
HAL Id: hal-00484906
https://hal.archives-ouvertes.fr/hal-00484906

Submitted on 19 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Confinement Criterion for Securely Executing Mobile
Code

Hervé Grall

To cite this version:
Hervé Grall. A Confinement Criterion for Securely Executing Mobile Code. Journal of Automata
Languages and Combinatorics, Otto-von-Guericke-Universität Magdeburg, 2006, 1 (11), pp.59-106.
�hal-00484906�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50085122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00484906
https://hal.archives-ouvertes.fr

Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

A CONFINEMENT CRITERION FOR SECURELY

EXECUTING MOBILE CODE

Hervé Grall
1

OBASCO (LINA), École des mines de Nantes
La Chantrerie, 4, rue Alfred Kastler, B.P. 20722, 44307 Nantes Cedex 3, France

e-mail: hgrall@emn.fr

ABSTRACT

Mobile programs, like applets, are not only ubiquitous but also potentially malicious.
We study the case where mobile programs are executed by a host system in a secured
environment, in order to control the accesses from mobile programs to local resources.
The article deals with the following question: how can we ensure that the local envi-
ronment is secure? We answer by giving a confinement criterion: if the type of the
local environment satisfies it, then no mobile program can directly access a local re-
source. The criterion, which is type-based and hence decidable, is valid for a functional
language with references. By proving its validity, we solve a conjecture stated by Leroy
and Rouaix at POPL ’98. Moreover, we show that the criterion cannot be weakened by
giving counter-examples for all the environment types that do not satisfy the criterion,
and that it is pertinent by detailing the example of a specific security architecture. The
main contribution of the article is the proof method, based on a language annotation
that keeps track of code origin and that enables the study of the interaction frontier
between the local code and the mobile code. The generalization of the method is finally
discussed.

Keywords: typed programming languages, mobile code, language-based security, access
controls, confinement

1. Introduction

Mobile programs, like applets, are not only ubiquitous but also potentially malicious.
It is thus usual that a host system executes mobile programs in a secured local envi-
ronment. The environment acts as an interface for local resources and thus enables
the control of the interactions between mobile programs and local resources, and par-
ticularly the accesses from mobile programs to local resources. A typical example
is provided by the language Java, which was designed to support the construction
of applications that import and execute untrusted code from across a network, like
Internet. A Java applet, which is a mobile program, is executed in a secured envi-
ronment by a virtual machine, which can be embedded in a web browser, or in a

1This work was undertaken at CERMICS (ENPC – INRIA), école nationale des ponts et chaussées,
France.

2 H. Grall

smart card. Since the original security model, the “sandbox model”, which provided
a very restricted environment, the security architecture has evolved towards a greater
flexibility, providing a fine-grained access control [9, 10].
A security architecture provides some means, first, of defining a security policy, sec-
ond, of enforcing a given security policy. A security policy is simply a set of security
rules satisfied during executions. The confinement criterion that we present in the ar-
ticle provides a useful technique for enforcing a security policy based on access control
in the presence of mobile code, as the following introductory example explains.

Consider Program 1, which describes a class written in OCaml [25, 24], an imple-
mentation of an object-oriented extension of ML. Any instance of the class resource

(∗ c l a s s parameter i zed by o r i g i n ∗)
class resource (origin : string) =

object

(∗ method wi th one parameter ∗)
method access (subject : string) =

(∗ p r i n t to the standard output a message
∗ ˆ i s s t r i n g concatenat ion ∗)

print_string (subject ˆ ” a c c e s s e s ”
ˆ origin ˆ ” r e sou r c e \n”)

end

Program 1: Class for resources

represents a resource. Like any resource, an instance has at least one access function,
the method access, which prints a message to the standard output. A local resource
is created as follows:

let res = new resource ” l o c a l ” ,

where the argument of the class resource gives the origin of the resource. If the mobile
program can directly call the method access of the local resource, then it can print
to the standard output the message

” h o s t i l e app le t a c c e s s e s l o c a l r e s ou r c e ”

by passing ”hostile applet” as argument, as follows:

res#access ” h o s t i l e app le t ” (∗ # i s method invoca t i on ∗) .

Suppose that the accesses to local resources need to be controlled. For instance,
suppose that the security policy requires that the adverb ”securely” is added to every
message printed to the standard output after a call to the method access of a local
resource. The adverb symbolically represents the security checks needed to control the
access to a local resource: a practical example would check the identity of the caller, its
rights to the resource, the value of the arguments or the result of the access function.
There are two main techniques to implement these checks in the local environment.

The first solution modifies the class resource by redefining the access function: the
method access encapsulated in any instance of the class resource is replaced with

A Confinement Criterion for Securely Executing Mobile Code 3

a secured one, which makes the security checks. The local environment can then
provide a direct reference to a local resource without any danger. If we represent the
environment by an OCaml module, we get Program 2. Whenever some code calls

module Env1 =
struct

(∗ secured c l a s s ∗)
class resource (origin : string) =

object

(∗ secured method ∗)
method access (subject : string) =

print_string (subject ˆ ” s e cu r e l y a c c e s s e s ”
ˆ origin ˆ ” r e sou r c e \n”)

end

(∗ d i r e c t acces s ∗)
let secured_res = new resource ” l o c a l ”

end

Program 2: First solution — Secured redefinition

the access function of the local resource with Env1.secured_res#access ”subject”, the
following message is printed:

”sub j e c t s e cu r e l y a c c e s s e s l o c a l r e s ou r c e ” .

This solution therefore satisfies the security requirement, but is an invasive technique.
On the contrary, the second solution does not modify the class resource, but checks

its uses. First, in the local environment, every access needs to be instrumented to
perform the security checks. Second, the environment can no longer provide a direct
access to a local resource, which is not protected. Instead, it provides as a service a
proxy, or surrogate, which replies to access requests by making the security checks and
calling the access function encapsulated in the local resource. In our example with the
class resource, a new class proxy is added to the local environment. It has a unique
method, request, which is instrumented by using the function check. The instance
controller of the class proxy is defined as the proxy of the local resource confined_res.
The second solution leads to the local environment described in Program 3. It also
satisfies the security requirement. Indeed, the unique call to the method access in
the local environment is instrumented. Moreover, the mobile program cannot directly
access the local resource confined_res. It can only access the resource via the proxy
controller, with the call Env2.controller#request ”hostile applet”, which prints the
following message:

” s e cu r e l y h o s t i l e app le t a c c e s s e s l o c a l r e s ou r c e ” .

Now, suppose that we add to the environment Env2 a definition danger, with type
t, as in Program 4. Does the instrumentation of danger’s definition suffice to satisfy
the security policy? Clearly, we can argue that the answer depends on the type t of
danger. Indeed, this type specifies the ability of the mobile program to directly access

4 H. Grall

module Env2 =
struct

(∗ unsecured c l a s s ∗)
class resource (origin : string) =

object

method access (subject : string) =
print_string (subject ˆ ” a c c e s s e s ”

ˆ origin ˆ ” r e sou r c e \n”)
end

(∗ in s t rumenta t ion func t i on ∗)
let check (res : resource) =

function (subject : string) −>
print_string ” s e cu r e l y ” ; res#access subject

(∗ secured proxy d e f i n i t i o n ∗)
class proxy (res : resource) =

object

(∗ ins trumented method ∗)
method request (subject : string) =

(∗ in s t rumenta t ion o f re s#acces s s u b j e c t ∗)
check res subject

end

(∗ i n d i r e c t acces s v ia a proxy ∗)
let controller =

let confined_res = new resource ” l o c a l ” in

new proxy confined_res

end

Program 3: Second solution — Secured instrumentation and proxy

(∗ environment Env2 extended ∗)
module Env3 =

struct

. . .
let danger = . . .

end

Program 4: Problematic environment

a local resource. For example, if t is equal to resource, then the instrumentation
cannot suffice, since the local resource returned by danger is directly accessible from
mobile code. On the contrary, if resource does not occur in t, then the instrumenta-
tion seems to suffice. Likewise, if the type t is the type resource −> s of the functions
from resource to s, where resource does not occur in s. However if the type t is the
functional type resource ref −> s, the environment may be unsecure for some defini-
tion of danger, in spite of its instrumentation. For instance, suppose that the function

A Confinement Criterion for Securely Executing Mobile Code 5

danger and the mobile program are defined as in Program 5. The mobile program

(∗ unsecure environment ∗)
module Env3 =

struct

. . .
let danger = function (channel : resource ref) −>

let accessible_res = new resource ” l o c a l ” in

channel := accessible_res

end

let mobile_program =
let access_channel = ref (new Env3 . resource ”mobile ”) in

Env3 . danger access_channel ;
! access_channel#access ” h o s t i l e app le t ”

Program 5: Confinement problem

directly accesses accessible_res by using as a communication channel the reference
passed as argument to danger, and succeeds in printing the following message:

” h o s t i l e app le t a c c e s s e s l o c a l r e s ou r c e ” ,

which breaks the security policy. This is an instructive case where the local resource
is not confined in the local environment.

The preceding example makes our quest precise: we are looking for a confinement
criterion that ensures that if the local environment satisfies it, then no mobile program
can directly access a local sensitive resource. It also shows that a confinement criterion
is just an element of a security architecture. Hence, we begin with a review of current
security architectures for controlling accesses, without considering the mobile code
issue.

Language-based Security Architectures for Access Control We restrict our-
selves to the approach called language-based security, which is particularly relevant
to computer-security questions, as Harper et al. have argued [12]. In this approach,
a security architecture generally adds new features to the programming language,
enabling the definition of a security policy. It also provides the technical means of en-
forcing a given security policy: the means are implemented either at a syntactic level
by a program transformation, for instance a code instrumentation that directly inserts
checks in programs, or at the semantic level by a static analysis or an instrumentation
of the (operational) semantics.

How are accesses represented in this approach? An access involves a subject ac-
cessing, a resource accessed and an access function.
An identification mechanism usually assigns each piece of code to a subject. A static
point of view only considers the current subject, the caller of the access function,
as in the SLam-calculus (acronym for “Secure Lambda-calculus”) [13] or in the POP
system (acronym for “Programming with Object Protection”) [29]. A dynamic point

6 H. Grall

of view considers not only the current subject, but also its callers, which are obtained
by inspecting the call stack: see the original work of Wallach [34], the official im-
plementation for Java [9, 10], Schneider and Erlingsson’s alternative [7], Pottier et
al.’s analysis [22], which replaces dynamic checks with static ones, implemented by a
type system, and the semantic theory of stack inspection developed by Fournet and
Gordon [8].
A resource usually corresponds to the source of an input or the target of an output.
More generally, we consider that a resource is represented by a value of the program-
ming language, whereas an access function is represented by any operation applicable
to a resource. Thus, an access is just the call to an access function. In a language
with references to structured data, like objects, any reference can therefore represent
a resource. The operations applicable to a reference are typically content update,
content selection, or method invocation. In a language with functions, any function
can represent a resource. The unique operation applicable to a function is application.

Once accesses are defined, a security architecture for controlling accesses can be
built. It provides the means of specifying a security policy, a set of rules that all ac-
cesses must obey during executions. The simplest form of a policy is an access control
matrix, which assigns to each subject and each resource a set of authorized access
functions. Since Schneider’s work [28], a more sophisticated form has become usual
to specify a security policy for controlling accesses: a security automaton describes
how to reply to all accesses during a program execution. A security architecture also
provides some means of enforcing a given security policy. For example, for a policy
specified by a security automaton, different solutions have been designed, in order
to make the security automaton monitor the execution. A straightforward solution
is to execute the automaton in parallel with the program: when an access is to be
executed, the program notifies the automaton, which then makes the corresponding
transition and replies to the program according to the result of the transition. Other
solutions aim at reducing the overhead of a parallel execution. They all resort to
program transformations and static analyses: see Colcombet and Fradet’s solution
[6], Walker’s [33] and Thiemann’s [30].

Mobile Code Issue We now come to our specific question: how can we enforce
access control in the presence of mobile code?
We assume that the means provided by the security architecture can be applied to the
local environment: after a security policy has been defined to protect local resources,
the local code can be fully secured by using one of the preceding techniques, since it is
available on the host system. As for mobile programs, two limit cases can be drawn.

The first one corresponds to limiting mobility effects by securing not only the local
environment, but also mobile programs. Since the mobile code is not available on the
host system, program certification is needed. Before being sent, a mobile program
is checked in order to certify it according to the security policy of the host system.
Modularity is required to proceed as follows: first, the local environment is checked
to determine its secure calling contexts, second, the mobile program is certified by
checking that the calls to the local environment are secure. Thus, Jensen et al. [3]
add modularity to an analysis for whole programs [4]. When the host system receives

A Confinement Criterion for Securely Executing Mobile Code 7

a certified mobile program, it just verifies the correctness of the certification. This
verification may be an authentication process, but it may also be the proof that the
execution of the mobile program in the local environment will satisfy the security
policy. Thus, Lee and Necula [19] propose to use “proof-carrying code”, that is to say
to add proof hints to the mobile program, in order to facilitate the proof task.

It remains that, with program certification, the mobile program can no longer be
regarded as hostile. On the contrary, for the second limit case, no assumption is made
about mobile programs, since only the local environment plays a defensive role. From
the introductory example, we can distinguish two defensive techniques.
The first one is based on encapsulation. Access functions are replaced with secured
ones, and since they are encapsulated in local resources, each time an access function
is called, a secured one is actually called. The technique corresponds to our first so-
lution (see Program 2), where the method access of the class Env1.resource has been
secured. The same solution is used in the current implementation of access control
in the standard application programming interface of the language Java. The second
technique is based on confinement : access control is checked in the local environment
and resources are confined in the local environment, so that there will be no direct
accesses from outside the local environment. The technique corresponds to our second
solution (see Program 3), where in the method request of the class Env2.proxy, the
call to the method access has been instrumented, and the local resource confined_res

is only accessible from its proxy controller.
The confinement technique has to be chosen when the secured access function cannot
be encapsulated in the resource, for instance, when the code of the resource is not
available. Performance requirements may also justify this solution: indeed, the first
technique based on encapsulation implies that each call to an access function entails a
security check, whereas the second technique based on confinement requires security
checks only when they are needed. The encapsulation technique may be chosen for
expressivity reasons: indeed, the access function can be fully redefined, as for the
method access in Env1.resource, whereas with the confinement technique, only the
arguments and the result of the access function can be checked, as for the instrumen-
tation with the function Env2.check in the class Env2.proxy.
A practical example for the confinement technique is given by Bokowski and Vitek
[31], who advocate this solution for Java. They propose to confine types, that is to say
to confine all the values of sensitive types. Palsberg et al. [20] give a formalization of
their proposal for a Java-like language, leading to a type-based confinement criterion.
We also give a type-based confinement criterion: it is more precise than theirs, to
some extent, since it is only valid for a simpler language, a functional language with
references. Our work actually extends Leroy and Rouaix’s results [16], where code
instrumentation is used in conjunction with confinement or type abstraction to con-
trol accesses. They have proved the validity of a confinement criterion that justifies
our first assertion in the example of danger’s definition (see Program 4): if the type
resource does not occur in the type of danger, then any local resource is confined in
danger. We will prove what they have conjectured: it suffices that the type resource

does not occur in danger’s type either at a positive occurrence, or under the reference
type constructor ref. We will also prove that this criterion cannot be weakened: if the

8 H. Grall

type resource occurs in danger’s type at a dangerous place, then there effectively exist
a definition for danger and a mobile program such that the mobile program directly
accesses a local resource in danger. In Program 5, we have given an example of this
general result for the type resource ref −> unit, where resource occurs under the
type constructor ref.
All these confinement criteria turn out to assume that the programming language is
typed and that its type system is sound: “well-typed programs do not go wrong”.
Otherwise, it would be impossible to give a confinement criterion, since a violation
of type soundness by the mobile program could lead to an uncontrolled access (for
example, by converting a string to a resource reference).

To conclude this introduction, we must mention a limitation of our work. The
confinement criterion is valid for a high-level language, and ensures the following
property: for each local environment satisfying the confinement criterion, for every
mobile program executing in the local environment, the mobile code cannot directly
access a local sensitive resource. The local environment and the mobile program are
expressed in the high-level language. Actually, their implementations use a low-level
language, like the “bytecode” language for Java. According to Abadi [1], compilation
is not a fully abstract translation, which means that contextual properties (using the
universal quantification“for every mobile program”) are not preserved by compilation,
since low-level languages are richer than high-level ones. This is a good reason for
studying low-level languages instead of high-level ones in a future work. Note that
a trend is now emerging, which advocates the use of structured low-level languages,
suitable for verification: see for example the “typed assembly language” [18] or the
translation of Java “bytecode” in a typed term calculus [14]. Otherwise, the preser-
vation by compilation of contextual properties can be obtained by certifying mobile
programs in order to execute them only if they result from a compilation.

Overview of the Paper In Section 2, called “Keeping Track of Code Origin by
Language Annotation”, we define the programming language with which we work and
the general technique that we use. The language corresponds to a simply typed λ-
calculus enriched with references in the style of ML. In order to keep track of code
origin during executions, we annotate the language, as described by Klop et al. [5,
sect. 4]. We formally define the annotated language and give its static and dynamic
semantics as well as some useful semantic properties.

Section 3, called “Frontier under Control: The Confinement Criterion”, is an ap-
plication to confinement of this annotation technique. The technique allows the con-
finement property to be formally defined and the validity of the confinement criterion
to be proved, which solves the conjecture stated by Leroy and Rouaix [16, sect. 5.1,
p. 162]. In Section 4, we also prove that this criterion cannot be weakened. In other
words, if the type of the local environment does not satisfy the confinement criterion,
we can effectively define a local environment and a mobile program such that the
mobile program can directly access a local resource by calling the local environment.

Section 5, called “Confinement Criterion in Action: Example of Access Qualifiers”,
considers the relationship of the criterion with a standard security architecture. It
details the example of the SLam-calculus [13], which provides a paradigmatic model

A Confinement Criterion for Securely Executing Mobile Code 9

for a language with access qualifiers and with a type-based analysis for controlling
accesses.

To conclude, after a brief comparison with Vitek et al.’s results [31, 20] and Leroy
and Rouaix’s [16], we will outline some directions for future work. It is particularly
interesting to consider some extensions of the programming language that we use,
like data abstraction or parametric polymorphism. Other interesting directions are to
generalize the method to security architectures dealing with access control, and the
mobile code issue to other security properties, like confidentiality, which is related to
information flows.

2. Keeping Track of Code Origin by Language Annotation

We work with a functional language extended in order to manipulate objects in the
memory heap: it corresponds to the Church version of a simply typed λ-calculus
enriched with references in the style of ML (see Table 1). Although it is a very

A ::= Unit (singleton type)

| A → A (functional type)

| Ref(A) (reference type)

a ::= x (variable)

| λx : A. a (abstraction)

| a1 a2 (application of a1 to a2)

| unit (unit)

| lRef(A) (store location l with content of type A)

| ref(a) (reference creation)

| get(a) (dereferencing)

| set(a1, a2) (assignment of a2 to a1)

Table 1: Syntax of the programming language

simple language, it is sufficient to model complex interactions between the mobile
program and the local environment, resulting from the so-called side effects. It is
also expressive enough, since for each functional type, a fixpoint combinator can be
easily encoded (by using references). In order to keep track of code origin during
executions, we resort to an annotation of the language: each operator occurring in
a program becomes labeled and its label is preserved during the execution. A label
is an ordered pair, whose first component is a type, called the type label, and whose
second component is a piece of information, called the information label. The syntax
of the annotated language is given in Table 2. In the following, f and g stand for
operators in {λx, app, unit, l, ref, get, set}: an annotated term e either is a variable,
or has the form fm(e1, . . . , ei), where e1, . . . , ei are the immediate annotated subterms

10 H. Grall

m ::= (A, ι) (type and information)

e ::= x (variable)

| λxm e (labeled abstraction)

| app
m (e1, e2) (labeled application of e1 to e2)

| unit
m (labeled unit)

| lm (labeled store location l)

| ref
m(e) (labeled reference creation)

| get
m(e) (labeled dereferencing)

| set
m(e1, e2) (labeled assignment of e2 to e1)

Table 2: Syntax of the annotated language

(0 ≤ i ≤ 2). If e is equal to fm(. . .) for some label m and some operator f, then we
sometimes write em for e in order to stress f’s label, which is called the label of e;
we also say that e is labeled with m2. Given an annotated term e, the set of free
variables in e is denoted by FV(e), and the set of labeled locations in e is denoted by
Ref(e). A closed term is a term without free variables, whereas a program is a closed
term without store locations.
Note the choice that we make to build terms: variables are not labeled. We also
consider a specific formation rule for terms: store locations are uniformly labeled,
which means that given a location l, if lm and ln occur in a term, then m = n. In
the following, although we only use terms satisfying this formation rule, we omit to
verify its preservation (by reduction, etc.), which is always obvious.

The static and dynamic semantics of the annotated language closely follow the
standard definitions for the programming language, which are not recalled because
they can be easily deduced from the annotated version. The type system, which is
given in Table 3, distinguishes functions and references. A typing judgment has the
form Γ ⊢ e : A, which means that in the typing environment Γ, the annotated term
e has type A.
Note the following points:

• since store locations are labeled with their type, typing environments only deal
with variables, which are not labeled;

• in a given typing environment, a well-typed term receives a unique type;

• for each valid judgment Γ ⊢ e : A, where e is not a variable, the type A is the
type label of e;

• information labels do not matter in typing rules.

2Note the difference: below, we say that e is entirely annotated by ι when every operator of e

has ι as information label.

A Confinement Criterion for Securely Executing Mobile Code 11

∅

Γ ⊢ x : Γ(x)
(x ∈ dom Γ)

Γ.(x : A) ⊢ e : B

Γ ⊢ λx(A→B,ι) e : A → B

Γ ⊢ e1 : A → B Γ ⊢ e2 : A

Γ ⊢ app
(B,ι) (e1, e2) : B

∅

Γ ⊢ unit
(Unit,ι) : Unit

∅

Γ ⊢ l(Ref(A),ι) : Ref(A)

Γ ⊢ e : A

Γ ⊢ ref
(Ref(A),ι)(e) : Ref(A)

Γ ⊢ e : Ref(A)

Γ ⊢ get
(A,ι)(e) : A

Γ ⊢ e1 : Ref(A) Γ ⊢ e2 : A

Γ ⊢ set
(Unit,ι)(e1, e2) : Unit

Table 3: Type system

The operational semantics is defined as a reduction relation, and is presented by
using the standard decomposition of every closed term either into a value, or into a
redex in an evaluation context (in Felleisen’s style [35]). Since the language contains
references, with side effects, we use the standard weak call-by-value reduction strategy :
the leftmost call-by-value redex that does not appear within a λ-abstraction reduces.
Substitutions are defined as usual: if e and e′ are terms and x a variable, then e′[e/x]
stands for the result of replacing in e′ the free occurrences of x with e, without variable
capture.
A value is either a closed λ-abstraction, the unit value, or a store location:

v ::= λxm e | unitm | lm ,

where FV(λxm e) = ∅.
A redex is either a β-redex, a reference creation, a dereferencing or an assignment:

r ::= appn (λxm e, v) | refm(v) | getm(ln) | setm(ln, v) ,

where FV(λxm e) = ∅.
An evaluation context is built around the hole − as follows:

E ::= −

| appm (E, e) | appm (λxn b, E)

| refm(E) | getm(E) | setm(E, e) | setm(ln, E) ,

where FV(λxn b) = ∅ and FV(e) = ∅.
Every well-typed closed term is equal to either a value, or a redex in an evaluation
context, and this decomposition is unique.
A memory store s is a partial function from the set of labeled locations to the set of
values such that:

12 H. Grall

(i) the locations in dom s are uniformly labeled, in other words, if lm and ln belong
to dom s, then m = n,

(ii) the set {l | ∃m . lm ∈ dom s} is a segment of the set of store locations, which
is supposed to be isomorphic to the set of natural numbers, and thus to be
well-ordered.

The first condition is coherent with the formation rule for terms. With the second
condition, we can define a function for creating references: given a label m, the
function νm maps a store s to lm, where the store location l is the successor of the
greatest location in the set {k | ∃m . km ∈ dom s}. We also need to define a function
for updating or extending a store. Suppose that s is a memory store and lm a labeled
location such that lm is either already created, that is in the domain of s, or new,
that is equal to νm(s). Given a value v, the store (s, lm 7→ v) updates or extends s
by mapping lm to v, and is formally defined as follows:

(s, lm 7→ v)(kn)
def
=

{

s(kn) if kn 6= lm ,

v otherwise.

A configuration is an ordered pair (s, e), where s is a memory store and e a closed
term, called the control term, such that

(i) Ref(e) ⊆ dom s ,

(ii) ∀ lm ∈ dom s . Ref(s(lm)) ⊆ dom s .

The two conditions mean that every labeled location occurring in e or in a value
belonging to the range of s has a well-defined content.
The reduction relation is defined by an inference system, in Table 4. A judgment
has the form (s, e) → (s′, e′), which means that the configuration (s, e) reduces to
(s′, e′). We observe that the reduction rules preserve the label of each operator along
reductions.
The following propositions give the two main properties of the reduction relation. A
store s is said to be well-typed if, for any labeled location lm in the domain of s,
lm is well-typed, which is equivalent to m = (Ref(A), ι) for some type A and some
information label ι, and the value s(lm) has type A. A configuration (s, e) is said to
be well-typed if s and e are.

Proposition 1 (Subject reduction)
Let (s, e) be a well-typed configuration. If (s, e) reduces to (s′, e′), then (s′, e′) is a
well-typed configuration and e′ has the same type as e.

Proposition 2 (Totality and determinism)
Let (s, e) be a well-typed configuration. If e is a value, then (s, e) does not reduce.
Otherwise, (s, e) reduces to a unique configuration.

We can now define the execution trace of each well-typed program e: it is the maxi-
mal sequence consisting of the configurations obtained by reduction from the initial

A Confinement Criterion for Securely Executing Mobile Code 13

∅
[β]

`

s, appm (λxn e, v)
´

→
`

s, e[v/x]
´

∅
[REF]

`

s, refm(v)
´

→
`

(s, lm 7→ v), lm
´

(lm = νm(s))

∅
[REF−!]

`

s, getm(ln)
´

→
`

s, s(ln)
´

∅
[REF−?]

`

s, setm(ln, v)
´

→
`

(s, ln 7→ v), unitm´

`

s, r
´

→
`

s′, r′
´

[RED]
`

s, E[r]
´

→
`

s′, E[r′]
´

r redex

E evaluation context 6= −

!

Table 4: Operational semantics — Reduction relation

configuration (∅, e), where ∅ is the store with an empty domain. Note that each con-
figuration in the trace is well-typed, by Subject Reduction. A well-typed program
either evaluates to a configuration whose control term is a value, or diverges.

Now, we study the relationship between the annotated language and the standard
one. Table 5 inductively defines a stripping function, written ↓, which erases labels
in an annotated term. The following propositions give useful properties of the strip

↓ (x) = x

↓ (λx(A→B,ι) e) = λx : A. ↓ (e)

↓ (l(Ref(A),ι)) = lRef(A)

↓
`

fm(ej)j

´

= f
`

↓ (ej)
´

j

Table 5: Strip function

function.

Proposition 3 (Strip function — Typing preservation)
If the annotated term e has type A in the typing environment Γ, then the standard
term ↓ (e) has also type A in Γ. Conversely, if the standard term a has type A in Γ,
then there exists an annotated term e of type A in Γ such that ↓ (e) = a.

Thanks to the second part of the proposition and to the fact that information labels do
not matter for typing, we can define from an information label ι and a standard term
a of type A an annotated term denoted by 〈a〉ι, such that 〈a〉ι has type A, ↓ (〈a〉ι) = a

14 H. Grall

and 〈a〉ι is entirely annotated by ι, which means that every operator of 〈a〉ι has ι as
information label. The strip function ↓ naturally extends to configurations and to
execution traces. The extension satisfies the following property.

Proposition 4 (Strip function — Trace simulation)
Consider the set of the execution traces of the well-typed annotated programs. Its
image by the strip function ↓ is exactly the set of the execution traces of the well-
typed standard programs.

In other words, the execution trace of an annotated program simulates the execution
of the standard program that is associated, while keeping track of code origin with
labels.

3. Frontier under Control: The Confinement Criterion

In this section, we give the confinement criterion and prove its validity by applying the
annotation technique. Since we want code to carry information about its origin, we
use the pair {mo, lo} as information labels: an operator labeled with mo comes from
the mobile program, whereas one labeled with lo comes from the local environment.
The labels mo and lo are called origin labels. In the following, if ι belongs to {mo, lo},
then ι denotes the other origin label in order to obtain {mo, lo} = {ι, ι}.

We begin by modeling the execution of a mobile program in the local environment.
The local environment is simply a well-typed program L of type T, whereas the mobile
program is modeled as a well-typed functional abstraction λx : T.M[x] of type T → R,
which is applied to the local environment. The local environment and the mobile
program are then annotated according to their origin, local or not, in order to study
confinement by executing the annotated program. More precisely, first, the local
environment L is entirely annotated with lo, whereas the mobile program is entirely
annotated with mo. Second, we study the execution of the well-typed annotated
program

app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) ,

which is represented by the tree in Figure 1.

app(R,mo)

mmmmmmm
JJJJJ

〈λx : T. M[x]〉mo 〈L〉lo

Figure 1: Modeling the mobile program calling the local environment

Recall from the introduction that an access is represented by a redex, either a β-redex,
a dereferencing operation or an assignment operation. A rigorous formalization of
confinement requires frontier redexes to be defined.

A Confinement Criterion for Securely Executing Mobile Code 15

Definition 5 (Frontier redex) A frontier redex is a redex such that there exists ι
in {mo, lo} such that

(i) the resource accessed has ι as origin label,

(ii) the access operator, app, get or set, has ι as origin label.

Formally, all the frontier redexes are described in Table 6, where the definitions are
parameterized by an origin label ι belonging to {mo, lo}.

Frontier Redex Resource accessed

app(B,ι) (λx(A→B,ι) e, v) λx(A→B,ι) e

get (A,ι)(l(Ref(A),ι)) l(Ref(A),ι)

set (Unit,ι)(l(Ref(A),ι), v) l(Ref(A),ι)

Table 6: Frontier redexes

A frontier redex therefore corresponds to a special access: the call comes from a certain
origin whereas the resource accessed comes from the other origin. Since a resource
type is confined in the local environment if no resource of this type coming from the
local environment can be accessed by mobile code, confinement actually means that
some frontier redexes must not reduce.

Definition 6 (Confinement)
The resource type A is confined in the local environment L of type T if, for every
mobile program λx : T.M[x] of type T → R, no frontier redex accesses a resource of
the type A and of the origin label lo during the execution of the annotated program

app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) .

We now come to the core of the section. The most accurate confinement criterion
would answer the following question: given a local environment and a resource type
A, determine whether the type A is confined in the local environment. Of course,
a question like this is undecidable. In order to obtain decidability we resort to an
approximation by considering the type of the local environment and not its value.
The approximate confinement criterion that we will give exactly answers the following
question: given a type T for the local environment and a resource type A, determine
whether for every local environment L of type T, the type A is confined in L. Its proof
is based on an accurate analysis of what happens at the frontier between the mobile
code and the local code during an execution.
Indeed, to ensure the confinement of a resource type, it suffices that it does not occur
at the frontier between the mobile code and the local code in a configuration of the
execution trace. Initially, there is only one type at the frontier, the type T of the
local environment. Then, during the execution, the frontier becomes more complex,
as is exemplified in Figure 2, where we omit to represent types and the empty store

16 H. Grall

to simplify. In this example, the mobile program is equal to λg h (g v), where h is
a λ-abstraction, g a functional variable and v a value, and the local environment is
equal to the η-expansion of some program f , λx f x; the frontier is stressed with a
double line. We can actually distinguish two kinds of edges at the frontier, according

appmo

uuuuu
DD

DD
D

DD
DD

D
−→ appmo

{{
{{

{
DD

DD
D

−→ appmo

��
�� ;;

;;

;;
;;

〈λg h (g v)〉mo 〈λx f x〉lo 〈h〉mo appmo

{{
{{

{
{{

{{
{

;;
;;

〈h〉mo
applo

��
�� 99

99

99
99

〈λx f x〉lo 〈v〉mo 〈f〉lo 〈v〉mo

Figure 2: Mobile code execution and frontier — Example

to the origin label of the lower node. If the lower node is labeled with (A, lo), we
say that A occurs at the outgoing frontier (with respect to the local environment),
since a resource labeled with (A, lo) goes out from the local environment when an
access function coming from the mobile program is applied to it. Dually, if the lower
node is labeled with (A,mo), we say that A occurs at the incoming frontier, since a
resource labeled with (A,mo) comes in the local environment when an access function
coming from the local environment is applied to it. If we determine from the type T

an upper bound of the set of the types occurring at the outgoing frontier during any
execution, then we can easily obtain a confinement criterion. If a resource type A
does not belong to the upper bound, then A does not belong to the outgoing frontier
during any execution, hence no frontier redex accessing a local resource of type A
reduces. In other words, the type A is confined in every local environment of type T.

In the following, we formalize the preceding argument leading to a confinement
criterion.

After the definition of frontier redexes, which are redexes occurring at the frontier,
we now define frontiers. Besides the formal definition, we give an intuitive represen-
tation of frontiers, which helps with the reasoning.
As the example in Figure 2 shows, a tree representation is useful in order to make
the frontier visible. Whereas we consider that a term is naturally equivalent to a
tree, how can we represent a configuration? Suppose that (s, e) is a configuration,
with dom s = {l1, . . . , ln} (labels are omitted to simplify). Then the configuration is
represented by the forest described in Figure 3: each store location is thus followed
by its content (as a tree).

(s, e)
def
=

0

B

B

@

l1 . . . ln e

s(l1) s(ln)

1

C

C

A

Figure 3: Configuration as a forest

A Confinement Criterion for Securely Executing Mobile Code 17

Now, given an origin label ι, the type A belongs to the ι-frontier of the configuration
(s, e) if there exists in the forest representation of (s, e) an edge of the form described
in Figure 4.

f(∗,ι)

g(A,ι)

Figure 4: A at the ι-frontier

This intuitive definition leads to the following formal definition.

Definition 7 (Frontier)
Let ι be any origin label. Consider a configuration (s, e).
The ι-frontiers of the memory store s, denoted by Fι(s), and of the control term
e, denoted by Fι(e), are inductively generated by the inference system described in
Table 7. The ι-frontier of the configuration (s, e), denoted by Fι(s, e), is equal to the
union Fι(s) ∪ Fι(e) of the ι-frontiers of s and e.
The lo-frontier and the mo-frontier are respectively called the outgoing frontier and
the incoming frontier.

∅

A ∈ Fι(s)
(∃ l, v . s(l(Ref(A),ι)) = v(A,ι))

A ∈ Fι(s(l
m))

A ∈ Fι(s)
(lm ∈ dom s)

∅

A ∈ Fι(e)
(∃ f, B, ek . e = f(B,ι)(. . . , e

(A,ι)
k , . . .))

A ∈ Fι(ek)

A ∈ Fι(e)
(∃ f, m, ek . e = fm(. . . , ek, . . .))

Table 7: Frontier — Inductive definition

We now deal with frontier boundedness. Actually, although the preceding argument
leading to the confinement criterion does not refer to the incoming frontier, frontier
boundedness needs to apply to both frontiers, since during an execution, types at the
outgoing frontier may generate types at the incoming frontier, and conversely, as the
example in Figure 2 shows. Consider the type T for the local environment. We are
going to determine from T two sets of types, Alo(T) and Amo(T), which will be upper
bounds of the outgoing and incoming frontiers resulting from executing mobile code:

18 H. Grall

more precisely, given any local environment L of type T and any mobile program
λx : T.M[x] of type T → R, for every configuration (s, e) in the execution trace of

app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) ,

the outgoing frontier of (s, e) will be included in Alo(T) and the incoming frontier of
(s, e) will be included in Amo(T).
We begin by giving some stability properties for these upper bounds. First, note that
T, initially at the lo-frontier, must belong to Alo(T). Second, the following examples
describe the cases that generate the most frontiers. Let ι be an origin label.
Suppose that A → B belongs to Aι(T). Consider a well-typed configuration

(

∅, 〈E〉ι[app(B,ι) (〈λx : A. b〉ι, 〈v〉ι)]
)

,

where 〈E〉ι is an evaluation context entirely annotated by ι, 〈λx : A. b〉ι an abstraction
of type A → B and entirely annotated by ι, and 〈v〉ι a value of type A and entirely
annotated by ι. The configuration contains A → B at the ι-frontier and reduces to

(

∅, 〈E〉ι
[

〈b〉ι[〈v〉ι/x]
])

,

which contains A at the ι-frontier if b has a free occurrence of x without being equal
to x, and contains B at the ι-frontier if E is different from the hole − and b from
x: see Figure 5, where the empty store is omitted and where for any variable x, an
edge labeled with [/x] represents the substitution of the lower term for x in the upper
term. The inference rules [− →] and [→ +] in Table 8 (p. 19) are therefore valid.

〈E〉ι

[/−]

−→ 〈E〉ι

[/−]

app(B,ι)

mmmmmmmm

mmmmmmmm
LL

LL
LL

〈b〉ι (B,ι)

[/x]

〈λx : A. b〉ι (A→B,ι)
〈v〉ι

(A,ι)
〈v〉ι

(A,ι)

Figure 5: Frontier and β-reduction

Suppose that Ref(A) belongs to Aι(T). Let l(Ref(A),ι) be a location of type Ref(A)
and of origin ι.
Consider a well-typed configuration

(

s, 〈E〉ι[get (A,ι)(l(Ref(A),ι))]
)

,

where 〈E〉ι is an evaluation context entirely annotated by ι and s is a memory store
such that s(l(Ref(A),ι)) is equal to a value 〈v〉ι of type A and entirely annotated by ι.
The configuration contains Ref(A) at the ι-frontier and reduces to

(

s, 〈E〉ι[〈v〉ι]
)

,

which contains A at the ι-frontier if E is different from the hole −: see Figure 6.
Consider a well-typed configuration

(

s, 〈E〉ι[set (Unit,ι)(l(Ref(A),ι), 〈v〉ι)]
)

,

A Confinement Criterion for Securely Executing Mobile Code 19

`

. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

´

−→
`

. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

´

〈v〉ι (A,ι)
get(A,ι) 〈v〉ι (A,ι) 〈v〉ι (A,ι)

l(Ref(A),ι)

Figure 6: Frontier and dereferencing

where s is a memory store, 〈E〉ι an evaluation context entirely annotated by ι and
〈v〉ι a value of type A and entirely annotated by ι. The configuration contains Ref(A)
at the ι-frontier and reduces to

(

(s, l(Ref(A),ι) 7→ 〈v〉ι), 〈E〉ι[unit(Unit,ι)]
)

,

which contains A at the ι-frontier (〈v〉ι being under l(Ref(A),ι) in the updated store):
see Figure 7.

`

. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

´

−→
`

. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

´

. . . set(Unit,ι)

xx
xx

xx

xx
xx

xx
EE

EE
E 〈v〉ι

(A,ι)
unit(Unit,ι)

l(Ref(A),ι) 〈v〉ι
(A,ι)

Figure 7: Frontier and assignment

The inference rules [Ref(+)] and [Ref(−)] in Table 8 are therefore valid.

∅

T ∈ Alo(T)

A → B ∈ Aι(T)
[− →]

A ∈ Aι(T)

A → B ∈ Aι(T)
[→ +]

B ∈ Aι(T)

Ref(A) ∈ Aι(T)
[Ref(−)]

A ∈ Aι(T)

Ref(A) ∈ Aι(T)
[Ref(+)]

A ∈ Aι(T)

Table 8: Frontier upper bounds — Inductive definition

Natural candidates for the two upper bounds Alo(T) and Amo(T) are the sets induc-
tively generated by the inference system in Table 8, which easily gives:

20 H. Grall

(i) A belongs to Alo(T) if, and only if, A occurs in T at a positive occurrence or
under the type constructor Ref(−),

(ii) A belongs to Amo(T) if, and only if, A occurs in T at a negative occurrence or
under the type constructor Ref(−).

For example, the type A occurs at a positive occurrence in A, ∗ → A or (A → ∗) → ∗,
at a negative occurrence in A → ∗ or (∗ → A) → ∗, and under the type constructor
Ref(−) in Ref(∗ → A) → ∗ (each occurrence of ∗ standing for any type). The following
definition qualifies the types belonging to these natural candidates.

Definition 8 (Outgoing and incoming types)
Let T be a type. Let Alo(T) and Amo(T) be the sets inductively generated by the
inference system described in Table 8. We say that

(i) a type A is an outgoing type of T if A belongs to Alo(T),

(ii) a type A is an incoming type of T if A belongs to Amo(T).

The intuition behind this definition is right: a type that is not an outgoing type of T

is confined in T, as the following theorem precisely shows, thus solving the conjecture
stated by Leroy and Rouaix [16, sect. 5.1, p. 162].

Theorem 9 (Confinement criterion)
Let T be the type for the local environment, and A a resource type. If the type A is
not an outgoing type of T, then for every local environment L of type T, the type A is
confined in L.

The theorem is an immediate corollary of the following proposition, if we can prove
its premise asserting the boundedness of the outgoing frontier.

Proposition 10 (Frontier boundedness implies confinement)
Let T be the type for the local environment, and A a resource type. Suppose that,
for any local environment L of type T, for any mobile program λx : T.M[x] of type
T → R, for each configuration (s, e) in the execution trace of the annotated program
app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo), the outgoing frontier of (s, e) is included in the set
of the outgoing types of T:

Flo(s, e) ⊆ Alo(T) .

Then, if the type A is not an outgoing type of T, for every local environment L of type
T, the type A is confined in L.

Proof. Suppose that A is not an outgoing type of T. Let L be any local environment
of type T, and λx : T.M[x] any mobile program of type T → R. Suppose that some
frontier redex accesses a resource of the type A and of the origin label lo during
the execution of the annotated program app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo). Then, by
definition of a frontier redex, A occurs at the outgoing frontier of some configuration
(s, e) in the execution trace. Since by hypothesis Flo(s, e) ⊆ Alo(T), we deduce that
A is an outgoing type of T: this is a contradiction. A is therefore confined in L. ✷

A Confinement Criterion for Securely Executing Mobile Code 21

We now prove the premise in Proposition 10, which asserts the boundedness of the
outgoing frontier. Actually, we also prove the boundedness of the incoming frontier,
as said above.
We first show the preservation of frontier boundedness by reduction. Note that a
further hypothesis about origins is needed to obtain preservation: in any configuration,
for each occurrence of any bound variable, all operators between the occurrence and
its binder (including the binder) must have the same origin. The example described
in Figure 8 shows why this hypothesis is required. Initially, the incoming frontier,

app(B,mo)

vv
vv

vv
GG

GG
G

−→ app(B,lo)

vv
vv

v
FF

FF
F

FF
FF

F

λx(A→B,mo) 〈v〉mo (A,mo)
〈f〉lo

(A→B,lo)
〈v〉mo (A,mo)

app(B,lo)

ss
ss

ss

HH
HH

HH
H

〈f〉lo
(A→B,lo) x

Figure 8: Origin incoherence — Example

empty, and the outgoing frontier, equal to {B}, are respectively included in the set
of the incoming types of B and in the set of the outgoing types of B. Finally, the
outgoing frontier is empty and the incoming frontier is equal to {A}, which can be
any type and therefore may not be an incoming type of B: there is no preservation.
We begin by formally defining the property of origin coherence and then show its
preservation by reduction.

Definition 11 (Origin coherence)
An annotated term e is origin coherent if it belongs to the set inductively generated
by the inference system in Table 9.
A configuration (s, e) is origin coherent if

(i) the control term e is origin coherent,

(ii) for every labeled location lm belonging to the domain of s, the value s(lm) is
origin coherent.

This definition corresponds to the following intuitive characterization: in a term that
is origin coherent, all the operators between its root and an occurrence of any free
variable have the same origin, likewise all the operators between an occurrence of
a bound variable and its binder (including the binder) have the same origin. For
instance, given a closed term f , the term

λx(A→B,mo)
app(B,lo) (〈f〉lo, x)

is not origin coherent, whereas the terms

λx(A→B,lo)
app(B,lo) (〈f〉lo, x)

22 H. Grall

∅

x
(x variable)

e1 . . . ej

f
(A,ι)(e1, . . . , ej)

0

B

@

∀ k ∈ {1, . . . , j} .

(ek = g(Ak,ιk)(. . .) ∧ FV(ek) 6= ∅)

⇒ ι = ιk

1

C

A

Table 9: Origin coherence — Inductive definition

and

λx(A→B,mo)
app(B,mo) (〈f〉lo, x)

are (see Figure 9, where the operators with a wrong origin label are boxed). We now

λx(A→B,mo)

app(B,lo)

ttttt

FF
FF

FF

〈f〉lo x

λx(A→B,lo) λx(A→B,mo)

app(B,lo)

uuuuu

EE
EE

EE
app(B,mo)

ttttt
ttttt

FF
FF

FF

〈f〉lo x 〈f〉lo x

origin incoherence origin coherence

Figure 9: Origin incoherence and coherence - Examples

show that origin coherence is preserved by reduction.

Lemma 12 (Origin coherence — Decomposition lemma)
Let E be an evaluation context and e a closed term. If E[e] is origin coherent, then
so are E and e.

Note that in order to determine whether an evaluation context is origin coherent, the
hole − is not considered as a free variable.

Lemma 13 (Origin coherence — Substitution lemma)
Let e and e′ be two terms that are origin coherent. If e is closed, then e′[e/x] is origin
coherent.

Note that if the free variable is not replaced with a closed term, the preservation may
fail, as the following example shows:

ref lo(x)[refmo(y)/x] = ref lo(refmo(y)) .

We can now prove the preservation by reduction.

A Confinement Criterion for Securely Executing Mobile Code 23

Proposition 14 (Origin coherence — Preservation by reduction)
Let (s, e) be a configuration reducing to (s′, e′). If (s, e) is origin coherent, then so is
(s′, e′).

Proof. By induction on the proof of (s, e) → (s′, e′), using Lemmas 12 and 13. ✷

We now give some lemmas useful to compute the frontier after a reduction. We need
some preliminary definitions. Given two origin labels ι and ι′, we define a function,
Lι′

ι , which maps each annotated term e to a set of types, as follows:

Lι′

ι (e)
def
=

{

{A} if e = f(A,ι)(. . .) and ι′ = ι ,

∅ otherwise.

This function locally computes the ι-frontier at the top of any term of the form
g(...,ι′)(. . . , e, . . .), as shown in Figure 10. An evaluation context is said to reduce under

g(...,ι)

e(A,ι)

g(...,ι)

e(A,ι)

Lι
ι(e) = {A},Lι

ι(e) = Lι
ι(e) = Lι

ι(e) = ∅ Lι
ι(e) = Lι

ι(e) = Lι
ι(e) = Lι

ι(e) = ∅

Figure 10: Local Frontier

the origin label ι if it contains as a subterm f(...,ι)(. . . ,−, . . .), for some operator f.
We sometimes write Eι for an evaluation context E reducing under ι. In the following
lemmas, we suppose that an origin label ι, either lo or mo, is given.

Lemma 15 (Frontier — Composition lemma)
Let E be an evaluation context reducing under ι′ and let e be a closed term. Then we
have:

Fι(E[e]) = Fι(E) ∪ Fι(e) ∪ Lι′

ι (e) .

Lemma 16 (Frontier — Substitution lemma)
Let e be a term, e′ a term with origin label ι′, and x a variable. If e′ is origin coherent
and x is free in e′, then we have:

Fι(e
′[e/x]) = Fι(e

′) ∪ Fι(e) ∪ Lι′

ι (e) .

Note that we assume the origin coherence of e′ in order to use on the right hand side
its origin label, ι′.

Lemma 17 (Frontier — Memory store update)
Let s be a memory store, v a value, n a label with ι′ as origin label and l a location
such that ln belongs to dom s ∪ {νn(s)}. Then we have:

Fι((s, l
n 7→ v)) ⊆ Fι(s) ∪ Fι(v) ∪ Lι′

ι (v) .

24 H. Grall

We now prove that frontier boundedness is preserved by reduction.

Proposition 18 (Frontier boundedness — Preservation by reduction)
Let T be a type. Consider a reduction (s, e) → (s′, e′) such that

(i) the configuration (s, e) is well-typed and origin coherent,

(ii) the outgoing frontier and the incoming frontier of (s, e) are respectively included
in the sets of the outgoing types and of the incoming types of T:

Flo(s, e) ⊆ Alo(T) ,

Fmo(s, e) ⊆ Amo(T) .

Then the outgoing frontier and the incoming frontier of (s′, e′) are respectively included
in the sets of the outgoing types and of the incoming types of T:

Flo(s
′, e′) ⊆ Alo(T) ,

Fmo(s
′, e′) ⊆ Amo(T) .

We proceed by induction on the proof of the reduction. In the following proofs, each
one corresponding to a reduction rule, we suppose that an origin label ι is given.

Proof — [β]. Suppose that the reduction (s, e) → (s′, e′) is
(

s, app(B,ι1) (λx(A→B,ι2) b, v)
)

→ (s, b[v/x]) .

In order to show Fι(s, b[v/x]) ⊆ Aι(T), we examine the different cases for b.
• b = x
We have b[v/x] = v; since Fι(s, v) ⊆ Fι(s, e) ⊆ Aι(T), we can conclude.
• b = f(B,ι3)(. . .)
If x /∈ FV(b), then b[v/x] = b; since Fι(s, b) ⊆ Fι(s, e) ⊆ Aι(T), we can conclude. We
now suppose x ∈ FV(b).

Since λx(A→B,ι2) b is origin coherent and x ∈ FV(b), we have ι2 = ι3.
Since b is origin coherent, from Lemma 16, we deduce

Fι(b[v/x]) = Fι(b) ∪ Fι(v) ∪ Lι3
ι (v) .

Since by hypothesis Fι(s)∪Fι(b)∪Fι(v) ⊆ Aι(T), it remains to prove Lι3
ι (v) ⊆ Aι(T).

Suppose Lι3
ι (v) 6= ∅: we then have that v is labeled with (A, ι), Lι3

ι (v) = {A} and
ι3 = ι. The reduction is represented in Figure 11, where the created frontier is
indicated with a double line.
If ι1 = ι, then A belongs to Fι(e), which is included in Aι(T) by hypothesis.
If ι1 = ι, then A → B belongs to Fι(e), which is included in Aι(T) by hypothesis. By
the inference rule [− →] (see Table 8, p. 19), we obtain that A belongs to Aι(T). ✷

Proof — [REF−?]. Suppose that the reduction (s, e) → (s′, e′) is
(

s, set (Unit,ι1)(l(Ref(A),ι2), v)
)

→
(

(s, l(Ref(A),ι2) 7→ v), unit(Unit,ι1)
)

.

By Lemma 17 and since Fι(unit
(Unit,ι1)) = ∅, we have

Fι(s
′, e′) ⊆ Fι(s) ∪ Fι(v) ∪ Lι2

ι (v) .

A Confinement Criterion for Securely Executing Mobile Code 25

(s app(B,ι1)

pppppp
JJJJJ

) −→ (s b(B,ι)

[/x]

)

λx(A→B,ι) v(A,ι) v(A,ι)

b(B,ι)

Figure 11: Proof — [β] — Interesting case

Since by hypothesis Fι(s) ∪ Fι(v) ⊆ Aι(T), it remains to prove Lι2
ι (v) ⊆ Aι(T).

Suppose Lι2
ι (v) 6= ∅: we then have that v is labeled with (A, ι), Lι2

ι (v) = {A} and
ι2 = ι. The reduction is represented in Figure 12, where the created frontier is indi-
cated with a double line.

(. . . l(Ref(A),ι) . . . set(Unit,ι1)

ttttt
FF

FF
F

) −→ (. . . l(Ref(A),ι) . . . unit(Unit,ι1))

. . . l(Ref(A),ι) v(A,ι) v(A,ι)

Figure 12: Proof — [REF−?] — Interesting case

If ι1 = ι, then A belongs to Fι(e), which is included in Aι(T) by hypothesis.
Otherwise, ι1 = ι and Ref(A) belongs to Fι(e), which is included in Aι(T) by hypoth-
esis; by the inference rule [Ref(−)] (see Table 8 , p. 19), we obtain that A belongs to
Aι(T). ✷

Proof — [REF] or [REF−!]. It can be easily shown that Fι(s
′, e′) ⊆ Fι(s, e). ✷

All the axioms are therefore satisfied. We now consider the inference rule [RED],
involving an evaluation context.

Proof — [RED]. Suppose the reduction is (s, E[r]) → (s′, E[r′]), where E is an eval-
uation context that reduces under the origin label ι0 and r is a redex. We assume the
inductive hypothesis for the reduction (s, r) → (s′, r′).
By Lemma 15, we have:

Fι(s, E[r]) = Fι(s) ∪ Fι(E) ∪ Fι(r) ∪ Lι0
ι (r) ,

Fι(s
′, E[r′]) = Fι(s

′) ∪ Fι(E) ∪ Fι(r
′) ∪ Lι0

ι (r′) .

By hypothesis, Fι(s, E[r]) ⊆ Aι(T), hence Fι(s, r) ⊆ Aι(T). From the inductive
hypothesis, we deduce Fι(s

′, r′) ⊆ Aι(T). Since by hypothesis, Fι(E) ⊆ Aι(T), it
remains to prove Lι0

ι (r′) ⊆ Aι(T). We examine the different cases for the reduction
premise (s, r) → (s′, r′).

Case [β] + [RED]. Suppose that the reduction (s, E[r]) → (s′, E[r′]) is
(

s, E[app(B,ι1) (λx(A→B,ι2) b, v)]
)

→ (s, E[b[v/x]]) .

26 H. Grall

Suppose Lι0
ι (b[v/x]) 6= ∅: we then have that b[v/x] is labeled with (B, ι), Lι0

ι (b[v/x]) =
{B} and ι0 = ι. We consider two cases according to whether b is equal to x or not.
• b = x
We have b[v/x] = v and A = B. Whatever ι1 is, B belongs to

Fι(Eι[app
(B,ι1) (λx(B→B,ι2) x, v(B,ι))]) ,

which is included in Aι(T) by hypothesis.
• b = f(B,ι3)(. . .)
Since b[v/x] is labeled with (B, ι), we have ι3 = ι. The reduction is represented in
Figure 13, where the created frontier is indicated with a double line.

(s Eι

[/−]

) −→ (s Eι

[/−]

)

app(B,ι1)

oooooo

EE
EE

EE
b[v/x](B,ι)

λx(A→B,ι2) v

b(B,ι)

Figure 13: Proof — [β] + [RED] — Interesting case

If ι1 = ι, then B belongs to Fι(E[r]), which is included in Aι(T) by hypothesis.
If ι1 = ι and ι2 = ι, then B belongs to Fι(r), which is also included in Aι(T) by
hypothesis.
If ι1 = ι and ι2 = ι, then A → B belongs to Fι(r), included in Aι(T) by hypothesis;
by the inference rule [→ +] (see Table 8, p. 19), we obtain that B belongs to Aι(T).

✸

Case [REF−!] + [RED]. Suppose that the reduction (s, E[r]) → (s′, E[r′]) is

(s, E[get (A,ι1)(l(Ref(A),ι2))]) → (s, E[s(l(Ref(A),ι2))]) .

Suppose Lι0
ι (s(l(Ref(A),ι2))) 6= ∅: we then have that s(l(Ref(A),ι2)) is labeled with (A, ι),

Lι0
ι (s(l(Ref(A),ι2))) = {A} and ι0 = ι. The reduction is represented in Figure 14, where

the created frontier is indicated with a double line.

(. . . l(Ref(A),ι2) . . . Eι

[/−]

)−→(. . . l(Ref(A),ι2) . . . Eι

[/−]

)

s(l(Ref(A),ι2))(A,ι)
get(A,ι1) s(l(Ref(A),ι2))(A,ι) s(l(Ref(A),ι2))(A,ι)

l(Ref(A),ι2)

Figure 14: Proof — [REF−!] + [RED] — Interesting case

A Confinement Criterion for Securely Executing Mobile Code 27

If ι1 = ι, then A belongs to Fι(E[r]), which is included in Aι(T) by hypothesis.
If ι1 = ι and ι2 = ι, then A belongs to Fι(s), which is included in Aι(T) by hypothesis.
If ι1 = ι and ι2 = ι, then Ref(A) belongs to Fι(r), included in Aι(T) by hypothesis;
by the inference rule [Ref(+)] (see Table 8, p. 19), we obtain that A belongs to Aι(T).

✸

Case ([REF] or [REF−?]) + [RED]. By inspecting the reduction rules [REF] and
[REF−?], we remark that Lι0

ι (r′) = Lι0
ι (r), which gives Lι0

ι (r′) ⊆ Aι(T). ✸

✷

We can conclude by proving the premise of Proposition 10, which achieves the proof
of Theorem 9.

Proposition 19 (Frontier boundedness)
Let T be the type for the local environment. Consider any local environment L of type
T, and any mobile program λx : T.M[x] of type T → R.
Then, for each configuration (s, e) in the execution trace of the annotated program
app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo), the outgoing frontier of (s, e) is included in the set
of the outgoing types of T:

Flo(s, e) ⊆ Alo(T) .

Proof. Let L be any local environment of type T, and let λx : T.M[x] be any mobile
program of type T → R. We show by induction on the execution trace of the annotated
program app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) that any configuration (s, e) in the trace is
well-typed, origin coherent and satisfies Flo(s, e) ⊆ Alo(T) and Fmo(s, e) ⊆ Amo(T).
Let c be the initial configuration

(∅, app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo)) .

The configuration c is well-typed, origin coherent and satisfies Flo(c) ⊆ Alo(T) and
Fmo(c) ⊆ Amo(T), since Flo(c) = {T} and Fmo(c) = ∅.
Let (s, e) → (s′, e′) be a reduction belonging to the execution trace. Suppose that
(s, e) is well-typed, origin coherent and satisfies Flo(s, e) ⊆ Alo(T) and Fmo(s, e) ⊆
Amo(T). By Subject Reduction (see Proposition 1), (s′, e′) is well-typed. By Propo-
sition 14, (s′, e′) is origin coherent. Finally, we can apply Proposition 18, to conclude
Flo(s

′, e′) ⊆ Alo(T) and Fmo(s
′, e′) ⊆ Amo(T). ✷

4. Completeness for the Confinement Criterion

The confinement criterion that we have given cannot be weakened since the converse
of Theorem 9 (p. 20) is valid: an outgoing type is not confined.

Theorem 20 (Criterion completeness)
Let T be the type for the local environment, and A a resource type. If the type A is
an outgoing type of T, then there exists a local environment L of type T such that the
type A is not confined in L.

28 H. Grall

In other words, given an environment type T and a resource type A such that A is
an outgoing type of T, we can define a local environment L of type T and a mobile
program λx : T.M[x] of type T → R in order that a frontier redex accesses a resource
of the type A and of the origin label lo during the execution of the annotated program

app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) .

The proof of Theorem 20, which follows, is mainly a programming exercise. The reader
can find in Appendix A some examples that illustrate the techniques involved in the
proof and show how a hostile mobile program and an accomplice local environment
can cooperate. For the proof, we use the programming language defined in Table 1
(p. 9). Its operational semantics can be deduced from the reduction relation described
in Table 4 (p. 13) for the annotated language. The following notations facilitate
programming.
A local definition is defined as follows:

let x : A = e1 in e2
def
= (λx : A. e2) e1 ,

where the variable x is not free in e1, a sequential composition as follows:

e1 ; e2
def
= (λx : A1. e2) e1 ,

where e1 has type A1 and the variable x is not free in e2, and a functional composition
as follows:

g ◦ f
def
= λx : A1. g (f x) ,

where f and g have types A1 → A2 and A2 → A3 respectively, and the variable x is
free neither in f nor in g.
Finally, we equip the set of memory stores with a concatenation operation. If the
memory stores s1 and s2 are such that

{l | ∃m . lm ∈ dom s1} = {l | i ≤ l < j} ,

{l | ∃m . lm ∈ dom s2} = {l | j ≤ l < k} ,

for some locations i, j and k, then the memory store s1 . s2 has domain dom s1∪dom s2

and is defined as follows:

s1 . s2(l
m)

def
=

{

s1(l
m) if lm ∈ dom s1 ,

s2(l
m) if lm ∈ dom s2 .

Of course, the concatenation operation is associative.
We also need to define default values for each type. Precisely, each type is inhabited
by a convergent program that can be effectively defined.

Lemma 21 (Inhabited types)
For each type A, there effectively exist a program aA of type A, a value uA and a
memory store sA, such that the configuration (∅, aA) evaluates to (sA, uA).

A Confinement Criterion for Securely Executing Mobile Code 29

The proof is straightforward, by induction on A.
The proof of Theorem 20 is by induction on the environment type. Consider the

case where the environment type is a functional type T1 → T2. If A is an outgoing
type of T1 → T2, then there exist two possibilities when A is different from T1 → T2:

• either A is an outgoing type of T2,

• or A is not, hence is an incoming type of T1.

Indeed, we can use the alternative definition of the frontier upper bounds described
in Table 10. This definition is equivalent to the one given in Table 8 (p. 19), since the

∅

T ∈ Alo(T)

A ∈ Aι(T1)
[− →]

A ∈ Aι(T1 → T2)

A ∈ Aι(T2)
[→ +]

A ∈ Aι(T1 → T2)

A ∈ Aι(T)
[Ref(−)]

A ∈ Aι(Ref(T))

A ∈ Aι(T)
[Ref(+)]

A ∈ Aι(Ref(T))

Table 10: Frontier upper bounds — Alternative inductive definition

sets inductively generated by the inference system in Table 10 are stable under the
rules of the inference system in Table 8, and conversely, which can be easily shown
by induction on proofs. For the former possibility, where A is an outgoing type of
T2, the inductive hypothesis can be applied, whereas for the latter, where A is an
incoming type of T1, it cannot, so that we proceed differently: we need to decompose
T1 → T2 some steps further. Precisely, we consider the proof of A ∈ Amo(T1) in the
alternative inference system. Since the axiom of the proof is A ∈ Alo(A), there exists
at least one application of the rule [− →] or [Ref(−)]. The first application met from
the conclusion defines two types T

′
1 and T

′′
1 as follows:

A ∈ Alo(T
′′
1)

[Ref(−)] or [− →]
A ∈ Amo(T

′
1)

.

In order to apply the inductive hypothesis for T
′′
1 , we use the following technical

lemma. The conditions (i) to (iv) correspond to the preceding proof decomposition.
The conditions (v) and (vi) define two functions used in the construction of the mobile
program and the local environment.

Lemma 22 (Incoming types — Effective decomposition)
Let T and A be two types such that A is an incoming type of T. Then there effectively
exist two types T

′ and T
′′, and two programs δ and γ, of type T → T

′ and T
′ → T

respectively, such that:

(i) T
′ is a type occurring in T,

30 H. Grall

(ii) T
′ is equal to Ref(T′′) or T

′′ → B for some type B,

(iii) A is an incoming type of T
′,

(iv) A is an outgoing type of T
′′,

(v) the programs δ and γ are both λ-abstractions,

(vi) for any configuration (s1, v), where s1 is a memory store and v a value of type
T
′, there exist a value u of type T and a memory store s such that

(a) (s1, γ v) evaluates to (s1 . s, u),

(b) for any configuration (s2 . s . s3, δ u), where s2 and s3 are memory stores,
there exists s4 such that (s2 . s . s3, δ u) evaluates to (s2 . s . s3 . s4, v).

If we forget the side effects, the lemma asserts that δ ◦ γ is the identity function.
By using the two programs first to go from T

′ to T and then to come back, we can
apply the inductive hypothesis in T

′′, as shown in Figure 15. Before describing how

Mobile program Local environment

δ

��

T

��

T
′

γ

__

T
′′

ZZ

Inductive hypothesis

Access Resource

Figure 15: Technical lemma – Application of the inductive hypothesis

to proceed, we prove this lemma.

Proof. We proceed by induction on T. Let A be a type. We show that if A is an
incoming type of T, then two types, T

′ and T
′′, and two programs, δ and γ, satisfying

all the preceding conditions, can be defined.
• T = Unit

T has no incoming types.
• T = T1 → T2

Suppose that A is an incoming type of T. There exist two possibilities, which we
detail.
◦ A is an outgoing type of T1.
We define T

′ as T, T
′′ as T1, δ and γ as the identity function λx : T. x.

◦ A is not an outgoing type of T1.
A is therefore an incoming type of T2. The inductive hypothesis applied to T2 gives
T
′, T

′′, δ of type T2 → T
′ and γ of type T

′ → T2.
Write F for λf : T. f aT1

of type T → T2 and G for λy : T2. λx : T1. y of type T2 → T.

A Confinement Criterion for Securely Executing Mobile Code 31

The types T
′ and T

′′, and the programs δ ◦ F and G ◦ γ are suitable.
• T = Ref(T1)
Suppose that A is an incoming type of T. There exist two possibilities, which we
detail.
◦ A is an outgoing type of T1.
We define T

′ as T, T
′′ as T1, δ and γ as the identity function λx : T. x.

◦ A is not an outgoing type of T1.
A is therefore an incoming type of T1. The inductive hypothesis applied to T1 gives
T
′, T

′′, δ and γ.
Write F for λx : T. get(x) of type T → T1 and G for λx : T1. ref(x) of type T1 → T.
The types T

′ and T
′′, and the programs δ ◦ F and G ◦ γ are suitable. ✷

We can now prove Theorem 20. We give an effective construction of the mobile
programs and the local environments, but we do not actually show that the execution
traces of the programs that we define satisfy the intended property. Informally, the
reader should be convinced that it works: the proof would be based on the conditions
(v) and (vi) of Lemma 22, which we have chosen in order to simplify the verification,
and on some intuitive properties of execution traces. A full formalization would be
very long.

Proof — Theorem 20 — Criterion completeness.
We proceed by induction on the environment type T. Given a resource type A, we
show that if A is an outgoing type of T, then we can define a local environment L of
type T and a mobile program λx : T.M[x] of type T → R (for some type R) such that
a frontier redex accesses a resource of the type A and of the origin label lo during the
execution of the annotated program

app(R,mo) (〈λx : T.M[x]〉mo, 〈L〉lo) ,

denoted by M(M, L) in the following.
Let T be an environment type and A be a resource type such that A is an outgoing
type of T. The case where A is equal to T being trivial, we suppose that A is different
from T.
• T = Unit

T has no outgoing types, except itself.
• T = T1 → T2

There exist two possibilities, which we detail.
◦ A is an outgoing type of T2.
The inductive hypothesis applied to T2 gives a local environment L

′ of type T2 and
a mobile program λx : T2.M

′[x] such that the execution of M(M′, L′) entails the
intended access. We define the local environment and the body of the mobile program
as follows:

L : T
def
= λx : T1. L

′ ,

M[f : T]
def
= (λx : T2.M

′[x]) (f aT1
) .

◦ A is not an outgoing type of T2.
A is therefore an incoming type of T1. Lemma 22 gives two types T

′ and T
′′, and two

32 H. Grall

programs δ and γ, of type T1 → T
′ and T

′ → T1 respectively, satisfying the different
conditions. Since A is an outgoing type of T

′′, the inductive hypothesis applied to
T
′′ gives a local environment L

′ of type T
′′ and a mobile program λx : T

′′.M′[x] such
that the execution of M(M′, L′) entails the intended access.
We consider two cases, according to the relationship between T

′′ and T
′ (see condi-

tion (ii) of Lemma 22).
◦ T

′ = T
′′ → B

We define the local environment and the body of the mobile program as follows:

L : T
def
= λx : T1.(δ x L

′ ; aT2
) ,

M[f : T]
def
= f (γ λx : T

′′.(M′[x] ; aB)) .

◦ T
′ = Ref(T′′)

We define the local environment and the body of the mobile program as follows:

L : T
def
= λx : T1.(set(δ x, L′) ; aT2

) ,

M[f : T]
def
= let z : T

′ = aT′ in

(f (γ z) ; (λx : T
′′.M′[x]) get(z)) .

• T = Ref(T1)
There exist two possibilities, which we detail.
◦ A is an outgoing type of T1.
The inductive hypothesis applied to T1 gives a local environment L

′ of type T1 and
a mobile program λx : T1.M

′[x] such that the execution of M(M′, L′) entails the
intended access. We define the local environment and the body of the mobile program
as follows:

L : T
def
= ref(L′) ,

M[z : T]
def
= let x : T1 = get(z) in M

′[x] .

◦ A is not an outgoing type of T1.
A is therefore an incoming type of T1. Lemma 22 gives two types T

′ and T
′′, and two

programs δ and γ, of type T1 → T
′ and T

′ → T1 respectively, satisfying the different
conditions. Since A is an outgoing type of T

′′, the inductive hypothesis applied to
T
′′ gives a local environment L

′ of type T
′′ and a mobile program λx : T

′′.M′[x] such
that the execution of M(M′, L′) entails the intended access.
We consider two cases, according to the relationship between T

′′ and T
′ (see condi-

tion (ii) of Lemma 22).
◦ T

′ = T
′′ → B

We define the local environment and the body of the mobile program as follows:

L : T
def
= let z : T = aT in

(set(z, γ λx : T
′′. δ get(z) L

′) ; z) ,

M[z : T]
def
= let y : T1 = get(z) in

(set(z, γ λx : T
′′.(M′[x] ; aB)) ; δ y aT′′) .

A Confinement Criterion for Securely Executing Mobile Code 33

◦ T
′ = Ref(T′′)

We define the local environment and the body of the mobile program as follows:

L : T
def
= let y : T

′ = ref(L′) in ref(γ y) ,

M[z : T]
def
= let x : T

′′ = get(δ get(z)) in M
′[x] .

✷

5. Confinement Criterion in Action: Example of Access Qualifiers

Whereas the confinement criterion as stated in Theorem 9 (p. 20) is a general prop-
erty of the programming language that does not refer to any particular security ar-
chitecture, it is interesting to consider the relationship of the criterion with standard
security architectures. We detail the example of access qualifiers, whose addition to a
programming language provides a form of access control. Access qualifiers are found
in many popular object-oriented programming languages (like C++ and Java) where
they provide a simple mechanism to hide information (about data representation):
each object contains a private state and a public interface. From a security perspec-
tive, this addition requires two steps: first, each resource of a program receives an
access control list, which registers the access rights that the listed subjects have with
respect to the resource, second, each call to an access function is mapped to a subject
accessing. Finally, a static analysis ensures the following property: only authorized
accesses happen during the execution of a program.
In the presence of mobile code, we study the following scenario: the local environment
contains access qualifiers and is fully analyzed since its code is available, whereas the
mobile program is a standard program without access qualifiers. We can therefore
decompose the verification process into two steps. First, analyze the local environ-
ment, as a whole program, second, determine a criterion which enables the following
inference: from the analysis result for the local environment, infer the analysis result
for any mobile program calling the local environment. The criterion is just some ex-
tra condition that the local environment must satisfy in order to make the inference
valid. Given a static analysis for controlling accesses, whether the associated criterion
is equivalent to our confinement criterion is an open question that we now study in
the particular case of access qualifiers.

We begin by adding access qualifiers to our introductory example using the class
resource (see Program 1, p. 2). To simplify, we only consider two subjects, the former
with high privileges, the latter with low privileges, and two access control lists, the
former for sensitive resources, which can only be accessed by the subject with high
privileges, the latter for non-sensitive resources, which can be accessed by any subject.
This situation can be faithfully implemented as follows. First, we associate to each
subject a method, the method access_high for the subject with high privileges and the
method access for the subject with low privileges. Second, we associate to each access
control list a resource class that contains the authorized methods. We thus obtain
the class definitions in Program 6. Consider a standard program, that is to say a
program using the original class resource, which has a unique method access. With

34 H. Grall

(∗ s e n s i t i v e re source s ∗)
class resource_high (qualifier : string) =

object

(∗ p r i v i l e g e d acces s ∗)
method access_high (subject : string) =

print_string (subject
ˆ ” with high p r i v i l e g e s a c c e s s e s ”
ˆ qualifier ˆ ” r e sou r c e \n”)

end

(∗ non−s e n s i t i v e re source s ∗)
class resource (qualifier : string) =

object

(∗ p r i v i l e g e d acces s ∗)
method access_high (subject : string) =

print_string (subject
ˆ ” with high p r i v i l e g e s a c c e s s e s ”
ˆ qualifier ˆ ” r e sou r c e \n”)

(∗ non−p r i v i l e g e d acces s ∗)
method access (subject : string) =

print_string (subject
ˆ ” with low p r i v i l e g e s a c c e s s e s ”
ˆ qualifier ˆ ” r e sou r c e \n”)

end

(∗ unsecure imp l i e s i l l −typed ∗)
let unsecure_code =

let res = new resource_high ” s e n s i t i v e ” in res#access

(∗ we l l−typed imp l i e s secure ∗)
let secure_code =

let res = new resource_high ” s e n s i t i v e ” in res#access_high

Program 6: Adding access qualifiers

the class definitions in Program 6, in order to add access qualifiers to the program, we
can proceed as follows, by using a simple annotation of the program. First, a resource
becomes an instance of the class resource_high if we want to qualify it as sensitive
and a call res#access becomes a call res#access_high when done by the subject
with high privileges. Then, type checking provides the static analysis to enforce the
security policy: with a well-typed program, only authorized accesses happen during
the execution. If we adopt the convention that a sensitive resource is always created
with new resource_high ”sensitive” and that a non-sensitive resource is always created
with new resource ”non−sensitive”, then type checking ensures the following security
property: it is impossible to print the following message

” . . . with low p r i v i l e g e s a c c e s s e s s e n s i t i v e r e s ou r c e ” .

See the examples of secure_code and unsecure_code in Program 6.
In the presence of mobile code, we actually meet the following scenario. The local en-

A Confinement Criterion for Securely Executing Mobile Code 35

vironment contains access qualifiers and is well-typed in the type system enriched with
resource_high, whereas the mobile program is a standard program. A possible anno-
tation of the local environment described in Program 3 (p. 4) is given in Program 7.
First, the instance controller of the class proxy is now defined as the proxy of the sen-

(∗ l o c a l environment wi th access q u a l i f i e r s ∗)
module Env4 =

struct

(∗ s e n s i t i v e re source s ∗)
class resource_high (qualifier : string) =

object

(∗ p r i v i l e g e d acces s ∗)
method access_high (subject : string) = . . .

end

(∗ non−s e n s i t i v e re source s ∗)
class resource (qualifier : string) =

object

(∗ p r i v i l e g e d acces s ∗)
method access_high (subject : string) = . . .
(∗ non−p r i v i l e g e d acces s ∗)
method access (subject : string) = . . .

end

(∗ secure proxy d e f i n i t i o n ∗)
class proxy (res : resource_high) =

object

(∗ secure method ∗)
method request (subject : string) =

res#access_high subject

end

(∗ i n d i r e c t acces s v ia a proxy ∗)
let controller =

let confined_res =
new resource_high ” s e n s i t i v e ” in

new proxy confined_res

end

Program 7: Local environment with access qualifiers

sitive resource confined_res. Then, the call res#access in the method request needs
to be annotated in order to get a well-typed program. A mobile program can indi-
rectly access the resource confined_res with a call Env4.controller#request ”applet”,
which prints to the standard output:

”app le t with high p r i v i l e g e s a c c e s s e s s e n s i t i v e r e sou r c e ” .

Thus, the local environment locally grants high privileges to the applet. Now, suppose
that we add a definition danger to Env4, as in Program 4 (p. 4): in Program 8, the
definition of danger is supposed to be annotated and well-typed, so that the extended

36 H. Grall

local environment Env5 is still well-typed. Is a mobile program calling Env5.danger

(∗ environment Env4 extended ∗)
module Env5 =

struct

. . .
(∗ we l l−typed d e f i n i t i o n ∗)
let danger = . . .

end

Program 8: Problematic environment

secure? The answer is affirmative if it is well-typed. If the type resource_high does
not occur in the type t of danger, then any mobile program calling Env5.danger is well-
typed, hence secure. But we can refine this result. Indeed, since the type resource is
equivalent to the type

< access_high : string −> unit ; access : string −> unit>

and the type resource_high to the type

< access_high : string −> unit > ,

we can deduce that the type resource is a subtype of the type resource_high. If the
annotated type t can be subsumed to a standard type t’, where resource_high does
not occur, then a mobile program calling Env5.danger becomes well-typed if we coerce
danger to the type t’. For instance, if the type t is equal to resource_high −> s,
where resource_high does not occur in s, then by contravariance, the type t is a
subtype of resource −> s, which contains no occurrence of resource_high. On the
contrary, if the type t is equal to resource_high ref −> s, we cannot subsume t into
resource ref −> s. Actually, we claim that the subsumption from t to t’ is valid if,
and only if, the annotated type resource_high does not occur in the type t’ either
at a positive occurrence, or under the reference type constructor ref: this criterion,
deduced from the subtyping properties of the annotated type system, is exactly our
confinement criterion.

The rest of the section is devoted to a formal proof of the preceding claim. We
adopt Heintze and Riecke’s SLam-calculus (“Secure Lambda-calculus”) [13]: indeed,
it is a paradigmatic model for a language with access qualifiers and with a type-based
analysis for controlling accesses. We restrict the SLam-calculus to access control,
whereas it also deals with information flows.

In the following, we use a set of security labels, which is a partial order. In order to
simplify, while permitting a straightforward generalization, we use the pair {⊥,⊤},
ordered by ⊥ < ⊤. A security label corresponds first to a subject, second to an access
control list defined as follows:

the subject σ is authorized to access the resource with the access control
list α if α ≤ σ.

A Confinement Criterion for Securely Executing Mobile Code 37

In other words, the subject ⊤ can access any resource, whereas the subject ⊥ can
only access the resources with the access control list ⊥, or alternatively, a resource
with the access control list ⊤, called a sensitive resource, can only be accessed by the
subject ⊤, whereas a resource with the access control list ⊥ can be accessed by any
subject.
In order to assign to each resource an access control list and to each access a subject,
we again resort to an annotated language that preserves labels, as defined in Section 2.
However, the purpose is different. A label does not indicate the origin of code, the
mobile program or the local environment, but its security status: the label of an access
operator represents the subject making the access, whereas the label of a constructor
represents the access control list assigned to the resource built from the constructor.
Our example is thus modeled as follows: the calls ...#access and ...#access_high

correspond to access operators labeled with ⊥ and ⊤ respectively, and the instances
of the classes resource and resource_high correspond to resources labeled with ⊥ and
⊤ respectively.
The static analysis enforcing access control is based on a system of annotated types,
an extension of the standard type system. Precisely, the types are generated by the
grammar in Table 11. How can we define the labels of the annotated language? Recall

A ::= Unit (singleton type)

| A ⊥→ A | A ⊤→ A (functional types)

| Ref
⊥(A) | Ref⊤(A) (reference types)

Table 11: Annotated types

that the label of an operator is an ordered pair whose first component is a standard
type and whose second component is a piece of information (see Section 2). If the
information label simply was the security label, then we could not deduce from the
label of a term its annotated type: for instance, since the type system ensures that the
type of a sensitive resource is labeled with ⊤, the identity program λx(A,⊤) x, where
A is a standard type, would have any annotated type A′ ⊤→ A′, where A′ results from
an annotation of the type A. That is the reason why we define the information label
as a security label associated with an annotated type. Since an annotated type gives
the underlying standard type if we erase labels, we can simplify: a label becomes an
ordered pair (A, τ), where A is an annotated type, called the type label, and where
τ belongs to {⊥,⊤} and is called the security label. Thus, the preceding program

becomes λx(A′,⊤) x, with type A′ ⊤→ A′. This label definition gives a least type for a
term, as we will see.
The annotated type system is described by the inference system in Table 12. A typing
judgment has the form Γ ⊢ e : A, where Γ is a typing environment, e an annotated
term and A an annotated type. The type system follows two main design principles:

• a resource (or a redex creating a new reference) labeled with α in {⊥,⊤} has a
type labeled with α;

38 H. Grall

∅

Γ ⊢ x : Γ(x)
(x ∈ dom Γ)

Γ.(x : A) ⊢ e : B

Γ ⊢ λx(A
α
→B,α) e : A α→ B

Γ ⊢ e1 : A α→ B Γ ⊢ e2 : A

Γ ⊢ app(B,σ) (e1, e2) : B
(α ≤ σ)

∅

Γ ⊢ unit(Unit,α) : Unit

∅

Γ ⊢ l(Ref
α(A),α) : Refα(A)

Γ ⊢ e : A

Γ ⊢ ref (Ref α(A),α)(e) : Refα(A)

Γ ⊢ e : Ref
α(A)

Γ ⊢ get (A,σ)(e) : A
(α ≤ σ)

Γ ⊢ e1 : Ref
α(A) Γ ⊢ e2 : A

Γ ⊢ set (Unit,σ)(e1, e2) : Unit
(α ≤ σ)

Table 12: Annotated type system

• elimination rules enforce an access control: the security label of an access oper-
ator is greater than the security label of the resource accessed.

These principles lead to the fundamental property, detailed in Corollary 24: a program
that is well-typed in the system is secure, which means that only authorized accesses
happen during its execution.
A form of subtyping can be added to the type system: given any type constructor
F, a type F⊥(. . .) becomes a subtype of F⊤(. . .). Indeed, the substitution principle,
as defined by Liskov and Wing [17], is valid in the following form: if a program is
secure when it uses a value of type F⊤(. . .), then it is also secure when it uses instead
any value of type F⊥(. . .). The subtyping relation is inductively generated by the
inference system given in Table 13: judgments are inequalities A ≤ B, meaning that
A is a subtype of B. Note the following properties, which are standard:

∅

Unit ≤ Unit

A2 ≤ A1 B1 ≤ B2

A1
τ1→ B1 ≤ A2

τ2→ B2

(τ1 ≤ τ2)
∅

Ref
τ1(A) ≤ Ref

τ2(A)
(τ1 ≤ τ2)

Table 13: Subtyping relation

• for the type constructor − → −, the subtyping rule is contravariant on the
left component (the domain type) and covariant on the right component (the
codomain type);

• for the type constructor Ref(−), the subtyping rule is invariant on the unique
component;

• the subtyping relation is a partial order.

A Confinement Criterion for Securely Executing Mobile Code 39

In order to benefit from this relation in the type system, we add the following con-
version rule:

Γ ⊢ e : A

Γ ⊢ e : B
(A ≤ B) .

The annotated type system equipped with the conversion rule ensures that the type
label of a term well-typed in some typing environment is the least type that the term
receives in the environment.

Following Heintze and Riecke [13, Th. 2.1, 3.1], we now state the main property,
which relates the static and the dynamic semantics. A memory store s is said to be
well-typed (in the annotated type system) if, for all locations lm in dom s, lm is well-
typed, which is equivalent to m = (Ref τ (A), τ) for some type A and some security
label τ , and the value s(lm) has type A. A configuration (s, e) is said to be well-typed
if s and e are.

Proposition 23 (Subject reduction — Type decreasing)
Let (s, e) be a well-typed configuration reducing to (s′, e′). Then (s′, e′) is well-typed
and moreover the least type of e′ is a subtype of the least type of e.

The proposition can be easily shown by induction on the proof of the reduction
(s, e) → (s′, e′). It implies that a program is secure if it is well-typed in the an-
notated type system.

Corollary 24 (Type soundness)
If an annotated program is well-typed in the annotated type system, then, during its
execution, the subject ⊥ does not access a sensitive resource.

Proof. By Subject Reduction, every configuration in the execution trace is well-typed.
Suppose that during the execution, an access operator labeled with ⊥ accesses a re-
source labeled with ⊤. Then the corresponding redex is ill-typed; this is a contra-
diction by the decomposition lemma, which asserts that any subterm of a well-typed
term is also well-typed. ✷

In other words, the static verification of typing entails the dynamic verification of the
security policy.

In the presence of mobile code, we study the following scenario: the local environ-
ment can contain access qualifiers and be fully analyzed since its code is available,
whereas the mobile program cannot. We therefore consider that

• the local environment is annotated and well-typed in the annotated type system,

• the mobile program is not annotated, but just well-typed in the standard type
system.

Actually, if we entirely annotate the mobile program with ⊥, then we can assign to
it a type entirely annotated with ⊥ in the annotated type system. This annotation
with ⊥ corresponds to two natural assumptions:

• only local resources need to be protected;

40 H. Grall

• the mobile program receives the least privileges and therefore acts on behalf of
the subject ⊥.

Formally, some notations are needed. If A is an annotated type and e an annotated
term, we denote by ↓ (A) and ↓ (e) the standard type and the standard term resulting
from erasing the labels in A and e; if A is a standard type and e a standard term, we
denote by 〈A〉α and 〈e〉α the type and the term resulting from an entire annotation
of A and e with α.
The local environment is therefore a well-typed annotated program L, with T as least
type, whereas the mobile program 〈λx :↓ (T).M[x]〉⊥ is entirely annotated with ⊥,
with 〈↓ (T) → R〉⊥ as least type. The question becomes: is the annotated mobile pro-
gram calling the local environment secure? The answer is affirmative if it is well-typed
in the annotated type system. Actually, as shown in Figure 16, the annotated mobile
program calling the local environment is well-typed if, and only if, the local environ-
ment can receive a type entirely annotated with ⊥, in other words, T ≤ 〈↓ (T)〉⊥.
If the annotated type of the local environment contains the label ⊤, it may be sub-

·
·
·

∅ ⊢ 〈λx :↓ (T). M[x]〉⊥ : 〈↓ (T) → R〉⊥

(T ≤ 〈↓ (T)〉⊥)
∅ ⊢ 〈λx :↓ (T). M[x]〉⊥ : T ⊥→ 〈R〉⊥

·
·
·

∅ ⊢ L : T

(T ≤ T)
∅ ⊢ L : T

∅ ⊢ app
(〈R〉⊥,⊥) (〈λx :↓ (T). M[x]〉⊥, L) : 〈R〉⊥

Figure 16: Mobile code calling the local environment — Typing proof

sumed in another type entirely annotated with ⊥: for instance, the type Ref⊤(A)
is not a subtype of Ref⊥(A), so that the label ⊤ cannot be removed, whereas the
type Ref⊤(A) ⊥→ B is a subtype of Ref⊥(A) ⊥→ B because of the rule of domain
contravariance. Finally, this technique of converting the local environment leads to
the following criterion, which also uses the outgoing types (see Definition 8, p. 20).

Theorem 25 (Mobile code — Security criterion)
Let T be an annotated type for the local environment. If each outgoing type of T

is labeled with ⊥, then, for every local environment L of type T, for every mobile
program 〈λx :↓ (T).M[x]〉⊥, the subject ⊥ does not access a sensitive resource during
the execution of the mobile program calling the local environment,

app(〈R〉⊥,⊥) (〈λx :↓ (T).M[x]〉⊥, L) .

Proof. We can easily prove by induction on the type T the following equivalences:

(i) T ≤ 〈↓ (T)〉⊥ if, and only if, each outgoing type of T is labeled with ⊥,

(ii) 〈↓ (T)〉⊥ ≤ T if, and only if, each incoming type of T is labeled with ⊥.

Suppose that each outgoing type of T is labeled with ⊥. We deduce T ≤ 〈↓ (T)〉⊥.
Hence, the program

app(〈R〉⊥,⊥) (〈λx :↓ (T).M[x]〉⊥, L)

A Confinement Criterion for Securely Executing Mobile Code 41

is well-typed in the annotated type system. By Corollary 24, we can conclude. ✷

The criterion inferred from the annotated type system and its subtyping properties
turns out to be equivalent to our confinement criterion (see Theorem 9, p. 20). Indeed,
the typing of the local environment provides half of the verification: confinement for
local sensitive resources is also needed, since mobile code could otherwise directly
access a sensitive resource.

6. Conclusion

The confinement criterion that we have defined is type-based: it takes as inputs a
resource type A and a type T for the local environment and determines whether, for
each local environment L of type T, the type A is confined in L, which means that
no resource of type A belonging to the local environment L can be directly accessed
by a well-typed mobile program. More precisely, we have proved that the resource
type A is confined if it does not occur in the environment type T either at a positive
occurrence, or under the reference type constructor Ref(−), which can be computed
with a polynomial-time complexity. This criterion improves the one given by Leroy
and Rouaix [16], which forbids the resource type to occur in the environment type.
Moreover, we have proved that our criterion cannot be weakened: if the resource type
A occurs in the environment type T at a positive occurrence or under the reference
type constructor Ref(−), then there exists a local environment L of type T such that
A is not confined in L.

It remains that the criterion is only valid for a functional language with references.
Vitek et al.’s works about confinement [31, 20] deal with an object-oriented language
like Java. If we try to apply their confinement criterion to mobile code, then we find
that the criterion also forbids any resource type to occur in the environment type (see
rules C2 and C3 [20, p. 137]). It is thus interesting to determine whether our method,
which is different from the methods of these previous works, can be extended to a
richer language, particularly to an object-oriented language, in order to get the best
possible confinement criterion. Our method is based first on the annotation of the pro-
gramming language, in order to keep track of code origin, second on the study of the
interaction frontier between the mobile code and the local code. It allows confinement
to be rigorously defined, which seems to be its decisive advantage over the previous
methods. Future works will apply our method to different features of object-oriented
programming languages, like data abstraction, subtyping and inheritance. We antici-
pate that our method is suitable for a lot of data types, particularly for ordered pair,
record and list types, and also recursive types. Since objects can be represented by
references containing records of pre-methods, which are functions parameterized by
the object itself (following the self-application model of Kamin [15]), and object types
can be represented by recursive types, objects could be added to our programming
language without difficulty. One step further, we could adopt the imperative object
calculus of Abadi and Cardelli [2, chap. 10–11] instead of the λ-calculus. Further
investigations are needed to confirm these expectations and could benefit from Vitek
et al.’s works [31, 20]. For example, a specific rule is needed for subtyping, since it

42 H. Grall

becomes possible to convert a local resource into any supertype: not only the resource
types must be confined, but also their supertypes, when they are used to convert local
sensitive resources (see rule C5 [20, p. 137]).

Another possible extension is parametric polymorphism: a program fragment can
be parameterized with a type, and used in a polymorphic way, for any instantiation
of the type parameter. Parametric polymorphism enables the confinement of a local
resource by making its type abstract in the mobile code, as shown by Leroy and Rouaix
[16, sect. 5.2]. The transition from a monomorphic type system to a polymorphic
type system requires our annotation technique to be improved: indeed, it becomes
impossible to label an operator by a unique type, since any term receives a type from
inside, according to its subterms, and another type from outside, according to its use,
and these types may differ because of type parameterization. For instance, if the type
of a local resource is made abstract in the mobile code, the type of the local resource,
known in the local code, becomes unknown in the mobile code where the resource is
therefore used in a restricted way. Grossman et al. [11] and Rossberg [26] provide
solutions to this problem that could be adapted to our specific question.

We have also studied the relationship of the confinement criterion with a stan-
dard security architecture with access qualifiers, modeled with the SLam-calculus
[13]. First, the security architecture ensures that the local environment enforces a se-
curity policy specified with an access control matrix. Then, we have proved that if the
local environment satisfies the confinement criterion, no mobile program calling the
local environment can violate the security policy, although the security architecture
does not apply to the mobile program. An interesting question consists in extending
the result to other security architectures enforcing access control. For example, the
preceding method would be useful for security policies specified by security automata,
as defined by Schneider [28], which improve the policy expressivity since access rights
can depend on the history of the program execution.

Besides access control, security requirements may also deal with information flows.
For instance, the content of a local resource, like a cryptographic key or a password,
may be confidential, which means that the mobile code cannot obtain information
about the content during its execution in the local environment. The absence of in-
formation flows between a local resource and the mobile program implies that the
resource is confined. However, its confinement does not imply the absence of infor-
mation flows, which can result from indirect accesses: the mobile program requests
the local environment, which accesses the resource and replies to the mobile program
by returning the confidential piece of information. Confinement is therefore a weaker
security property than confidentiality. Language-based techniques for ensuring con-
fidentiality are presented in the exhaustive survey of Myers and Sabelfeld [27]: they
all track information flows in whole programs. Is it possible to define confidentiality
criteria analogous to our confinement criterion? Suppose that a technique enforcing
a confidentiality policy is applied to the local environment. A confidentiality crite-
rion would ensure that if the local environment satisfies it, then no mobile program
calling the local environment could violate the confidentiality policy. This interesting
question, already raised by Leroy and Rouaix [16, sect. 8], is still open.

A Confinement Criterion for Securely Executing Mobile Code 43

A. Access Flaws: Some Examples in OCaml

The following examples illustrate the proof of Theorem 20 (p. 27), which shows the
completeness of the confinement criterion described in Theorem 9 (p. 20): given an
environment type T and a resource type A such that A is an outgoing type of T, we
can define a local environment L of type T and a mobile program λx : T.M[x] of type
T → R in order that the mobile program directly accesses a local resource during its
execution in the local environment.

The examples are developed using OCaml (see [25, 24]). Although the language
permits polymorphism, we only define monomorphic programs, by using the Church
notation: each parameter receives a monomorphic type, which ensures that any ex-
pression receives a unique monomorphic type. We pursue the introductory example
with the class resource (see Program 1, p. 2). The local environment is represented
by an OCaml module called Env. The module provides the definition of the class
resource and of an expression danger. The type of danger does not satisfy the con-
finement criterion: the type resource occurs either at a positive occurrence, or under
the type constructor ref. The expression danger begins with the local definition of a
local resource accessible_res: see Program 9. Our goal is to define the expression

(∗ l o c a l environment ∗)
module Env =

struct

class resource (origin : string) =
object

method access (subject : string) =
print_string (subject ˆ ” a c c e s s e s ”

ˆ origin ˆ ” r e sou r c e \n”)
end

(∗ t ype not s a t i s f y i n g the confinement c r i t e r i o n ∗)
let danger =

(∗ l o c a l d e f i n i t i o n o f a l o c a l resource ∗)
let accessible_res = new resource ” l o c a l ” in

. . .

Program 9: Local environment

danger and a mobile program calling the module Env such that the mobile program
directly accesses the local resource accessible_res. More precisely, the mobile pro-
gram must call the following auxiliary function, called attack, with accessible_res

as the argument:

let attack (res : Env . resource) = (∗ a t t a c k func t i on ∗)
res#access ” h o s t i l e app le t ” ,

which prints to the standard output:

” h o s t i l e app le t a c c e s s e s l o c a l r e s ou r c e ” .

44 H. Grall

We now describe some interesting cases. We suppose that a local resource of type A
is given. For each given type T for the local environment, we informally define a local
environment of type T and a well-typed mobile program whose execution entails the
forbidden access to the local resource. We also give the concrete examples in OCaml,
where A is represented by resource and the other types by unit. The definitions of
the local environment Env and of the mobile programs mobile_program are presented
as transcripts of sessions with the interactive system. An entry starting with # and
finishing with ;; represents a user input, an OCaml phrase; the system response is
printed below, without a leading #.
If T = (A → B) → C, then A occurs at a positive occurrence in T. The mobile
program passes to the environment a function that realizes an access to its unique
argument; the environment applies this function to the resource: see danger1 and
mobile_program1 in Program 10 for details.
If T = Ref(A) → B, then A occurs under the type constructor Ref(−). The mobile
program passes a reference of type Ref(A) to the environment; the environment as-
signs to this reference a new content, the local resource, which becomes available to
the mobile program: see danger2 and mobile_program2 in Program 10 for details.
If T = Ref(A → B), then A again occurs under the type constructor Ref(−). It turns
out that the situation is more difficult. The local environment evaluates to a location
lT of type T, which is initialized with a particular function f : when f is applied to
an argument, it first reads the content of lT to obtain a function of type A → B, and
then applies this function to the local resource of type A, which may give some value
of type B. Of course, as long as the content of lT is f , the function f diverges for any
argument. As for the mobile program, it first reads the content of its argument lT in
order to obtain f , then assigns to lT a function of type A → B that realizes an access
to its argument of type A; finally, the mobile program applies f to an argument of
type A: the content of lT, now the function realizing the access, is thus applied to the
local resource. See danger3 and mobile_program3 in Program 10 for details.

Acknowledgements

Thanks are due to Gilbert Caplain, Didier Le Botlan and Carol Robins for helpful
comments and very thorough readings of different versions of the manuscript. Thanks
also to the programme committee of the workshop “Security Analysis of Systems:
Formalism and Tools” for inviting me to submit this article, whose first version was
presented during the workshop. I am grateful to the members of my thesis jury, Didier
Caucal, Norbert Cot, Thomas Jensen, René Lalement and Xavier Leroy, who have
encouraged me to publish this work, extracted from my doctoral dissertation at the
“École nationale des ponts et chaussées”. I am also grateful to the anonymous referees,
who have greatly contributed to improve the presentation of this work.

A Confinement Criterion for Securely Executing Mobile Code 45

module Env =
struct

class resource (origin : string) = . . .
let danger1 =

let accessible_res = new resource ” l o c a l ” in

function (f : resource −> unit) −> f accessible_res

let danger2 =
let accessible_res = new resource ” l o c a l ” in

function (l : resource ref) −> l := accessible_res

let danger3 =
let accessible_res = new resource ” l o c a l ” in

let l = ref (function (res : resource) −> ()) in

let f = function (res : resource) −> ! l accessible_res in

l := f ; l

end ; ;
module Env :

sig

class resource : string −>
object method access : string −> unit end

val danger1 : (resource −> unit) −> unit

val danger2 : resource ref −> unit

val danger3 : (resource −> unit) ref

end

let attack (r e s : Env . r e s ou r c e) = (∗ a t t a c k func t i on ∗)
res#access ” h o s t i l e app le t ” ; ;

val attack : Env . resource −> unit = <fun>

let mobile program1 = (∗ a t t a c k wi th danger1 ∗)
Env . danger1 attack ; ;

hostile applet accesses local resource

val mobile_program1 : unit = ()

let mobile program2 = (∗ a t t a c k wi th danger2 ∗)
let l = ref (new Env . resource ”mobile ”) in

Env . danger2 l ; attack ! l ; ;
hostile applet accesses local resource

val mobile_program2 : unit = ()

let mobile program3 = (∗ a t t a c k wi th danger3 ∗)
let f = ! Env . danger3 in

let r = new Env . resource ”mobile ” in

Env . danger3 := attack ; f r ; ;
hostile applet accesses local resource

val mobile_program3 : unit = ()

Program 10: Attacks on resource

46 H. Grall

References

[1] Martin Abadi. Protection in programming-language translations. In Vitek and
Jensen [32], pages 19–34.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[3] Frédéric Besson, Thomas de Grenier de Latour, and Thomas Jensen. Secure
calling contexts for stack inspection. In PPDP ’02 [23], pages 76–87.

[4] Frédéric Besson, Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Model-
checking security properties of control-flow graphs. Journal of Computer Security,
9(3):217–250, 2001.

[5] Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and origins in
term rewriting. Information and Computation, 159:59–124, 2000.

[6] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program
transformation. In POPL ’00 [21], pages 54–66.

[7] Ulaf Erlingsson and Fred Schneider. IRM enforcement of Java stack inspection.
In Proceedings of the IEEE Symposium on Security and Privacy (S& P ’00),
pages 246–255. IEEE Computer Society Press, 2000.

[8] Cédric Fournet and Andrew Gordon. Stack inspection: Theory and variants.
ACM Transactions on Programming Languages and Systems, 25(3):360–399,
2003.

[9] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Go-
ing beyond the sandbox: An overview of the new security architecture in the
Java Development Kit 1.2. In USENIX Symposium on Internet Technologies and
Systems (USITS ’97), pages 103–112. USENIX, 1997.

[10] Li Gong and Roland Schemers. Implementing protection domains in the Java
Development Kit 1.2. In Proceedings of the 1998 Network and Distributed System
Security Symposiums (NDSS ’98), pages 125–134. Internet Society, 1998.

[11] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstraction.
ACM Transactions on Programming Languages and Systems, 22(6):1037–1080,
2000.

[12] Robert Harper, Greg Morrisett, and Fred Schneider. A language-based approach
to security. In Reinhard Wilhelm, editor, Informatics – 10 Years Back, 10
Years Ahead, volume 2000 of Lecture Notes in Computer Science, pages 86–101.
Springer-Verlag, 2001.

[13] Nevin Heintze and Jon Riecke. The SLam calculus: Programming with security
and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages (POPL ’98), pages 365–377. ACM Press,
1998.

[14] Tomoyuki Higuchi and Atsushi Ohori. Java bytecode as a typed term calculus.
In PPDP ’02 [23], pages 201–211.

A Confinement Criterion for Securely Executing Mobile Code 47

[15] Samuel Kamin and Uday Reddy. Two semantic models of object-oriented lan-
guages. In Carl Gunter and John Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming, pages 463–495. MIT Press, 1994.

[16] Xavier Leroy and François Rouaix. Security properties of typed applets. In Vitek
and Jensen [32], pages 147–182.

[17] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–1841, 1994.

[18] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. From system F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):528–569, 1999.

[19] George Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In Giovanni Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture
Notes in Computer Science, pages 61–89. Springer-Verlag, 1998.

[20] Jens Palsberg, Jan Vitek, and Tian Zhao. Lightweight confinement for feather-
weight java. In Proceedings of the 2003 ACM SIGPLAN conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’03),
volume 38(11) of ACM SIGPLAN Notices, pages 135–148. ACM Press, 2003.

[21] Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL ’00). ACM Press, 2000.

[22] François Pottier, Christian Skalka, and Scott Smith. A systematic approach
to static access control. ACM Transactions on Programming Languages and
Systems, 27(2):344–382, 2005.

[23] Proceedings of the 4th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP ’02). ACM Press, 2002.

[24] Didier Rémy. Using, understanding, and unraveling the OCaml language. In
Gilles Barthe, editor, Applied Semantics. Advanced Lectures, volume 2395 of
Lecture Notes in Computer Science, pages 413–537. Springer-Verlag, 2002.

[25] Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

[26] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In
Proceedings of the 5th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP ’03), pages 241–252. ACM Press, 2003.

[27] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
IEEE Journal of Selected Areas in Communications, 21(1):5–19, 2003.

[28] Fred Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000.

[29] Christian Skalka and Scott Smith. Static use-based object confinement. Inter-
national Journal of Information Security, 4(1–2):1–18, 2005.

[30] Peter Thiemann. Enforcing security properties by type specialization. In Pro-
gramming Languages and Systems: 10th European Symposium on Programming,

48 H. Grall

ESOP 2001, Proceedings, volume 2028 of Lecture Notes in Computer Science,
pages 62–76. Springer-Verlag, 2001.

[31] Jan Vitek and Boris Bokowski. Confined types. In Proceedings of the 1999 ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA ’99), volume 34(10) of ACM SIGPLAN Notices,
pages 82–96. ACM Press, 1999.

[32] Jan Vitek and Christian Jensen, editors. Secure Internet Programming – Secu-
rity issues for Mobile and Distributed Objects, volume 1603 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[33] David Walker. A type system for expressive security policies. In POPL ’00 [21],
pages 254–267.

[34] Dan Wallach. A New Approach to Mobile Code Security. PhD thesis, Princeton
University, Department of Computer Science, 1999.

[35] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

