-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

LID: Retry Relay Station and Fusion Shell

Julien Boucaron, Anthony Coadou, Robert de Simone

» To cite this version:

Julien Boucaron, Anthony Coadou, Robert de Simone. LID: Retry Relay Station and Fusion Shell.
[Research Report] RR-7293, INRIA. 2009. inria-00484185

HAL 1d: inria-00484185
https://hal.inria.fr /inria-00484185
Submitted on 18 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50085753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00484185
https://hal.archives-ouvertes.fr

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Latency-Insensitive Design: Retry Relay-Station and
Fusion Shell

Julien Boucaron — Anthony Coadou — Robert de Simone

N° 7293

May 2010

Théme COM

apport
de recherche

ISRN INRIA/RR--7293--FR+ENG

ISSN 0249-6399







Zd I N RIA

SOPHIA ANTIPOLIS

Latency-Insensitive Design: Retry Relay-Station and
Fusion Shell

Julien Boucaron®, Anthony Coadou*, Robert de Simone

Théme COM — Systémes communicants
Projet Aoste

Rapport de recherche n’ 7293 — May 2010 — 4 pages

Abstract: This paper introduces a new variant implementation of Latency-Insensitive
Design elements. It optimizes area footprint of so-called Shell-Wrappers being partially fused
with their input Relay-Stations. The modified Relay-Station is called a Retry Relay-Station.
We show correctness of this implementation and provide comparative results between a
regular implementation and our new one on both FPGA and ASIC.

Key-words: Latency Insensitive Design, Implementation

FMGals 2009

This paper is electronically published in Electronic Notes In Theoretical Computer Science http:

//uwww.elsevier.nl/locate/entcs

* AOSTE, INRIA, Sophia-Antipolis, France

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65


http://www.elsevier.nl/locate/entcs
http://www.elsevier.nl/locate/entcs

Latency-Insensitive Design: Retry Relay-Station and
Fusion Shell

Résumé : This paper introduces a new variant implementation of Latency-Insensitive
Design elements. It optimizes area footprint of so-called Shell-Wrappers being partially fused
with their input Relay-Stations. The modified Relay-Station is called a Retry Relay-Station.
We show correctness of this implementation and provide comparative results between a
regular implementation and our new one on both FPGA and ASIC.

Mots-clés :  Latency Insensitive Design, Implementation



1 INTRODUCTION 3

1 Introduction

Interconnects play a major role in high-performance circuits and systems. Latency-Insensitive
Design (LID) was introduced by Carloni et al. [R] as a methodology to cope with multiple-
clock-cycle latencies due to long interconnect wires. In their seminal paper, they establish
behavior trace equivalence between the latency insensitive “implementation” and the syn-
chronous specification. We can classify LID implementations in three classes: dynamic
synchronous [8, 8, [@, 10, 2], static synchronous [@, 8§, I1] and dynamic asynchronous [I3].
Dynamic or static in this context stands for dynamically scheduled or statically scheduled
respectively, whereas synchronous or asynchronous denotes the implementation style. In
this paper, we focus only on dynamic synchronous compositional implementation (dynamic
asynchronous compositional implementation can be built from a synchronous one, as in [2]).

The design-flow of LID starts from an ideal synchronous design, in which timing closure
cannot, be reached because IP blocks are too distant from each other.

It consists of several steps:

(1) Encapsulate each IP (called Pearl) into a Shell-Wrapper (SW),

(2) Divide each long wire into sections, through the addition of intermediate Relay-
Stations (RS),

(3) Apply place-and-route,
(4) If timing closure cannot be reached, iterate from second step.

The core hypothesis of LID is that a Pearl is a synchronous IP that can be clock-gated
within a clock cycle. A secondary hypothesis is that latencies are integers, which is natural in
presence of a single clock. We segment each long wire of latency [ with [ — 1 Relay-Stations,
connected together with wires having unit latency. A Relay-Station acts as a “smart” signal
repeater.

As already mentioned, a Shell-Wrapper encapsulates each Pearl. Its role is two-fold:
it implements a part of the Latency Insensitive Protocol ensuring synchronization between
data, and it drives the Pearl as a clock-gating mechanism exactly when all data have arrived.

Actually, the LID can be seen as a synchronous implementation of well-known asyn-
chronous protocols [I]. The main difference with asynchronous design is that LID uses the
classic synchronous design flow. It does not claim to solve the timing closure issue; careful
floor-planning/partitioning and interconnect planning are mandatory.

The extra elements introduced in the Latency Insensitive interconnect structure allow
to design the full system without affecting the original IPs, provided the single property of
accepting gated clock inputs.

Contribution. We introduce a new implementation of LID, where the Shell-Wrapper
input stage is optimized for area through a “fusion” with its specific input Relay-Stations.
The resulting compound element is called Retry Relay-Station; it lets remove bypassable
buffers in both control and data-flow parts of the new Fusion Shell. We show correctness of
the implementation and discuss its main features and performance.



4 Boucaron, Coadou & de Simone

2 Regular Implementation

We describe briefly in this section a regular implementation of Latency-Insensitive Design.
Most of dynamic implementations use bypassable buffers on the input stage of the Shell-
Wrapper, as shown in figure . According to the clock-gating and the condition on the mux,
the buffer samples the input — is bypassed by the wire — or sends its sampled input. In this
paper, we suppose the use of flip-flops to store data, but implementations using transparent
latches [12] would work in the same way.

_I1

reg (_ - -clock-gating

mux bypass

Figure 1: Bypassable register

2.1 Relay-Station

We do not fully detail the implementation of the Relay-Station as can be found in [6]. Figure
depicts only the control part of the Relay-Station, using a Mealy machine with three states
(describing the use of the two internal registers of the data-path) and one optional state for
errors. Actually, the Error state is used only for simulation and verification purposes, but
is not necessary for implementation, as it will never be reached.

The Relay-Station (RS) is a two-place register, holding at most one initial data:

o Empty state: when the RS is empty, it waits for a valid input until having one; then,
it catches the valid data, and goes to “Half” state.

o Half state does regular wire-pipelining (sampling valid input and sending it next clock
cycle if no downward “stop”). If it receives a “stop” from a downward RS or SW, and
at the same time a new data, then it has to hold both valid data and go to “Full” state.

o Full state sends “stop” upward. In “Full” state, it is necessary to halt the upward
production of data, because there is a congestion in the system downward. This
principle is called back-pressure. In addition, it should never receive a new data or it
would be a design error.

The previous automaton is two-fold on the data-flow of the RS: it both drives the clock
of main and auz registers, and also drives the mux.

INRIA



2 REGULAR IMPLEMENTATION 5

not (val_in)
/clock_gate(main,aux)

val_in not (val_in) & not (stop_downward)

/val_out(main),clock_gate(main,aux)

not (val_in) & stop_downward

val_in & not (stop_downward) Jclock_gate(aux,main)

/val_out(main),clock_gate(aux)

not (stop_downward)
/stop_upward, val_out(aux),clock_gate(aux)

stop_downward
/stop_upward

Figure 2: Mealy machine of a Relay-Station

Notice that the Relay-Station is order-preserving: the “aux” register is always bypassed,
except if a RS, already holding a data in its “main” register, receive both a “stop” signal
and a new data (from “Half” to “Full” states). In this case, the main is stored in the “aux”
register while the new one is stored in the “main”. Then it sends the data contained in “aux”
to go back to “Half” state.

2.2 Shell-Wrapper

We now focus on the interactions between the input stage of the usual Shell-Wrapper and
input/output Relay-Stations as shown in figure B: we have a synchronous clock cycle in
between each “down-half” input Relay-Station, passing through the Shell-Wrapper and the
IP, until reaching each “up-half” output Relay-Station. The input-stage of the Shell-Wrapper
has a bypassable buffer on each input channel. (If there is more than a clock cycle from
input RSs to output RSs, then we need to have bypassable FIFOs having at least the same
size as latency found from input to output RSs).
The Shell works as follows:

o The Shell enables the IP clock when there is one valid data on each input (or in each
bypassing buffer) and no incoming stop from downward. When the clock is enabled,
then as a result all valid outputs are produced.

e The bypassable buffer stores the input when both following conditions are satisfied:
there must be an incoming data; the Shell is still waiting for at least one of its inputs
or it receives a “stop” from downward.

e The Shell sends a stop upward if the bypassable buffer already holds a valid data and
there is at least one incoming stop, or at least one missing input.

Many other implementations have been proposed [3, [4, @], involving non-bypassable
registers on inputs, as well as non-bypassable registers on outputs, or both. Actually, those



Boucaron, Coadou & de Simone

Al

Stop_upward | val_in

RS stop_downward val_out
| I
smp,upwardl [val_in
\4
FSM
I.....
Clock sw
cycle P4
boundaries o
B-FF l
Ll I
SW stop_downward | Ival_out
stop_upward |vaL|n
v
S
- Fsm
| Rrs
Legend: T|
—_— FSM |
----- < EL"IZF."EE‘ELTW RS stop._downward lva.,w
» Dataflow * | !
Y

Figure 3: Shell-Wrapper and Relay-Station

solutions impose some buffering in the Shell, that can performed by input or output Relay-
Stations as well.

3 Our Implementation

The basic idea of our implementation is to remove all bypassable buffers because valid data
are present in “main” and “aux” buffers of input Relay-Stations, and also because synchronous
signals can go from “down-half” Relay-Stations to “up-half” Relay-Stations. We state that
the purpose of a Shell is to drive the execution of its pearl, while the intermediary storage is
the responsibility of Relay-Stations. We slightly modify the regular implementation in order
to remove as much as non-strictly necessary storage from the Shell, in order to give more
“breathing space” in the placement of Relay-Stations and then, in some cases, to reduce
global latencies. An example is given in figure 8.

INRIA



3 OUR IMPLEMENTATION 7

| 4

stop_upward | val_in
A TSRS | +
"1 FSM
RRS
TI
|
RRS retry ~ val_ouf
Clock L
cycle rerryl [varin
boundaries Y
P < FSM
"""" sw
FS top downward vaout
- !
stop_upward | val_in
Y || mein e 2
1 Fsm
RRS
Legend: T [
— ) FSMsignal |
----- Clock-gati
e o RRS retry val_out
» Dataflow * | I
.Y

Figure 4: Fusion Shell and RRS

3.1 Retry Relay-Station

When a Relay-Station sends a data, the receiver is supposed to be ready, which is not the
case in our fusion Shell which is strictly combinatorial. The trick here is to modify input
Relay-Stations in order to keep the valid data and retry sending the data until the fusion
Shell has consumed it. We call such Relay-Station a Retry Relay-Station (RRS).

We detail now the Retry Relay-Station: it has also two registers on both data and control
path, as in a regular RS. A Mealy machine is shown in figure B.

e When a valid data arrives, we put the valid data in “main” register and go to “Retry”
state.

o In Retry state, whatever the input signal, we send the valid data. If both a retry and a
new valid data is coming, then we go to the “Full” state while holding the new arriving
data in the “main” register and send the old one to the “aux” register. We go back to
“Empty” state when we do not receive a “retry”.

e In Full state, whatever the input signal, we send a stop upwards and we send also the
oldest data in the “aux” register. We go back to “Retry” state when we do not receive

a “retry”.



8 Boucaron, Coadou & de Simone

not (val_in)
/clock_gate(main,aux)

val_in not (val_in) & not (retry)
/clock_gate(aux) /val_out(main),clock_gate(main,aux)

not (val_in) & retry
val_in & not (retry) /val_out(main),clock_gate(aux,main)

/val_out(main),clock_gate(aux)

not (retry)

val_in & retry
n /stop_upward,val_out(aux),clock_gate(aux)

/val_out(main)

retry
/val_out(aux),stop_upward

Figure 5: Mealy machine of a Retry Relay-Station

Moreover, the registers are clock-gated whenever they do not receive a new data. Ba-
sically, the behaviour is the same as the regular one, except the fact that it repeats the
“val _out” signal until it has been acknowledged (absence of “retry”). Figure B gives an ex-
ample of composition of controls of two successive RRS. It shows that the signals does not
take more than a clock cycle to go from a Relay-Station to another.

3.2 Fusion Shell

The Fusion-Shell implementation is strictly combinatorial on both control and data. It
executes the TP when there is no downward stop (the next RRSs are ready to receive the
data) and all inputs are ready (the IP itself is ready to perform the computation). Otherwise,
it sends a “retry” to upward RRSs which have sent valid data when there is either a missing
input data or a downward stop. We assume that all inputs of the fusion Shell are only RRSs.

3.3 Correctness

We show the correctness of the previous implementation using a trace-equivalence (order
preservation).

The Fusion-Shell is strictly combinatorial, hence order-preserving. It has already be
shown that a Relay-Station is order-preserving and that the back-pressure protocol never
loses or overwrites a data provided the following hypothesis: when the Relay-Station sends
a “stop” upwards, it does not receive a new data.

Our RRS relies also on the same set of hypotheses. When a RRS is empty, it does not
send anything; if it receives a data, it is stored in the “main” buffer and sent at the next
clock cycles until there is no more “retry” signal coming from downward. If it holds a data
and receives a new one, it uses the “aux” buffer to store the old data and put the new one
in the “main” bufler, then at the next clock cycle it sends a “stop” upward. The previous

INRIA



4 RESULTS 9

val_in stop_upward

upward RRS

downward RRS

val_out retry

Figure 6: Control flows of two RRS.

hypothesis ensures that we do not receive another data. Finally, the RRS sends the oldest
data, followed by the other one. The RRS is order-preserving.

4 Results

In this section we discuss the results for both FPGA and ASIC implementation given in
tables B, B and @.

For the FPGA experiments, the verilog design was mapped using Xilinx ISE 10.1.02 onto
both Spartan3-1000 and Virtex5-LX50. On each architecture, we tried both the area and
speed optimization heuristics with high effort.

For the ASIC experiment, we used the FreePDK 45 nm version 1.2 from North Car-
olina State University and the Standard-Cell library from Oklahoma State University, with
Synopsys DC version Y-2006.06-SP4. The clock frequency in this case is 1 GHz.

For each mounting, two cases were studied. The higher table contains the data relative
to a parametric example to see how our implementation of only the control parts of SW and
RS (FS and RRS resp.) scales with an increasing number of inputs and outputs for the SW
(F'S resp.), with the same number of RS (RRS resp.) connected to the input of the SW (FS



10 Boucaron, Coadou & de Simone

RS/RRS FSM | < mm===w===- > | RS/RRS FSM RS/RRS RS/RRS
I I | |
v VvV
SW/FS FSM mul + SW/FS
I
A4
out(0 .. n-1) out(0 .. n-1)
(a) (b)

Figure 7: Two studied examples

RS (um?) | RRS (um?) | Area diff %
64.763399 | 61.008999 -5.79

Table 1: Area of control of RS and RRS, ASIC 45 nm, clock frequency 1 GHz

resp.), and a register of the same size on the output of the SW (FS resp.), as shown in figure
[a.

The lower table refers to an example of tiny data-path, to emphasize the area gain in
favor of our new implementation. This design is composed of 2 RSs (2 RRSs resp.), a SW
(FS resp.) and a integer multiplier (16x16 and 32x32) with both control and data-paths
(figure @b).

Area minimisation Area is of utter importance in implementation in VLSI. We are able
to get an interesting area saving on the Shell-Wrapper on both data and control paths. That
means a reduced overhead on each IP, and therefore allows a finer-grain design.

RS and RRS have the same data-path, as shown in table 0 control area is roughly the
same, with a little advantage for the RRS in case of ASIC. In the case of FPGA, the area
is not relevant due to its coarser granularity: the control takes exactly the same number of
LUTs for RS and RRS.

e When considering only “pure” control part of our new implementation on both FPGA
and ASIC, we are able to save area, while being able to sustain a faster clock rate. We
can see on FPGAs that area gain is between 6 and 29 percent, and the clock rate gain
is between 3 and 50 percent. Of course, those gains depend slightly on the quality
of the mapping algorithm on the target architecture. We can see that the area gain
in ASIC is in between 8.9 and 10.7 percent (there is about no slack on the biggest
designs, needing a lot of buffers). Our new implementation scales in the same way as
the regular one for the control part, with an interesting area save.

e When considering the simple design with the tiny data-path: the area save is slightly
smaller within 4 to 6 percent on FPGA, because a lot of FFs present in LUTs are not

INRIA



5 CONCLUSIONS AND DISCUSSION 11

used in the mapping found by the FPGA placement-and-routing tool; the delay of the
data-path dominates. When we look at the ASIC case, we find an area save between
16 to 10 percent, which corresponds roughly to the two removed 16/32bits bypassable
buffers in the design.

Energy consumption Power minimization is also a mandatory objective in VLSI. We do
not have applied any low-level power optimization on our designs.

For the FPGA implementations, the results are not relevant enough. They depend too
widely on the architecture and heuristic used. For the ASIC implementation, we have an
interesting power gain on both dynamic power with around 40 percent, and between 11 and
18 percent less on static power.

Clock frequency Our “control” part do not slow the clock frequency. On the contrary, it
enables to raise significantly the clock frequency when mapped onto a FPGA.

The small dataflow example also shows that the overhead introduced by the LID is
globally reduced by our implementation. On a Virtex5, the gain of frequency is between 10
to 20 percent. Notice that the results are strongly related to the place-and-route tool. For
instance, on a Spartan3, a heuristic may lead to slightly worst results, while another will
gain up to 10 percent.

5 Conclusions and discussion

This paper introduces a new implementation of Latency Insensitive Design, that let save
area on Shell-Wrappers through a fusion of input Relay-Stations and the Shell. Regular
Relay-Stations do not hold anymore a data once it has been sent.

The Retry Relay-Station sends its data (if present) until the Shell-Wrapper acknowledges
reception that is coming after. We can then remove bypassing buffers on both control and
data paths of the usual Shell-Wrapper and obtain the Fusion Shell-Wrapper. There is no
additional area on both control and data-path in using Retry Relay-Stations versus regular
Relay-Stations. We show the correctness of the implementation using trace-equivalence.

We provide detailed results on the implementation of both FPGA and ASIC. We show
a gain in area, in clock rate in general, and also on both dynamic and static power.

One of the main problems in LID is to insert Relay-Stations to reach timing closure,
as described in the introduction. Most of the time, high latencies are due to lot of wire
congestions in the routing channels. Adding Relay-Stations in such areas is problematic and
make the placement-and-routing tougher to solve.

Cortadella et al. [I2] implementation is splitting Relay-Stations in two smaller parts.
This helps the placement and routing, minimizes area, while having also time-borrowing
due to the use of latches instead of flip-flops. Despite the fact we have implemented our
Retry Relay-Stations using flip-flops, one can implement them using latches, with certainly
additional gain on area, power and clock speed for ASICs.



12 Boucaron, Coadou & de Simone
Control of Regular Implementation Control of Our Implementation Gain
In/Out Speed opt. Area opt. Speed opt. Area opt. Speed opt. Area opt.
MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT
2 240 24 237 20 246 17 250 17 +2.5% -29% +5% -15%
4 169 50 136 39 246 17 250 17 +27% -24% +25% -20%
8 148 87 114 81 167 70 146 64 +12% -19% +28% -20%
16 128 153 129 157 182 120 182 120 +42% -21% +41% -23%
32 110 311 117 312 166 235 167 235 +50% -24% +42% -24%
Multiplier with Regular Impl. Multiplier with Our Impl. Gain
In/Out Speed opt. Area opt. Speed opt. Area opt. Speed opt. Area opt.
MHz LUT MHz LUT FF MHz LUT MH=z LUT FF MHz LUT MH=z LUT
16x16 81.1 135 74.6 87 134 78.6 100 82.2 81 100 -3% -26% +10% -6%
32x32 54.0 234 49.8 229 262 52.8 228 54.1 223 196 -2% -2% +8% -2%
Table 2: FPGA — Spartan3-1000, speed -4
Control of Regular Implementation Control of Our Implementation Gain
In/Out Speed opt. Area opt. Speed opt. Area opt. Speed opt. Area opt.
MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT
2 664 18 508 17 905 16 720 15 +36% -11% +41% -11%
4 557 35 437 33 639 32 494 31 +14% -8% +13% -6%
8 439 73 360 64 532 62 430 59 +21% -15% +19% -7%
16 313 128 330 127 409 117 376 116 +30% -8% +13% -8%
32 354 284 292 252 365 231 313 230 +3% -18% +7% -8%
Multiplier with Regular Impl. Multiplier with Our Impl. Gain
In/Out Speed opt. Area opt. Speed opt. Area opt. Speed opt. Area opt.
MHz LUT MHz LUT FF MHz LUT MHz LUT FF MHz LUT MHz LUT
16x16 192 84 190 82 134 229 78 229 78 100 +19% -7T% +20% -4%
32x32 105 148 104 146 262 116 142 116 142 196 +10% -4% +10% -2%
Table 3: FPGA — Virtex5-LX50, speed -3
In/Out | Control of Regular Implementation | Control of Our Implementation | Gain
Area (upm?) Area (upm?2) (%)
2 209 186 -10.7
4 424 378 -10.7
8 818 740 -9.5
16 1653 1489 -9.9
32 3352 2994 -8.9
Multiplier with Regular Impl. Multiplier with Our Impl. Gain
Mul Area Power Area Power Area Power
dynamic | quiescent dynamic | quiescent dynamic | quiescent
(um?) (mW) (wW) (um?) (mW) (W) (%) (%) (%)
16x16 5715 1.99 31.6 4791 1.22 26.0 -16.1 -38.7 -17.8
32x32 17986 3.70 92.1 16215 2.20 81.4 -9.80 -40.6 -11.6

Table 4: ASIC 45 nm, clock frequency 1 GHz

INRIA




REFERENCES 13

References

[1] Kees Van Berkel. Handshake Circuits: An Asynchronous Architecture for Visi Pro-
gramming. Cambridge University Press, 1994.

[2] Ivan Blunno, Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Kelvin Lwin, and
Christos Sotiriou. Handshake protocols for de-synchronization. In in International
Symposium on Advanced Research in Asynchronous Circuits and Systems. 2004, pages
149-158. IEEE Computer Society Press, 2004.

[3] Pierre Bomel, Eric Martin, and Emmanuel Boutillon. Synchronization processor syn-
thesis for latency insensitive systems. In Proceedings of the conference on Design,
Automation and Test in Furope (DATE’05), pages 896-897, Washington, DC, USA,
2005. IEEE Computer Society.

[4] Julien Boucaron, Robert de Simone, and Jean-Vivien Millo. Latency-insensitive design
and central repetitive scheduling. In MEMOCODE, pages 175-183, 2006.

[5] Julien Boucaron, Robert de Simone, and Jean-Vivien Millo. Formal methods for
scheduling of latency-insensitive designs. EURASIP Journal on Embedded Systems,
2007(1), 2007.

[6] Julien Boucaron, Jean-Vivien Millo, and Robert de Simone. Another glance at relay
stations in latency-insensitive design. In FElectronic Notes in Theoretical Computer
Science ENTCS 1/6-2, pages 41-59, January 2006.

[7] Luca P. Carloni. The role of back-pressure in implementing latency-insensitive systems.
In FElectronic Notes in Theoretical Computer Science ENTCS 146-2, January 2006.

[8] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. The-
ory of Latency-Insensitive Design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2001.

[9] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Coping with latency in soc
design. IEEE Micro, 22(5):24-35, 2002.

[10] Mario R. Casu and Luca Macchiarulo. A Detailed Implementation of Latency Insensitive
Protocols. In FMGALS 2008 Proceedings, 2003.

[11] Mario R. Casu and Luca Macchiarulo. A New Approach to Latency Insensitive Design.
In DAC’2004, 2004.

[12] Jordi Cortadella, Michael Kishinevsky, and Bill Grundmann. Synthesis of synchronous
elastic architectures. In DAC, pages 657662, 2006.

[13] Christer Svensson. Synchronous Latency Insensitive Design. In ASYNC’04, 2004.



14 Boucaron, Coadou & de Simone

Contents

I TInfroduciion 3

B~ Regular Implementation 4
BT Relay-Stafion] . . . . . . . . . . . o e 4
B2 " Shell-Wrappen . . . . . . . . . . . e e e 5

B~ Our Implementation 6
B.I Refry Relay-Station] . .. . . .. . . . . . . . . . . . . .. ... .. ...... 7
b2 busion Shell . . . . . . L L e e e e e e e 8
Lo COorrectness . . . . . . . L e e e e e e e e e e e e e e e e e 8

Ad_—_Resulid 9

b__Conclusions and discussion 11

INRIA



A

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-1és-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



	Introduction
	Regular Implementation
	Relay-Station
	Shell-Wrapper

	Our Implementation
	Retry Relay-Station
	Fusion Shell
	Correctness

	Results
	Conclusions and discussion

