode according to the battery and memory changes.

Fig. 7. SOCAM Architecture

4.9 CAPNET

CAPNET [20] is a context-aware middleware for mobile multimedia applications. The

platform is composed by components. Each component offers a special service to other

components and applications. The core-components of CAPNET are: Component Man-

ager (that control the components and their stubs), Connectivity Manager (that controls

and monitors the connection of the mobile devices), Messaging (that creates channels

and supports asynchronous communication, remote procedure calls and channel-related

operations) and Service Discovery (that locates services and available components).

The Service Discovery component is based on Jini technology. CAPNET also has other

components that are necessary to support context-aware applications. These compo-

nents are: Context-Based Storage, Context, User Interface and Media. The Context-

Based Storage component stores and retrieves context data by request. The Context



component provides context information acting as a wrapper for context sensors. The

User Interface component supports the design and implementation of UIs application.

In order to that, the UI allows three different techniques: abstract UIs (XML), plug-in

UIs (downloadable Java code) and Web-based UIs (HTML). The media components

provide functionality to capture images, audio and video, facilitating the portability and

scalability of native media capabilities across the various devices. The CAPNET plat-

form is illustrated in figure 8. In the scenario, CAPNET could be used to discover the

services but it will required to have some kind of adapter that allow to use the services

as Jini services. The multimedia CAPNET capabilities could be used to provide the best

video quality according to the resources in Alice’s smart phone.

Fig. 8. CAPNET Architecture

4.10 RCSM

Reconfigurable Context-Sensitive Middleware [21, 22] (RCSM) has been developed to

provide development and runtime support for situation-aware (SA) software in ubiqui-

tous computing. It provides a SA-IDL that allows the specification of context-situation

relevant for an application, the actions to be triggered, and when these actions has to

be executed. The SA-IDL specifications are compiled to generate application skeletons.

These skeletons interact at runtime with the RCSM Object Request Broker (R-ORB) and

the SA processor. R-ORB deals with the context discovery, collection and propagation.

To do that, R-ORB has a context manager that uses a context discovery protocol to reg-

ister local sensors and to discover remote sensors. When an application starts up, the



discovery protocol is used to find the sensors (local or remote) that satisfy the context

requirements. The SA processors manage the SA requirement specifications, stores the

context, recognize the situation based in the context and determine when the actions

have to be triggered.

5 Conclusions

In this article we have presented several context-aware middleware platforms. They

are characterized in terms of some relevant properties for this kind of application. Fur-

thermore, the applicability of context-aware middleware is illustrated with a simple

scenario.

All the context-aware middleware platforms reviewed allow devices to recover and

process context information. The platforms also offer different mechanism to detect

changes in the environment and trigger adaptations (in the application and/or middle-

ware level) associated with these changes. However each one focuses in a specific

aspect of pervasive environments. For example, Aura deals with user tasks and the

migration and adaptation of them according to the current user context. Gaia offers

access to heterogenous resources available in active spaces. MiddleWhere is focused

in location-awarennes. MobiPADS offers service migration and adaptation of the ser-

vice composition represented by the mobilets. Then, the selection of the more suitable

platform will depend on the requirements of applications that are being built.

Although all middleware platforms could be used in the scenario proposed, it is not

always straightforward. In some cases, it is necessary to create some kind of representa-

tion for the service providers in order to use all the capabilities of the platforms. Besides,

some platforms do not consider the dynamic load of functionality to use services that

are discovered at runtime, limiting their use in pervasive environments.

Finally, in spite of the existence of different context-aware middleware platforms,

there is not a definitive solution for all the challenges associated with pervasive com-

puting. In fact, there are some projects that continue the research in this area, such as

the Cappucino Project1 (from Inria Laboratory) and the MUSIC Project2.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better

understanding of context and context-awareness. In: HUC ’99: Proceedings of the 1st inter-

national symposium on Handheld and Ubiquitous Computing, London, UK, Springer-Verlag

(1999) 304–307

2. Corporation, U.I.: Upnp technologythe simple, seamless home network. http://www.

upnp.org/resources/whitepapers.asp (1999)

3. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service location protocol, version 2. http:

//www.salutation.org (1999)

4. Romero, D., Parra, C., Seinturier, L., Duchien, L., Casallas, R.: An sca-based middleware

platform for mobile devices. In: 2008 Middleware for Web Services (MWS 2008) Workshop

at EDOC2008, Munich, Germany (sep 2008)

1 Cappucino Project: http://cappucino.oqube.com/
2 MUSIC Project: http://www.ist-music.eu/



5. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and implementa-

tion of an intentional naming system. In: SOSP ’99: Proceedings of the seventeenth ACM

symposium on Operating systems principles. Volume 33., New York, NY, USA, ACM Press

(December 1999) 186–201

6. Hodes, T.D., Czerwinski, S.E., Zhao, B.Y., Joseph, A.D., Katz, R.H.: An architecture for

secure wide-area service discovery. Wirel. Netw. 8(2/3) (2002) 213–230

7. Sun Microsystems, I.: Jini specifications and api archive. http://java.sun.com/

products/jini/2_0_2index.html (2005)

8. Cheshire, S., Krochmal, M.: Dns-based service discovery. http://files.dns-sd.

org/draft-cheshire-dnsext-dns-sd.txt (2008)

9. SIG, B.: Specification of the bluetooth system. http://www.bluetooth.com/

NR/rdonlyres/F8E8276A-3898-4EC6-B7DA-E5535258B056/6545/Core_

V21__EDR.zip (2007)

10. Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.:

Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing

(Oct–Dec 2002) 74–83

11. Henricksen, K., Indulska, J., Mcfadden, T.: Middleware for distributed context-aware sys-

tems. In: International Symposium on Distributed Objects and Applications (DOA, Springer

(2005) 846–863

12. Chan, E., Bresler, J., Al-Muhtadi, J., Campbell, R.: Gaia microserver: An extendable mo-

bile middleware platform. In: PERCOM ’05: Proceedings of the Third IEEE International

Conference on Pervasive Computing and Communications, Washington, DC, USA, IEEE

Computer Society (2005) 309–313

13. Jo a.P.S., Garlan, D.: Aura: an architectural framework for user mobility in ubiquitous com-

puting environments. In: WICSA 3: Proceedings of the IFIP 17th World Computer Congress

- TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture, Deventer, The Nether-

lands, The Netherlands, Kluwer, B.V. (2002) 29–43

14. Sorensen, C.F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-Limon, H.:

A context-aware middleware for applications in mobile ad hoc environments. In: MPAC ’04:

Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc computing, New

York, NY, USA, ACM (2004) 107–110

15. Blair, G.S., Coulson, G., Grace, P.: Research directions in reflective middleware: the lan-

caster experience. In: ARM ’04: Proceedings of the 3rd workshop on Adaptive and reflective

middleware, New York, NY, USA, ACM (2004) 262–267

16. Capra, L., Emmerich, W., Mascolo, C.: Carisma: Context-aware reflective middleware sys-

tem for mobile applications (2003)

17. Chan, A., Chuang., S.N.: Mobipads: a reflective middleware for context-aware mobile com-

puting. IEEE Transactions on Software Engineering 29(12) (2003) 1072–85

18. Ranganathan, A., Al-Muhtadi, J., Chetan, S., Campbell, R., Mickunas, M.D.: Middlewhere:

a middleware for location awareness in ubiquitous computing applications. In: Middleware

’04: Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware,

New York, NY, USA, Springer-Verlag New York, Inc. (2004) 397–416

19. Gu, T., Pung, H., Zhang, D.: A middleware for building context-aware mobile services

(2004)

20. Davidyuk, O., Riekki, J., Rautio, V.M., Sun, J.: Context-aware middleware for mobile multi-

media applications. In: MUM ’04: Proceedings of the 3rd international conference on Mobile

and ubiquitous multimedia, New York, NY, USA, ACM (2004) 213–220

21. Yau, S.S., Huang, D., Gong, H., Seth, S.: Development and runtime support for situation-

aware application software in ubiquitous computing environments. In: COMPSAC ’04: Pro-

ceedings of the 28th Annual International Computer Software and Applications Conference

(COMPSAC’04), Washington, DC, USA, IEEE Computer Society (2004) 452–457



22. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable context-sensitive

middleware for pervasive computing. IEEE Pervasive Computing 1(3) (2002) 33–40


