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Abstract This article deals with the resolution of over-constrained problems using

constraint programming, which often imposes to add to the constraint network new

side constraints. These side constraints control how the initial constraints of the model

should be satisfied or violated, to obtain solutions that have a practical interest. They

are specific to each application. In our experiments, we show the superiority of a frame-

work where side constraints are encoded by global constraints on new domain variables,

which are directly included into the model. The case-study is a cumulative scheduling

problem with over-loads. The objective is to minimize the total amount of over-loads.

We augment the Cumulative global constraint of the constraint programming solver

Choco with sweep and task interval violation-based algorithms. We provide a theoretical

and experimental comparison of the two main approaches for encoding over-constrained

problems with side constraints.

Keywords Constraint programming · Over-constrained problems · Cumulative

scheduling

1 Introduction

Constraint programming has been successfully used for solving industrial applications.

For instance, each year, real-life problems solved with constraint programming tools are

described in “applications papers”, in the proceedings of the international conference on

Principles and Practice of Constraint Programming [1]. Constraint programming was

also shown to be an effective alternative for solving hard pure combinatorial problems,

e.g., the maximum clique problem [2].
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Many industrial applications are defined by a set of constraints which are more

or less important and cannot be all satisfied at the same time. Such problems are

called over-constrained problems. Constraint programming systems should be able to

provide as easily as possible an exploitable compromise when a problem has no solution

satisfying all its constraints.

An usual way to deal with over-constrained problems is to turn a satisfaction prob-

lem (without any solution) into a new optimization problem (with solutions): Viola-

tions of constraints in the satisfaction problem are expressed through costs in the new

problem. The goal is then to reduce the impact of violations of constraints of the ini-

tial problem as much as possible. In this context, the foremost technique was partial

constraint satisfaction [3,4].

In this article, we experiment this topic on a cumulative scheduling problem with

human resource. The time unit is one hour and the schedule is also divided into days.

We deal with the case where the scheduling horizon is fixed and not all activities can

be scheduled with the available employees. In that case, over-loads can be accepted: at

some points in time, it can be considered that extra-employees are available. To obtain

solutions that have a practical interest, an usual requirement is to distribute over-loads

as homogeneously as possible over a week. For instance, in a one week schedule, a user

may impose that a solution where an over-load of 5 units of resource occurs on the

first day is not an acceptable solution. However, he will accept a solution where this

over-load of 5 units is distributed over 3 days. Note that different values are possible

for a given violation, expressing a more or less important over-load. Another usual

requirement is to express local dependencies between violations: “if constraint C1 is

violated then constraint C2 should not be violated”. For instance, a user may forbid

cumulating two neighbouring over-loads in two consecutive days: an over-load occurring

the last hour of the first day, and another occurring the first hour of the second day.

These two classes of requirements are frequent in over-constrained problems. Many

over-constrained problems impose to define new side constraints, to obtain solutions

that satisfy such requirements. Although in many cases classical constraints can be

used, e.g., in our case study the global cardinality constraint (Gcc) [5], specific global

constraints based on statistics have been defined in [6,7] to encode some requirements.

A main use of these constraints is to model over-constrained problems. They may

be used to obtain a balancing of values within a set of cost variables that represent

violations. Gcc are used when the user needs to control the distribution of value in a

more precise way, that is, explicitly by constraining the number of occurrences of cost

values.

Our experiments compare the two usual generic frameworks for solving over-

constrained problems as optimization problems. The first one extends constraint pro-

gramming to handle violations as valuations [8]. User requirements are encoded by

functions on violations. In the second framework [9], requirements are expressed by

several global constraints, which communicate information on domains of possible val-

ues of each violation. This framework imposes that violations are explicitly expressed

by variables. The total sum of over-loads is minimized, to limit as much as possible

unsatisfiability in solutions. In the two cases we used the same filtering technique for

the relaxed version of the Cumulative constraint [10], which encodes the core of the

problem, that is, the generic part, which is independent from side constraints. Side

constraints are specific to each practical application.
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Concretely, this paper provides three main contributions:

1. A model for a realistic cumulative over-constrained problem, where over-loads are

tolerated according to some user requirements.

2. An extension of the Cumulative constraint of Choco [11] to over-constrained prob-

lems, thanks to violation-based sweep and interval filtering algorithms.

3. Theoretical and experimental comparisons of the two usual frameworks for over-

constrained optimization problems, in terms of solving : extending constraint pro-

gramming [8], or using a variable-based model [9]. The comparison especially fo-

cuses on side constraints used to get optimal solutions which have a practical in-

terest.

This work is motivated by the third investigation. Since a variable based model

provides domains for the costs, it is possible to propagate globally events on these

domains. That is, to propagate the specific side constraints. This propagation is possible

when costs are explicitly represented by new variables in the model. Our experimental

results emphasize that using a variable-based model may be the adequate approach for

solving practical problems that involve side constraints, provided these side constraints

can be encoded through powerful global constraints of the solver.

Section 2 defines the cumulative over-constrained problem we consider. Section 3

presents the related work and the motivations of this paper. Section 4 presents our

soft version of the Cumulative constraint and a comparison of the proposed filtering

algorithms. Section 5 presents the experimental comparison of the two frameworks.

Section 6 shows some extensions of the global constraint used for the generic core of

our case-study, and discusses the future work so as to deal with precedence constraints

in over-constrained cumulative scheduling problems.

2 Human resource cumulative scheduling

Scheduling problems consist of ordering some activities. In cumulative scheduling, each

activity requires, for its execution, the availability of a certain amount of resource

(renewable resource). Each activity has a release date (minimum starting time) and a

due date (maximum ending time).

2.1 Description

Let D(x) = {min(D(x)), . . . , max(D(x))} denote the integer domain of variable x.

Definition 1 Let A = {a1, . . . , an} denote a set of n non-preemptive activities. For

each a ∈ A,

– start[a] is the variable representing its starting point in time.

– dur[a] is the variable representing its duration.

– end[a] ∈ end is the variable representing its ending point in time.

– res[a] is the variable representing the discrete amount of resource consumed by a,

also denoted the height of a.

Within Constraint Programming toolkits, cumulative problems are encoded using

the Cumulative global constraint [10,12–15].
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Definition 2 Consider one resource with a limit of capacity max capa and a set A of n

activities. At each point in time t, the cumulated height (amount of consumed resource)

ht of the set of activities overlapping t is ht =
∑

a∈A,start[a]≤t<end[a] min(D(res[a])).

The Cumulative global constraint [10] enforces that:

– C1: For each activity a ∈ A, start[a] + dur[a] = end[a].

– C2: At each point in time t, ht ≤ max capa.

In this article, we deal with cumulative over-constrained problems that may require

to be relaxed w.r.t. the resource capacity at some points in time, to obtain solutions.

The maximum due date is strictly fixed to a given number of days, making some

instances not satisfiable. Time unit is one hour. Each day contains 7 hours of work (to

the first day corresponds hours 0 to 6, to the second day hours 7 to 13, etc.). n activities

have to be planned. Duration of each activity is fixed, between 1 hour and 4 hours. All

due dates are initially the scheduling horizon, and all release dates are 0. An activity

consumes a fixed amount of resource: the number of persons required to perform it.

This resource is upper-bounded by the total number ideal capa of employees. Given

that either some extra-employees can be hired, or some activities can eventually be

performed with smaller teams than the ones initially planned, if the problem has no

solution then at certain points in time the resource can be greater than ideal capa.

However, to remain feasible in practice, solutions should satisfy some requirements

w.r.t. such over-loads. Some of them are generic:

1. At any point in time, an over-load should not exceed a given margin.

2. The total sum of over-loads should be reasonable (ideally minimum).

Some requirements are specific to each particular context. In our problem, the two

following requirements should be satisfied by solutions.

3. At most 3 over-loaded hours within a day of 7 hours of work, and among them

at most one over-load greater than 1 extra-employee.

4. In two consecutive days, if the last hour of work is over-loaded then the first

hour of the next day should not be over-loaded.

If no solution exist with these requirements, this means that no solution acceptable

in practice can be found.

2.2 Motivation for the use of constraint programming

One advantage of constraint programming for solving over-constrained applications is

the ability to separate the generic part of the problem, that is, in our case require-

ments 1. and 2. in section 2.1, from the specific side constraints, which depend on each

applicative context, (e.g., requirements 3. and 4. in section 2.1). Thus, generically sim-

ilar problems that differ in the specific side constraints applied may be encoded with

classical constraint solvers thanks to the paradigm we propose in this paper. Adding

a constraint to a given constraint programming model should not spoil the solving

strength, except if its filtering algorithm has a prohibitive cost or if the solving process

depends strongly on a search heuristic that would be disturbed by this new constraint.

Nevertheless, when a new constraint is added to a given model, the number of solutions

may drastically decrease. Therefore, propagation of side constraints has to be effective.

This article aims to provide some answers w.r.t. the methodology that should be chosen

to deal with this kind of over-constrained problems, which include side constraints.
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3 Related work and Motivations

Using optimistic heuristics within a constraint system, researchers have studied large

over-loaded cumulative problems without side constraints [16]. Baptiste et al. presented

a soft global constraint for unsatisfiable one machine problems [17]. In the literature,

one may find also some works about multi-objective relaxed time-tabling [18] expressed

by constraint models.

More generally, when not all constraints can be satisfied, we search for a compromise

solution which satisfies the constraints as much as possible. This is an optimization

problem with a criterion on constraint violations. The goal is to find a solution which

best respects the set of initial constraints. In such a solution, hard constraints must be

satisfied, whereas soft constraints may be violated.

Side constraints can be used to precisely control violations of soft constraints. They

specify solutions which have a practical interest, and eliminate the other ones. The

objective of this article is to compare the approaches that can be used for solving

over-constrained problems with side constraints.

3.1 Extending constraint programming

The first way to express an over-constrained problem is to extend constraint pro-

gramming with an external structure, which handles relaxation of constraints [8]. The

principle is to associate a valuation with each tuple of each constraint, which is null

when satisfied. Thus, soft constraints are violation functions. Hard constraints have an

“infinite” valuation for each violating tuple.

Valuations are aggregated into optimization criteria, to obtain a solution which

best respects the soft constraints. Side constraints must be also expressed by objective

criteria because violation costs are externalized from the constraint model.

3.2 Handling relaxation within the constraint programming framework

Instead of externalizing violation costs through functions, this approach consists of

capturing violation costs through new variables in the problem [9]. Usually integer

variables are used. Values in the domain of a violation variable express different degrees

of violation (such domains are maintained by classical constraints).

Given a Constraint Satisfaction Problem (CSP), let X , D and C be respectively the

set of variables, the set of domains and the set of constraints. When the CSP has no

solution, C is split into two disjoint sets: the set Ch of hard constraints that must be

satisfied, and the set Cs of soft constraints that may be violated.

The principle of the paradigm integrating violation costs through new variables is

to turn the CSP1 into a new constraint optimization problem. For each constraint in

Cs, a new variable is defined. The set of these variables, denoted by costV ar, is one-

to-one mapped with Cs. To improve the solving efficiency, in many problems global

constraints can be used instead of a conjunction of more primitive constraints, and

then several variables in costV ar can be included in the same global constraint. The

1 W.l.o.g., the initial over-constrained problem may be a constraint optimization problem.
In this case, the reformulation leads to a multi-criteria problem, with the original criterion
plus a new criterion related to constraint violations.
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new optimization problem imposes to satisfiy the set of hard constraints of the problem,

possibly a set of new side constraints Side on costs (e.g., [6,7]), which may be empty,

and disjunctive constraints which integrate variables costV ar. This set of disjunctive

constraints replaces the set Cs in the new constraint network we define. Let C ∈ Cs

be associated with a variable s ∈ costV ar. A value of s corresponds to a state of the

constraint: if s = 0 then C is satisfied, and if s > 0 then C is violated. That is, the

disjunctive constraint is [C ∧ [s = 0]] ∨ [¬C ∧ [s > 0]].

For sake of efficiency, expression [¬C ∧ [s > 0]] is, in practice, expressed by a

constraint softC ∈ Soft integrating variables of C and the cost variable s in Cs. The

disjunctive constraint is then [C ∧ [s = 0]]∨ softC, or even simply softC. The interest

is to better take into account the semantics so as to improve the pruning efficiency.

In this case, the filtering algorithm of the global soft constraint should implement

the filtering algorithm of C for the case s = 0. Such a constraint is called a soft global

constraint [19,20].

Optimization criteria are related to the whole set of variables in costV ar. Strictly

positive values of variables costV ar semantically correspond to violations of initial

constraints in Cs. Hence, the intial CSP is turn into a new optimization problem 〈X ∪

costV ar,D ∪DcostV ar, Ch ∪ Soft ∪ Side〉.

Compared with the paradigm presented in section 3.1, one main difference is the

possibillity to propagate some side constraints on cost variables, which is not possible

if the problem does not include explicitely cost variables.

3.3 Propagation of side constraints

The use of extra-variables to express violations does not entail any solving penalty when

domains of possible values for violations are reduced monotonically during search. In-

deed, algorithms dedicated to valuation-based frameworks can be used with violation

variables. Furthermore, all search heuristics used with valuation-based paradigms [8]

can be used in variable-based paradigms [9]. In this case, all violation variables will

have a value by propagation. Branching is performed only on problem variables. Thus,

we can obtain the same search tree with variable and valuation-based frameworks if

the same filtering algorithms are used. The advantage of using variables instead of cost

functions is to propagate globally external constraints on these variables (the central

topic of this article), and also to benefit from propagation of events on violation vari-

ables in both directions (from the objective to the variables and vice versa).

For sake of modelling, two existing solving techniques specific to valuation-based

frameworks would require some research effort to be suited to our case-study.

In the first one, solving is performed by variable elimination [21]. This algorithm

is currently not suited to global n-ary constraints as Cumulative or its extensions.

In the second one, to improve the pruning power valuations are projected from tu-

ples to values and vice versa [22]. Domains of possible values for violations are reduced

monotonically during search. This approach is effective for some problems without side

constraints, when good global lower bounds can be obtained by an aggregation of local

costs. However, if valuations can increase and decrease (they do not express over-loads),

defining and propagating side constraints such as Gcc [5], Spread [6] or Deviation [7],

or sets of side constraints expressing dependencies between constraint violations, is

not obvious, especially through an objective function. This point represents a future
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Valuations
(cost functions)

Violation variables

Core of the problem
(e.g., global soft constraint) (e.g., global soft constraint)

Core of the problem

Optimization Criteria

Valued Model

Optimization Criteria

Variable−based Model

expressing also side constraints

Global constraints that

express side contraints

Fig. 1 With a variable-based model, a global propagation can be performed on violation
variables through side constraints, which is not the case with a valuation-based approach
because violations are not expressed by variables.

research direction with respect to such solving techniques, which is out of the scope of

this paper.

Additionally to a global soft constraint expressing the core of the over-constrained

problem, our goal is to investigate whether propagating globally some side constraints

improves the solving process or not. Note that a comparison of the variable-based and

valuation-based approaches in terms of modelling was performed in [9].

These external side constraints depend on each specific problem, e.g, rules 3. and 4.

in section 2. As depicted by Figure 1, with a valuation-based encoding, side constraints

can be expressed by the optimization function. No domains are available for violations,

which are evaluated externally through functions. Conversely, with a variable-based

encoding, it is possible to use global constraints on violation variables.

4 Cumulative Constraint with Over-Loads

This section presents the SoftCumulativeSum constraint, useful to express our case-

study and deal with significant instances.

4.1 State of the Art : Pruning Independent from Relaxation

The SoftCumulativeSum constraint that will be presented in Section 4.2 implicitly

defines a Cumulative constraint with a capacity equal to max capa. To prune variables

in start, several existing algorithms for Cumulative can be used. We recall the two

filtering techniques currently implemented in the Cumulative of Choco solver [11],

which we extend to handle violations in section 4.2.

4.1.1 Sweep Algorithm [14]

The goal is to reduce domains of start variables according to the cumulated profile,

which is built from compulsory parts of activities, in order not to exceed max capa.
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This is done in Choco using a sweep algorithm [14]. The Compulsory Part [23] of an

activity is the intersection of all feasible schedules of the activity.2 As the domains of

the variables of the activity get more and more restricted, the compulsory part will

increase until becoming a schedule of the activity.

It is equal to the intersection of the two particular schedules that are the activity

scheduled at its latest start and the activity scheduled at its earliest start. As domains of

variables get more and more restricted, the compulsory part increases, until it becomes

the fixed activity.

Definition 3 The Compulsory Part CP (a) of an activity a is not empty if and only

if max(D(start[a])) < min(D(end[a])). If so, its height is equal to min(D(res[a])) on

[max(D(start[a])), min(D(end[a]))[ and null elsewhere.

time0

non empty compulsory part

empty compulsory part

Activity a

Activity b

Fig. 2 Compulsory parts.

Example 1 Let a be an activity such that start[a] ∈ [1, 4], with a duration fixed to 5,

and b be an activity such that start[b] ∈ [1, 6], with a duration fixed to 3. As depicted

by Figure 2, activity a has a non empty compulsory part, while activity b has an empty

compulsory part.

Definition 4 The Cumulated Profile CumP is the minimum cumulated resource con-

sumption, over time, of all the activities. For a given t, the height of CumP at time t

is equal to ∑

a∈A/t∈[max(D(start[a])),min(D(end[a]))[

D(min(res[a]))

That is, the sum of the contributions of all compulsory parts that overlap t.

The next figure shows an example of a cumulative profile CumP where at each

point in time t the height of CumP at t does not exceed max capa.

Algorithm The sweep algorithm moves a vertical line ∆ on the time axis from one

event to the next event. In one sweep, it builds the cumulated profile incrementally and

prunes activities according to this profile, in order not to exceed max capa. An event

corresponds either to the start or the end of a compulsory part, or to the release date of

2 Therefore, it is sufficient, in the computation of the compulsory part of an activity a,
to consider only its feasible schedule with duration and resource consumption fixed at their
minimum.
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time0

max_capa

Fig. 3 Cumulated profile.

an activity. All events are initially computed and sorted in increasing order according

to their date. Position of ∆ is δ. At each step of the algorithm, a list ActToPrune

contains the activities to prune.

– Compulsory part events are used for building CumP . All events at date δ are used

to update the height sumh of the current rectangle in CumP : if such an event

corresponds to the start (respectively to the end) of a compulsory part then the

height of this compulsory part is added to (resp. subtracted from) sumh. The first

event with a date strictly greater than δ gives the end δ′ of the current rectangle

in CumP , denoted by 〈[δ, δ′[, sumh〉.

– Events corresponding to release dates d such that δ ≤ d < δ′ add some new

activities to prune, according to 〈[δ, δ′[, sumh〉 and max capa (those activities which

overlap 〈[δ, δ′[, sumh〉). They are added to the list ActToPrune.

For each a ∈ ActToPrune that has no compulsory part registered in the rectangle

〈[δ, δ′[, sumh〉, if its height is greater than max capa−sumh then the algorithm prunes

its start time so this activity doesn’t overlap the current rectangle of CumP . Then, if

the due date of a is less than or equal to δ′ then a is removed from ActToPrune. After

pruning activities, δ is updated to δ′.

Pruning Rule 1 Let a ∈ ActToPrune, which has no compulsory part recorded

within the rectangle 〈[δ, δ′[, sumh〉. If sumh + min(D(res[a])) > max capa then

]δ − min(D(dur[a])), δ′[ can be removed from D(start[a]).

Time complexity of the sweep technique is O(n ∗ log(n)). Please refer to the paper

for more details w.r.t. this algorithm [14].

4.1.2 Energy reasoning on Task Intervals [24,12,25]

The principle of energy reasoning is to compare the resource necessarily required by

a set of activities within a given interval of points in time with the available resource

within this interval. Relevant intervals are obtained from starts and ends of activities

(“task intervals”). This section presents the rules implemented in Choco.

Notation 1 Given ai and aj two activities (possibly the same) s.t.

min(D(start[ai])) < max(D(end[aj ])), we denote by:

– I(ai,aj) the interval [min(D(start[ai])), max(D(end[aj ]))[.

– S(ai,aj) the set of activities whose time-windows intersect I(ai,aj) and such that

their earliest start is in I(ai,aj), that is, S(ai,aj) = {a ∈ A s.t. min(D(start[ai])) ≤

min(D(start[a])) < max(D(end[aj ]))}.

– Area(ai,aj) the number of free resource units in I(ai,aj), that is, Area(ai,aj) =

(max(D(end[aj ])) − min(D(start[ai]))) ∗ max capa.
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Definition 5 A lower bound W(ai,aj)(a) of the number of resource units consumed

by a ∈ S(ai,aj) on I(ai,aj) is

W(ai,aj)(a)

=

min(D(res[a])) ∗ min[min(D(dur[a])), max(0, max(D(end[aj ])) − max(D(start[a])))]

Feasibility Rule 1 If
∑

a∈S(ai,aj)
W(ai,aj)(a) > Area(ai,aj) then fail.

Algorithm The principle is to browse, by increasing due date, activities aj ∈ A and

for a given aj to browse, by decreasing release date, activities ai ∈ A such that

min(D(start[ai])) < max(D(end[aj ])). Hence, at each new choice of ai or aj more

activities are considered. For each couple (ai, aj), the algorithm applies the feasibility

rule 1.

Suppose the activities sorted by increasing release date i.e. min(D(start[a1])) ≤

min(D(start[a2])) ≤ · · · ≤ min(D(start[an])), then:

– If min(D(start[ai−1])) = min(D(start[ai])) then

S(ai−1,aj) = S(ai,aj) and therefore
∑

a∈S(ai−1,aj)
W(ai−1,aj)(a) =

∑
a∈S(ai,aj)

W(ai−1,aj)(a).3

– Else

We have S(ai−1,aj) = S(ai,aj) ∪ {ak ∈ A, k ≤ i − 1 ∧ min(D(start[ak])) =

min(D(start[ai−1]))} i.e. we add all activities with same release date than

activity ai−1. Hence,
∑

a∈S(ai−1,aj)
W(ai−1,aj)(a) =

∑
a∈S(ai,aj)

W(ai,aj)(a) +
∑

{k≤i−1∧min(D(start[ak]))=min(D(start[ai−1]))}
W(ai,aj)(a).

Therefore, the complexity for handling all intervals I(ai,aj) is O(n2).

4.2 Pruning Related to Relaxation

Specific constraints on over-loads exist in real-world applications, e.g., rules 3. and

4. in Section 2. To express them, it is mandatory to discretize time, while keeping a

reasonable time complexity for pruning. These specific constraints are externalized be-

cause they are ad-hoc to each application. On the other hand, the following constraints

capture the generic core of this class of problems.

– SoftCumulative extends Cumulative of Choco by maintaining over-load variables

at each point in time, and by pruning activities according to maximal available

capacities given by upper bounds of these variables instead of simply considering

max capa. This constraint can be used with various objective criteria.

– The SoftCumulativeSum extends the SoftCumulative. It is defined to deal more

efficiently with a particular criterion: minimize the sum of over-loads.

3 By definition, W(ai,aj)(a) is independent of ai so W(ai−1,aj)(a) = W(ai,aj)(a).
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4.2.1 SoftCumulative Constraint

Definition 6 Let A be a set of activities scheduled between time 0 and m, each

consuming a positive amount of the resource. SoftCumulative augments Cumulative

with a second limit of resource ideal capa ≤ max capa, and for each point in time

t < m an integer variable costV ar[t]. It enforces:

– C1 and C2 (see Definition 2).

– C3: For each point in time t, costV ar[t] = max(0, ht − ideal capa)

     costVar[i]  lower bounds:             2    2    2    0    0     0   0   0 

0

ideal_capa

max_capa

costVar[t]: maximum values of domains

time

Fig. 4 Example of a SoftCumulative constraint.

Example 2 Figure 4 depicts an example of a cumulative profile CumP where at each

point in time t the height of CumP at t does not exceed the maximum value in the

domain of its corresponding violation variable costV ar[t]. Points in time 1, 2, and 3 are

such that CumP exceeds ideal capa by two. Therefore, for each point, the minimum

value of the domain of the corresponding variable in costV ar should be updated to

value 2.

Next paragraph details how the classical sweep procedure can be adapted to the

SoftCumulative constraint.

Revised Sweep pruning procedure. The limit of resource is not max capa as in the

Cumulative constraint. It is mandatory to take into account upper-bounds of variables

in costV ar. One may integrate reductions on upper bounds within the profile, as new

fixed activities. However, our discretization of time can be very costly with this method:

the number of events may grow significantly. The profile would not be computed only

from activities but also from each point in time.

We propose a relaxed version where for each rectangle we consider the maximum

costV ar upper bound. This entails less pruning but the complexity is amortized: the

number of time points checked to obtain maximum costV ar upper bounds for the

whole profile is m, by exploiting the sort on events into the sweep procedure.
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The pruning rule 2 reduces domains of start variables from the current maximum

allowed over-load in a rectangle.4

Pruning Rule 2 Let a ∈ ActToPrune, which has no compulsory part recorded

within the current rectangle. If sumh + min(D(res[a])) > ideal capa +

maxt∈[δ,δ′[(max(D(costV ar[t]))) then ]δ − min(D(dur[a])), δ′[ can be removed from

D(start[a]).

Proof: For any activity which overlaps the rectangle, the maximum capacity is upper-

bounded by ideal capa + max(D(costV ar[t]), t ∈ [δ, δ′[).

Time complexity is O(n ∗ log(n) + m), where m is the maximum due date.

Revised task Intervals energy reasoning. This paragraph describes the extension of the

principle of section 4.1.2 to the SoftCumulative global constraint.

Feasibility Rule 2 Area(ai,aj) =

∑

t∈[min(D(start[ai])),max(D(end[aj ]))[

ideal capa + max(D(costV ar[t]))

If
∑

a∈S(ai,aj)
W(ai,aj)(a) > Area(ai,aj) then fail.

Proof: At each time point t there is ideal capa + max(D(costV ar[t])) available units.

Efficiency of rule 1 can be improved by this new computation of Area(ai,aj) (the pre-

vious value was an over-estimation). Since activities ai are considered by decreasing

release date, it is possible to compute incrementally Area(ai,aj). Each upper bound of

a variable in costV ar are considered once for each aj . Time complexity is O(n2+n∗m),

where m is the maximum due date.

Next paragraph explains how minimum values of domains of variables in costV ar

are updated during the search process.

Update costVar lower-bounds. Update of costV ar lower bounds can be directly per-

formed within the sweep algorithm, while the profile is computed.

Pruning Rule 3 Consider the current rectangle in the profile, [δ, δ′[. For each t ∈

[δ, δ′[, if sumh − ideal capa > min(D(costV ar[t])) then [min(D(costV ar[t])), sumh −

ideal capa[ can be removed from D(costV ar[t]).

Proof: From Definitions 3 and 4.

Usually the constraint should not be associated with a search heuristic that forces

to assign to a given variable in costV ar a value which is greater than the current lower

bound of its domain. Indeed, such a search strategy would consist of imposing at this

point in time a violation although solutions with lower over-loads at this point in time

4 The upper bound max(D(costV ar[t])) is the maximum value in the domain D(costV ar[t]).
Since these variables may be involved in several constraints, especially side constraints, the
maximum value of a domain can be reduced during the search process.
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exist (or even solutions with no over-load). However, it is required to take into account

this eventuality and to ensure that our constraint is valid with any search heuristic. If

a greater value is fixed to a variable in costV ar, until more than a very few unfixed

activities exist, few deductions can be made in terms of pruning and they may be

costly (for a quite useless feature). Therefore, we implemented a check procedure that

fails when all start variables are fixed and one variable in costV ar is higher than the

current profile at this point in time. This guarantees that ground solutions will satisfy

the constraint in any case, with a constant time complexity.

4.2.2 SoftCumulativeSum Constraint

Definition 7 SoftCumulativeSum augments SoftCumulative with an integer variable

cost. It enforces:

– C1 and C2 (see Definition 2), and C3 (see Definition 6).

– The following constraint: cost =
∑

t∈{0,...,m−1} costV ar[t]

Pruning procedures and consistency checks of SoftCumulative remain valid for

SoftCumulativeSum. Additionally, we aim at dealing with the sum constraint efficiently

by exploiting the semantics. We compute lower bounds of the sum expressed by cost

variable. Classical back-propagation of this variable can be additionally performed as

if the sum constraint was defined separately.

Example 3 The term back-propagation is used to recall that propagation of events

is not only performed from the decision variables to the objective variable but also

from the objective variable to decision variables. For instance, let x1, x2 and x3 be

3 variables with the same domain: ∀i ∈ {1, 2, 3}, D(xi) = {1, 2, 3}. Let sum be a

variable, D(sum) = {3, 4, . . . , 9}, and the following constraint sum =
∑

i∈{1,2,3} xi.

Assume that 2 is removed from all D(xi). The usual propagation removes values 4, 6

and 8 from D(sum). Assume now that all values greater than or equal to 5 are removed

from D(sum). Back-propagation removes value 3 from all D(xi).

Sweep based global lower bound. Within our global constraint, a lower bound for the

cost variable is directly given by summing the lower bounds of all variables in costV ar,

which are obtained by pruning rule 3. These minimum values of domains were computed

from compulsory parts, not only from fixed activities.

LB1 =
∑

t∈{0,...,m−1}

min(D(costV ar[t]))

LB1 can be computed with no increase in complexity within the sweep algorithm.

Interval based global lower bound. The quantity
∑

a∈S(ai,aj)
W(ai,aj)(a) used in fea-

sibility rule 1 provides the required energy for activities in the interval I(ai,aj). This

quantity may exceed the number of time points in I(ai,aj) multiplied by ideal capa.

We can improve LB1, provided we remove from the computation over-loads already

taken into account in the cost variable. In our implementation, we first update variables

in costV ar (by rule 3), and compute LB1 to update cost. In this way, no additional

incremental data structure is required.

To obtain the new lower bound we need to compute lower-bounds of cost which

are local to each interval I(ai,aj).
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Definition 8 lb1(ai,aj) =
∑

t∈I(ai,aj)
min(D(costV ar[t]))

Then, next proposition is related to the free available number of resource units

within a given interval.

Proposition 1 The number FreeArea(ai,aj) of free resource units in I(ai,aj) s. t.

no violation is entailed is (max(D(end[aj ])) − min(D(start[ai]))) ∗ ideal capa.

Proof: From Definition 7.

From Definition 8 and Proposition 1, FreeArea(ai,aj) + lb1(ai,aj) is the number

of time units that can be used without creating any new over-load into the interval

I(ai,aj) compared with over-loads yet taken into account in lb1(ai,aj).

Definition 9 Inc(ai,aj) =
∑

a∈S(ai,aj)
W(ai,aj)(a)−FreeArea(ai,aj) − lb1(ai,aj)

Inc(ai,aj) is the difference between the required energy and this quantity. Even if one

variable in costV ar has a current lower bound higher that the value obtained from the

profile, the increase Inc(ai,aj) is valid (smaller, see Definition 8). We are now able to

improve LB1.

LB2 = LB1 + max(ai,aj)∈A2(Inc(ai,aj))

Another lower bound can be computed from a partition P of [0, m[ in disjoint intervals

obtained from pairs of activities (ai, aj): LB(P ) = LB1 +
∑

I(ai,aj)∈P Inc(ai,aj). Ob-

viousy LB2 ≤ LB(P ). However, time complexity of the algorithm deduced from rule 2

in the SoftCumulative constraint is O(n2 + n ∗m). Computing LB(P ) would increase

this complexity.5 Conversely, it is straightforward that computing LB2 can be directly

performed into this algorithm without any increase in complexity.

Pruning Rule 4 If LB2 > min(D(cost)) then [min(D(cost)), LB2[ can be removed

from D(cost).

Proof: From Definition 7, LB1 is a lower bound of cost. Since intervals are disjoint, by Defi-

nition 9 the quantity LB(P ) is a lower bound of cost. LB2 ≤ LB(P ). Therefore LB2 is a lower

bound of cost. The pruning rule holds.

Aggregating local violations. Once the profile is computed, if some activities having a

null compulsory part cannot be scheduled without creating new over-loads, then LB1

can be augmented with the sum of minimum increase of each activity. This idea is

inspired from generic solving methods for over-constrained CSPs, e.g., Max-CSP [26].

Our experiments shown that there is quite often a way to place any activity without

creating a new violation. This entails a null lower bound. Therefore, we removed that

computation from our implementation. We inform the reader that we described the

procedure in a preliminary technical report [27].

4.2.3 Implementation

Constraints were implemented (using Choco) to work with non fixed durations and

Table 1 compares the two constraints on small problems when the objective is to

minimize cost. Results show the main importance of LB2 when minimizing cost.

5 Determining a relevant partition P from the activities would force to use an independent
algorithm, which can be costly depending on the partition we search for. Finally, we decided
to use only LB2.
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Instance cost value SoftCumulative SoftCumulativeSum

+ external sum
1 0 92 (0.07 s) 92 (0.01 s)
2 2 417 (0.29 s) 94 (0.01 s)
3 10 > 30 s 63 (0.01 s)
4 2 1301 (0.59 s) 194 (0.06 s)
5 6 19506 (13.448 s) 97 (0.01 s)
6 0 53 (0.00 s) 53 (0.00 s)
7 10 > 30 s 90 (0.01 s)
8 6 > 30 s 152 (0.07 s)

Table 1 Number of nodes required to find optimum schedules with n = 9, m = 9, durations
between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7.

5 Variable-Based vs Valuation-Based Model

5.1 Definition of the Constraint Network

Within the context of a practical application, the goal of this article is to compare

frameworks for solving over-constrained problems : extending constraint programming

[8], or using a variable-based model [9]. Here is the variable based model in a pseudo-

code syntax. Comments show how rules on violations of Section 2 are expressed.

int[] ds, hs; // fixed random durations and heights

int ideal capa, max capa;

IntDomainVar[] start, costVar; IntDomainVar cost;

// core of the problem

SoftCumulativeSum(start, costVar, cost, ds, hs, ideal capa, max capa);

// side constraints

for each array "day", element of a partition of costVar[]:

Gcc6 ("day",...)); // rule 3 (max 3 over-loads)

AtMostKNotZeroOrOne("day",1)); // rule 3 (max 1 big over-load)

for(i:7..costVar.length-1): // rule 4 (consecutive days)

if(i%7==0): [costVar[i-1]==0 || costVar[i]==0];

// objective criteria

minimize(cost)

A disjunction is sufficient for expressing rule 4. because, given a pair of variables,

the constraint just consists of forcing to assign value 0 to one of the two variables when

value 0 is removed from the other one. For more complex dependencies, a Regular

constraint may be used to improve the solving efficiency [28].

The ad-hoc constraint AtMostKNotZeroOrOne imposes to have at most k times val-

ues different from 0 or 1 into a set of variables which is given as argument.

Provided domains of costs are monotonically reduced (which is mandatory for mod-

elling our case-study with the side constraints, see section 3.3), all algorithms used with

6 Global Cardinality Constraint, also called Distribute [5]. Given a set of variables (here,
a day of 7 point in times), this constraint specifies for each possible value v in the union
of variable domains the minimum and maximum number of times v can be assigned to a
variable. Here, to value 0 (no over-load) corresponds the range [4, 7] (at least 4 times), to value
1 corresponds [0, 3], and to any value strictly greater than 1 corresponds [0, 1].
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a valuation-based framework can be used with a variable based framework so as to ob-

tain exactly the same search tree [9]. Reciprocally, to reproduce the filtering algorithms

of our global constraint using a valuation-based solver, one may build a solver dedi-

cated to this class of problems. Hence, concerning the generic part of the problem, the

two frameworks are equivalent.

Conversely, to encode specific rules of our case-study (rules 3. and 4.) with a

valuation-based model, it is necessary to encode the Gcc’s plus a set of dependen-

cies plus a sum constraint through an optimization criterion, to select the acceptable

solutions of the problem. We are not aware of a paper providing a technique to define

and to implement such a optimization criterion. Implementing such a criterion would

certainly be a scientific contribution. Nevertheless, we do not claim that it is not pos-

sible, and we assume that our problem can be expressed in both cases.

Assuming that it is possible, there is still a significant difference between the two

frameworks. In a variable-based framework a global propagation of value deletions in

the domains of costs can be performed (because costs are represented by variables),

and in a valued framework it is not possible (because no domains are available for

the costs). Such a global propagation is performed through side constraints whose

semantics are specific to the practical problem we consider. These semantics can be

exploited by filtering algorithms of side constraints, to improve their pruning efficiency.

We can simulate a valuation-based encoding with a particular variable-based model.

We disconnect global pruning algorithms of side constraints, which are transformed into

constraint checkers. Indeed, a valuation-based model express violations by functions

that, given a tuple, return a valuation. Valuations are aggregated into the objective

criterion. Side constraints 3. and 4. eliminate assignments that do not respect rules

that should be necessarily satisfied by solutions. Thus, when expressing rules by an

objective criterion, this objective criterion has to reject the wrong assignments. This

behaviour can be simulated by implementing constraints that do not propagate globally

on violation variables but just answer ’yes’ or ’no’ given a (possibly partial) assignment.

Hence, we used consistency checkers for encoding side constraints, instead of complete

side constraints with a filtering algorithm. The valuations corresponding to a partial or

a complete assignment are then the lower bounds of variables in costV ar. We call the

modified constraints NFGcc and NFAtMostKNotZeroOrOne. Except these modified side

constraints, the two models are exactly the same, notably w.r.t. the SoftCumulativeSum

constraint and its filtering algorithm.

5.2 Experiments

Benchmarks were generated randomly with seeds to be reproducible. They were run

with the same search heuristic: assign minimum values of domains first to start variables

and after to costV ar and cost variables. This search heuristic is consistent with a

valuation-based model. There is no branching on cost variables. The machine was a

2.2 Ghz Intel Core 2 processor with 4 Go of 667 Mhz RAM.

Table 2 shows that even for small instances of our case-study, expressing side con-

straints as functions is not well suited to avoid a high number of nodes. Conversely,

using the variable-based model leads to a robust solving.
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Instance cost value Valuation-based Model Variable-based Model
1 0 67 (0.08 s) 67 (0.01 s)
2 0 3151 (6.07 s) 74 (0.02 s)
3 5 372 (0.6 s) 117 (0.1 s)
4 0 2682 (4.4 s) 120 (0.03 s)
5 4 116 (0.1 s) 134 (0.1 s)
6 0 62 (0.01 s) 132 (0.04 s)
7 10 1796 (2.3 s) 694 (0.9 s)
8 4 391 (0.48 s) 352 (0.45 s)

Table 2 Number of nodes required to find optimum schedules with n = 10, m = 14, dura-
tions between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7.

Instance cost value Valuation-based Model Variable-based Model
1 2 > 60 s 211 (0.34 s)
2 0 > 60 s 178 (0.08 s)
3 1 > 60 s 200 (0.12 s)
4 15 > 60 s 27 (0.04 s)
5 12 > 60 s 546 (2 s)
6 3 > 60 s 1875 (6 s)
7 6 2240 (11.4 s) 160 (0.12 s)
8 9 > 60 s 79 (0.06 s)

Table 3 Number of nodes required to find optimum schedules with n = 15, m = 21, dura-
tions between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7.

Instance cost value Variable-based Model
1 3 858 (5.8 s)
2 0 627 (1.2 s)
3 - > 60 s
4 0 419 (0.6 s)
5 - > 60 s
6 23 263 (1.6 s)
7 10 416 (0.9 s)
8 19 197 (0.6 s)

Table 4 Number of nodes required to find optimum one week schedules: n = 25, m = 35,
durations between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa =
7.

Table 3 confirms the superiority of a variable-based model. However, some instances

(e.g., 6 in this table) can involve more than one thousand nodes with the variable-based

model. This fact shows that some hard instances remain despite the efficient handling

of over-load distribution.

We aim to determine whether the variable model may solve a schedule of one week.

Table 4 shows that some instances cannot be solved within a time less than 60 s. This

is partially due to the time spent into the SoftCumulativeSum constraint at each node,

which grows proportionally to the number of variables although we did not integrate

time points as events into the sweep pruning procedure.
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6 Extensions and future work

We presented case-study where propagating side constraints is mandatory for solving

the instances. We presented a global constraint for the generic part of this case-study.

This global constraint can be tailored to suited to some other classes of applications.

6.1 Lightened relaxation

If the time unit is tiny compared with the scheduling horizon, e.g., one minute in

a one-year schedule, the same kind of model may be used by grouping time points.

For example, each violation variable may correspond to one half-day. Imposing a side

constraint between two particular minutes into a one-year schedule is generally not

useful. For this purpose, the SoftCumulative constraint can be generalized, to be

relaxed with respect to its number of violation cost variables.

6.1.1 RelSoftCumulative constraint

Notation 2 To define RelSoftCumulative we use the following notations. Given a

set of activities scheduled between 0 and m,

– mult ∈ {1, 2, ..., m} is a positive integer multiplier of the unit of time.

– Starting from 0, the number of consecutive discrete intervals of length mult that

are included in the interval [0, ..m[ is ⌈m/mult⌉. J = {0, 1, . . . , ⌈m/mult⌉ − 1} is

the set of indexes of such intervals. Hence, to each j ∈ J corresponds the interval

[j ∗ mult, j ∗ mult + 1, . . . (j + 1) ∗ mult − 1].

Definition 10 Let A be a set of activities scheduled between time 0 and m, each con-

suming a positive amount of the resource. RelSoftCumulative augments Cumulative

with

– A second limit of resource ideal capa ≤ max capa,

– The multiplier mult ∈ {1, 2, . . . , m},

– For each j ∈ J an integer variable costV ar[j].

It enforces:

– C1 and C2 (see Definition 2).

– C4: For each j ∈ J , costV ar[j] =
∑(j+1)∗mult−1

t=j∗mult max(0, ht − ideal capa)

Example 4 We consider a cumulative over-constrained problem with n activities sched-

uled minute by minute over one week. The scheduling horizon is m = 2940. Assume

that a user formulates a side constraint related to the distribution of over-loads of

resource among ranges of one hour (mult = 60) in the schedule, for instance ”no

more than one hour violated each half-day”. The instance of RelSoftCumulative

related to this problem is defined with ⌈2940/60⌉, i.e., 49 violation variables, J =

{0, 1, . . . , 48}. For each range indexed by j ∈ J , the constraint C3 is: costV ar[j] =

sum
(j+1)∗60−1
t=j∗60 max(0, ht − ideal capa). The side constraint is then simply expressed

by cardinality constraints over each half-day, that is, each quadruplet of violation vari-

ables: {costV ar[0], · · · , costV ar[3]}, {costV ar[4], · · · , costV ar[7]}, etc.
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6.1.2 RelSoftCumulativeSum constraint

Definition 11 RelSoftCumulativeSum augments RelSoftCumulative with an integer

variable cost. It enforces:

– C1 and C2 (see Definition 2), and C4 (see Definition 10).

– The following constraint: cost =
∑

j∈J costV ar[j]

6.1.3 Pruning algrithms

It is straightforward to reformulate rules of section 4.2 to make them suited to

RelSoftCumulative. With respect to RelSoftCumulativeSum, the sweep based global

lower bound computation is identical to the one of the SoftCumulativeSum. The

interval based global lower bound of SoftCumulativeSum can be also adapted to

RelSoftCumulativeSum; the task interval energetic reasoning presented in section 4.2.2

differs by the evaluation of the quantity lb1. We presented the details in a technical

note (see [29]). A perspective of our article will be to evaluate the pruning power of

these extensions and to compare them with some alternative models. For instance, it

may be possible to state several copies of the SoftCumulative constraint at different

time scales on clones of the resources (with the coarser resources kept synchronized

with the finer ones through channeling constraints).

6.2 Precedence constraints and violation criteria

Some scheduling problems include precedence constraints. We will investigate whether

integrating precedence constraints into an energetic reasoning is of interest or not in

the context of over-constrained problems, compared with the case where the prece-

dence graph is handled separately from the SoftCumulativeSum constraint or from

the RelSoftCumulativeSum constraint. More generally, our future work will consists of

determining which parts of these problems should be relaxed (precedence constraints,

over-loads of resource, or both precedence constraints and over-loads), according to

the different classes of applications, and providing answers to the related algorithmic

issues. Moreover, in some applications violating a fixed scheduling horizon could be

interesting.

7 Conclusion

This paper analyzed the benefit of propagating a set of global constraints on viola-

tions variables, in terms of solving efficiency. To encode the case-study we selected for

these experiments, we proposed several filtering procedures for a global Cumulative

constraint which is relaxed w.r.t. to its capacity at some points in time. Experiments

demonstrated that its own filtering is not sufficient. Propagating globally additional

constraints on violation variables is required. At last, we provided the extension of our

global constraint for the case where side constraints are related to ranges in time which

are larger than one time unit.
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6. Pesant, G., Régin, J.C.: Spread: A balancing constraint based on statistics. Proc. CP pp.

460–474 (2005)
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9. Petit, T., Régin, J.C., Bessière, C.: Meta constraints on violations for over constrained
problems. Proc. IEEE-ICTAI pp. 358–365 (2000)

10. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and
placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

11. Choco: An open source Java CP library, documentation manual. http://choco.emn.fr/
(2009)

12. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. Proc. JICSLP (Joint
International Conference and Symposium on Logic Programming) pp. 363–377 (1996)

13. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver.
Proc. PLILP pp. 191–206 (1997)

14. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative
heights. Proc. CP pp. 63–79 (2002)

15. Mercier, L., Hentenryck, P.V.: Edge finding for cumulative scheduling. INFORMS Journal
on Computing 20(1), 143–153 (2008)

16. Benoist, T., Jeanjean, A., Rochart, G., Cambazard, H., Grellier, E., Jussien, N.: Subcon-
tractors scheduling on residential buildings construction sites. ISS’06 Int. Sched. Sympo-
sium, Technical Report JSME-06-203 pp. 32–37 (2006)

17. Baptiste, P., Pape, C.L., Peridy, L.: Global constraints for partial CSPs: A case-study of
resource and due date constraints. Proc. CP pp. 87–102 (1998)
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