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Abstract. Algorithmic Skeletons offer high-level abstractions for paral-
lel programming based on recurrent parallelism patterns. Patterns can be
combined and nested into more complex parallelism behaviors. Program-
mers fill the skeleton patterns with the functional (business) code, which
transforms the generic skeleton into a specific application. However, when
the functional code generate exceptions, this exposes the programmer to
details of the skeleton library, breaking the high-level abstraction prin-
ciple. Furthermore, related parallel activities must be stopped as the
exception is raised. This paper describes how to handle exceptions in Al-
gorithmic Skeletons without breaking the high-level abstractions of the
programming model. We describe both the behavior of the framework in
a formal way, and its implementation in Java: the Skandium Library.

Keywords: Algorithmic skeletons, exceptions, semantics

1 Introduction

Algorithmic skeletons (skeletons for short) is a high-level programming model
for parallel and distributed computing, introduced by Cole [1]. Skeletons take
advantage of recurrent programming patterns to hide the complexity of parallel
and distributed applications. Starting from a basic set of patterns (skeletons),
more complex patterns can be built by nesting the basic ones.

To write an application, programmers must compose skeleton patterns and
fill them with the sequential blocks specific to the application. The skeleton pat-
tern implicitly defines the parallelization, distribution, orchestration, and com-
position aspects, while the functional code provides the application’s functional
aspects (i.e. business code).

The functional code, provided by users, is likely to encounter errors and
generate exceptions. The open question we are addressing in this paper is how
the exceptions raised by a functional code interact with the surrounding skeleton



pattern to alter (or not) the pattern’s normal execution flow. And in the worst
case, how this exceptions are reported back to user, after aborting related parallel
activities.

Exceptions are the traditional way of handling programming errors which
alter the normal execution flow. Many programming languages provide support
for exception handling such as: Ada, C++, Eiffel, Java, Ocaml, Ruby, etc.

In this paper we present an exception mechanism for an algorithmic skeleton
library which blends in with the host programming language’s exception han-
dling. Furthermore, the process of unwinding the stack does not reveal unnec-
essary low-level details of the skeleton library implementation, but is consistent
with the high-level abstractions of the programming model.

This paper is organized as follows. Section 2 describes the related work. Sec-
tion 3 provides a brief overview of the algorithmic skeleton programming model.
Section 4 introduces the exception model. Section 5 shows how the exception
model is implemented in the Skandium library, and Section 6 provides de con-
clusions.

2 Related Work

As a skeleton library we use Skandium [2,3], which is a multi-core reimplementa-
tion of Calcium [4], a ProActive [5] based algorithmic skeleton library. Skandium
is mainly inspired by Lithium [6] and Muskel [7] frameworks, developed at Uni-
versity of Pisa. In all of them, skeletons are provided to the programmer as a Java
API. Our previous work has provided formalisms for algorithmic skeletons such
as a type system for nestable parallelism patterns [8] and reduction semantics
[9]. This work extends both previous formalisms.

QUAFF [10] is a recent skeleton library written in C++ and MPI. QUAFF
relies on template-based meta-programming techniques to reduce runtime over-
heads and perform skeleton expansions and optimizations at compilation time.
Skeletons can be nested and sequential functions are stateful. QUAFF takes ad-
vantage of C++ templates to generate, at compilation time, new C/MPI code.
QUAFF is based on the CSP-model, where the skeleton program is described as
a process network and production rules (single, serial, par, join) [11].

Formalisms in Skil [12] provide polymorphic skeletons in C. Skil was later
reimplemented as the Muesli [13] skeleton library, but instead of a subset of the
C language, skeletons are offered through C++. Contrary to Skil, Muesli sup-
ports nesting of task and data parallel skeletons [14] but is limited to P3L’s two
tier approach [15].

Exceptions are a relevant subject on parallel programming models. For ex-
ample in [16] exceptions for asynchronous method calls on active objects are
introduced, and [17] provides formalisms for exception management in BSML, a
functional parallel language for BSP. However, to the best of our knowledge, no
previous work has focused on exception handling for Algorithmic Skeletons.



Regarding exception management in parallel and distributed programming,
the exception handling approach proposed by Keen et al [18] for asynchronous
method invocation presents similarities with our approach. In the sense that
exceptions within the skeleton framework happen in an asynchronous context
and we require a predefined handler to manage the exception. However, in our
approach handlers are allowed to fail and we use the Future.get() as a syn-
chronization point to deliver the result or exception.

The exception handling approach used by JCilk [19] also presents a similarity
with our approach. An exception raised by parallel a activity causes its siblings
to abort. This yields simpler semantics, closer to what a sequential programmer
would expect in Java; and also provides a mechanism to abort parallel activities
in search type algorithms (such as branch and bound). However, the approach
used in JCilk corresponds to a language extension while the our approach is im-
plemented as a library extension. Furthermore, our approach provides exception
which do not break the high-level principle.

3 Algorithmic Skeletons in a Nutshell

In Skandium [2], skeletons are provided as a Java library. The libraryw can nest
task and data parallel skeletons in the following way:

△ ::= seq(fe, 〈h〉) | farm(△, 〈h〉) | pipe(△1,△2, 〈h〉) | while(fc,△, 〈h〉) |

for(i,△, 〈h〉) | if(fc,△true,△false, 〈h〉) | map(fs,△, fc, 〈h〉) |

fork(fs, {△i}, fm, 〈h〉) | d&c(fc, fs,△, fm, 〈h〉)

Each skeleton represents a different pattern of parallel computation. An op-
tional argument (〈〉) has been introduced, for each skeleton, in this paper which
corresponds to the skeleton’s exception handler (h), described in detail in Sec-
tion 4. In Algorithmic Skeletons all communication details are implicit for each
pattern, hidden away from the programmer. The task parallel skeletons are:
seq for wrapping execution functions; farm for task replication; pipe for staged
computation; while/for for iteration; and if for conditional branching. The data
parallel skeletons are: map for single instruction multiple data; fork which is like
map but applies multiple instructions to multiple data; and d&c for divide and
conquer.

3.1 Muscle (Sequential) Blocks

The nested skeleton pattern (△) relies on sequential blocks of the application.
These blocks provide the business logic and transform a general skeleton pattern
into a specific application. We denominate these blocks muscles, as they provide
the real (non-parallel) functionality of the application.



In Skandium, muscles come in four flavors:

Execution fe : p → r

Split fs : p → [r0, ..., rk]

Merge fm : [p0, ..., pk] → r

Condition fc : p → boolean

Here p ranges over parameters, i.e. values or object as represented in the host
language (Java in our implementation). Additionally

r ::= p | e

where the result r can be either a new parameter p or an exception e; and
[r0, ..., rk] is a list of results.

For the skeleton language, muscles are black boxes invoked during the compu-
tation of the skeleton program. Multiple muscles may be executed either sequen-
tially or in parallel with respect to each other, in accordance with the defined
△. The result of a muscle is passed as a parameter to other muscle(s). When no
further muscles need to be executed, the final result is delivered to the user.

3.2 Skeleton’s Semantics

Out operational semantics for Algorithmic Skeletons is detailed in Appendix A
and illustrated by the example in Section 4.2. It operates as follows. A skeleton
program △ defined by the programmer is transformed into a lower level rep-
resentation formed of instructions, with its corresponding muscle functions and
exception handlers. Transforming high-level skeletons to lower-level constructs
is a standard methodology in many Skeleton frameworks such as P3L, Lithium,
Muesli, QUAFF, etc.

These lower-level instructions provide the actual parallelization semantics,
and are grouped into stacks. When data parallelism is encountered, such as for
map, fork, and d&c skeletons, a DATA − || rule creates new stacks with the
instructions to be computed in parallel. The reduction of a skeleton consists in
evaluating a set of stacks: the first instruction of each stack is evaluated until
a result is obtained, then the result is passed to the next instruction of the
task. When the stacks are finished, the results are merged back from the parallel
activities with the CONQ-INST-REDUCE rule. Task parallelism can also be
achieved (TASK − || rule) by computing the same instruction concurrently for
different (unrelated) data.

4 Exceptions for Algorithmic Skeletons

Exceptions provide a useful mechanism to report errors and disrupt the normal
program flow. Besides error communication, exceptions are also useful, for ex-
ample, to stop computaton once a result is found in recursive algorithms such
as branch & bound.

The model we propose contemplates three possible scenarios:



1. An exception is raised and caught inside a muscle. For the skeleton it is as
if no exception was raised at all, and thus no action is required.

2. An exception is raised by a muscle or a sub-skeleton, and a matching handler
is found and executed to produce the skeleton’s result.

3. An exception is raised by a muscle or sub-skeleton, and no matching handler
is found in the skeleton. The exception is raised to the parent skeleton.

4.1 Exception Semantics

The principle of the operational semantics with exceptions is that muscle func-
tions f are reduced to a result r which can be either a new parameter p or an
exception e. Conceptually, when an exception is raised by a muscle we want the
surrounding skeleton to either handle the exception and produce a regular result
or raise the exception to the parent skeleton.

Consider the example: farm(pipe(△1,△1, h)). If △1 is reduced to an excep-
tion e then:

farm(pipe(e,△2, h)) → farm(h(e)) → farm(r)

The pipe is reduced to h(e) which returns a result r: either an exception e or a
value p.

The challenge is that nested skeletons are transformed into a sequence of
lower-level instructions (△ ։ J). Therefore the skeleton nesting must be re-
membered so that the instruction reduction semantics raise the exception to the
parent skeleton’s handler.

Let us introduce some new concepts and helper functions:

An exception e represents an error during the computation. A concatenation
τ ⊕ e extends the trace of a given exception e by the creation context τ .

h is a programmer provided handler function. Given a parameter p and an
exception e, this handler can be evaluated into a result:h(p, e) → r. The
result r can be a new parameter p′ or a new exception e′ if an error took
place during the handler evaluation.

match is a function taking a handler h and an exception e as parameter. (h, e)
returns true if a handler h can be applied to an exception e, and false

otherwise.

An instruction J can reduce its parameter either to a result r or an exception
e. For the later case, the handler h remembers the parameter p before J is
reduced.

p-remember

J ↑ h(τ)(p) → J(p) ↑ h(τ, p)

If the instruction finishes normally, i.e. without raising an exception, then
the handler is not invoked.

finished-ok

p ↑ h(τ, p′) ⇒ p



On the contrary, if the instruction raises an exception then this exception
can be transmitted:

e-transmit

J(e) · . . . · Jn ⇒ e

If the result is an exception e and the handler h matches the exception, then
the handler on the exception is invoked.

e-catch

match(h, e)

e ↑ h(τ, p) ⇒ h(τ, p, e)

If the handler h does not match e, then we add a trace to the exception.

e-raise

¬match(h, e)

e ↑ h(τ, p) ⇒ τ ⊕ e

In the scenario of data parallelism, if one of the subcomputations raises an
exception:

conq-inst-reduce-with-exception

conqI(fc)(Ω1‖ . . . ‖ei‖ . . . ‖Ωn) → conqI(fc)(ei)

Then the exception ei is kept and the other parallel activities are discarded. For
further details see Section 5.1.

4.2 Illustrative Example

Let us illustrate the semantics presented above on a simple example showing
some of the reduction rules. We consider the following skeleton

△ = pipe(if(fb, seq(fpre, hp), seq(fid)), seq(ft), h)

This skeleton acts in two phases, first, depending on a boolean condition on the
received data (given by the muscle function fb), a pre-treatment fpre might be
realized (or nothing if the condition is not verified, fid is the identity muscle
function); then, the main treatment, expressed by the function ft is performed.
The instruction corresponding to the preceding skeleton is the following:

△ ։pipeI(ifI(fb, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ h∅(τ1))

↑ h∅(τi), seqI(ft) ↑ h∅(τt)) ↑ h(τ)

Where we introduce h∅ the empty handler, and τx are the locations of the
different instructions. For example, τ is the creation point of the pipe instruction,
and τi of the if instruction.

According to the semantics defined above, this instruction is evaluated as
shown in Figure 1. Starting from an incoming data d1, we suppose that fb(d1) is
true. We suppose that all the functions are stateless, allowing a parallel evalua-
tion of the different steps. Reduced terms are underlined, and usage of context-

handler and context-handler-stack rules is implicit. (inst-arrow allows
reduction → to be raised to the level of reduction ⇒). The evaluation of the
skeleton is shown in Figure 1, where ⇒∗ is the reflexive transitive closure of ⇒.
It involves an exception raised and raised up to the top level handler.



pipeI(ifI(fb, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))
↑ ∅(τi), seqI(ft) ↑ ∅(τt)) ↑ h(τ)([d1])

⇒∗ pipeI(ifI(fb, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))

↑ ∅(τi), seqI(ft) ↑ ∅(τt))(d1) ↑ h(τ, d1)) remember

⇒∗ ifI(fb, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))
↑ ∅(τi)(d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1) pipe-reduction-n

⇒∗ ifI(fb, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))(d1)

↑ ∅(τi, d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1) remember

⇒∗ seqI(fb)(d1) · choiceI(d1, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))

↑ ∅(τi, d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1)) if-inst

⇒∗ true · choiceI(d1, seqI(fpre) ↑ hp(τp), seqI(fid) ↑ ∅(τ1))

↑ ∅(τi, d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1) seq

⇒∗ seqI(fpre) ↑ hp(τp)(d1) ↑ ∅(τi, d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1) choice

⇒∗ e ↑ hp(τp, d1) ↑ ∅(τi, d1) · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1) remember+seq

⇒∗ τi ⊕ τp ⊕ e · pipeI(seqI(ft) ↑ ∅(τt)) ↑ h(τ, d1)) raise+finished-ok

⇒∗ τi ⊕ τp ⊕ e ↑ h(τ, d1) next+pipe

⇒∗ h(d1, τi ⊕ τp ⊕ e) catch+seq-insts

Fig. 1. Exception Semantics Example

5 Exceptions in Skandium Library

Fig. 2. Thread Pool Execution

Skandium is a Java based Algorith-
mic Skeleton library for high-level paral-
lel programming of multi-core architec-
tures. Skandium provides basic nestable
parallelism patterns, which can be com-
posed to program more complex appli-
cations.

From a general perspective, paral-
lelism or distribution of an application in
Skandium is a producer/consumer prob-
lem. Where the shared buffer is a task
queue, and the produced/consumed data are tasks, as shown in Figure 2.

A ready-queue stores ready tasks. Root-tasks are entered into the ready-
queue by users, who provide the initial parameter and the skeleton program. The
skeleton program undergoes a transformation process into an internal stack of
instructions which harness the parallelism behavior of each skeleton (as detailed
in Figure 3 of Appendix A).

Interpreter threads consume tasks from the ready-queue and compute their
skeleton instruction stack. When the interpreters cannot compute a task any
further, the task is either in finished or waiting state. If the task is in the finished
state its result is delivered to the user. If the task is in the waiting state, then
the task has generated new sub-tasks which are inserted into the ready-queue.



1 // 1. Define the skeleton program
Skeleton<Range, Range> sort = new DaC<Range, Range>(

3 new ShouldSplit(threshold),
new SplitList(),

5 new Sort(),
new MergeList(),

7 new HandleSortException());

9 // 2. Input parameters
Future<Range> future = sort.input(new Range(...));

11

// 3. Do something else here...
13

// 4. Block for the results
15 try{

Range result = future.get();
17 } catch(ExecutionException e){...}

Listing 1.1. Skandium Library Usage Output

Sub-tasks represent data parallelism for skeletons such as map, fork, d&c. A
sub-task may in turn produce new sub-taks. A task will exit the waiting state
and be reinserted into the ready-queue when all of its sub-tasks are finished.

5.1 How Exceptions Cancel Parallelism

Exceptions disrupt the normal execution flow of a program. The generation
and propagation of exceptions requires the cancellation of sibling parallel ac-
tivities. The semantics introduced in Section 4.1 simply discards sibling parallel
activities, as specified by the CONQ-INST-REDUCE-WITH-EXCEPTION rule.
Thus, implementations are free to continue the execution of sibling parallel ac-
tivities, and disregard their results, or apply a best effort to cancel the sibling
parallel activities. The later approach is implemented in Skanidum as it can be
used to abort recursive searches, once a result is found.

In the case of the Skandium library, a task is cancelled as follows (this also
applies to direct task cancellation by a user). If the tasks is in the ready-queue
then it is removed. If the task is in execution, then it stopped as soon as possible:
after the task’s current instruction is finished, but before the next instruction
begins. Finally, if the task is in waiting state, then each of its sub-tasks are
aborted (recursively).

When an exception is raised, it unwinds the task’s execution stack until a
handler is found and the computation can continue, or until the task’s stack is
empty. When the stack is empty, the exception is either returned to the user
(for root-tasks) or passed to the parent-task (for sub-tasks). When a parent re-
ceives an exception from a sub-task all of the sub-task’s siblings are aborted,
and the exception continues to unwind the parent’s stack. Note that an excep-
tion propagation will not abort parallel activities from different root-tasks (task
parallelism) as they do not have a common task ancestor.



1 class SplitList implements Split<Range, Range> throws ArrayIndexOutOfBoundsException{

3 @Override
public Range[] split(Range r){

5

int i = partition(r.array, r.left, r.right);
7 Range[] intervals ={new Range(r.array, r.left, i-1), new Range(r.array, i+1, r.right)};

return intervals;
9 }

Listing 1.2. Skandium Muscle Example

1 interface ExceptionHandler<P,R, E extends Exception>{
public R handle(P p, E exception) throws Exception;

3 }

Listing 1.3. Exception Handler Interface

5.2 Skandium API with Exception

The code in Listing 1.1 shows how simple it is to interact with the Skandium
API to input data and retrieve the result. Lines 1-7 show how a Divide and
Conquer (DaC) skeleton is built using four muscle functions and an exception
handler. Line 10 shows how new data is entered into the skeleton. In this case
a new Range(...) contains an array and two indexes left and right which
represent the minimum and maximum indexes to consider. The input yields a
future which can be used to cancel the computation, query or block for results.
Finally, lines 16-20 block until the result is available or an exception is raised.

Listing 1.2 shows the definition of a skandium muscle, which provides the
functional (business) behavior to a skeleton. In the example, the SplitList

muscle implements the Split<P,R> interface, and thus requires the implemen-
tation of the R[] split(P p) method. Additionally, the muscle may raise an
ArrayIndexOutOfBoundsException when stepping outside of an array.

5.3 Exception Handler

An exception handler is a function h : e → r which transforms an exception into
a regular result. All exception handlers must implement the ExceptionHandler

interface shown in Listing 1.3.

The handler is in charge of transforming an exception raised by a sub-skeleton
or muscle into a result. The objective is to have a chance to recover from an error
and continue with the computation.

Listing 1.4 shows an example of an exception handler. If for some reason
the SplitList.split(...) shown in Listing 1.2 raises an ArrayIndexOutOf

BoundException, then we use the handler to catch the exception and directly
sort the array Range without subdividing.



1 class HandleSortException<Range, Range, ArrayIndexOutOfBoundException> {
public Range handle(Range r, Exception e){

3 Arrays.sort(r.array, r.left, r.right+1);
return r;

5 }
}

Listing 1.4. Exception Handler Interface

Caused by: java.lang.Exception: Solve Test Exception
2 at examples.nqueens.Solve.execute(Solve.java:26)
at examples.nqueens.Solve.execute(Solve.java:1)

4 at instructions.SeqInst.interpret(SeqInst.java:53)
at system.Interpreter.interLoop(Interpreter.java:69)

6 at system.Interpreter.inter(Interpreter.java:163)
at system.Task.run(Task.java:137)

Listing 1.5. Real Low-level Stack Trace

5.4 High-level Stack Trace

If the exception is raised outside of the Skandium library, ie when invoking
Future.get() as shown in Listing 1.1, then this means that no handler was
capable of catching the exception and the error is reported back to the program-
mer.

A stack-trace would have, for example, the form shown on Listing 1.5. This
is the real stack-trace which corresponds to the actual Java stack-trace. In the
example, line 2 generated the exception from inside the Solve.execute(...)

muscle. This muscle was executed through a SeqInst instruction which in turn
was called by the interpretation methods.

The problem with the real stack-trace, is that the lower-level implementation
details are exposed to programmers. In this case the SeqInst instruction, thus
breaking the high-level abstraction offered by algorithmic skeletons. Further-
more, the stack-trace is flat since there is no evidence of the skeleton nesting.
In regular programming, this would be equivalent to printing only the name
of the function which generated the exception, without actually printing the
calling function. Furthermore, the function Solve.execute() could have been
nested into more than one skeleton in the application, and it is impossible to
know by inspecting the stack-trace from which of the nestings the exception was
generated.

Therefore, we have introduced a high-level stack-trace which hides the inter-
nal interpretation details by not exposing instruction level elements and instead
traces the skeleton nesting. The high-level stack-trace for the same example is
shown in Listing 1.6. Lines 4-7 of the low-level stack-trace shown in Listing 1.5
are replaced by lines 4-6 in Listing 1.6. Thus it is evident that the error was
generated by a Solve muscle nested inside a DaC which in turn was nested into
a Map skeleton.



1 Caused by: java.lang.Exception: Solve Test Exception
at examples.nqueens.Solve.execute(Solve.java:26)

3 at examples.nqueens.Solve.execute(Solve.java:1)
at skeletons.Seq.<init>(DaC.java:68)

5 at skeletons.DaC.<init>(NQueens.java:53)
at skeletons.Map.<init>(NQueens.java:60)

Listing 1.6. High-level Stack Trace

To produce a high-level stack-trace three steps are required in the library’s
implementation:

1. When a new skeleton object is created, it must remember its trace: class,
method, file and line number. This corresponds to τ in Section 4.1.

2. When the skeleton object is transformed into an instruction, the trace must
be copied to the instruction (Figure 3 of Appendix A).

3. When an exception is raised, an instruction unwinds the stack and adds its
corresponding trace to the high-level stack-trace. This corresponds to the
E-RAISE rule in Section 4.1.

6 Conclusions

This paper has presented an exception management model for algorithmic skele-
ton, in particular for the Java Skandium Library which supports nestable par-
allelism patterns. The whole library, including exception management, has been
formally specified, and the operational semantics for dealing with exception was
also presented.

In our model, exceptions can be raised and handled at each level of the
skeleton nesting structure. Each skeleton can have handlers attached, specified
by programmers through and API. The handlers are capable of catching errors
and returning regular results, or raising the exception to be handled by the
parent skeleton. Additionally, the raised exceptions are dynamically modified
to reflect the nesting of skeleton patterns. Furthermore, no trace of lower-level
library methods are exposed to programmers and excceptions do not break the
abstraction level.
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11. Joel Falcou and Jocelyn Sérot. Formal semantics applied to the implementation
of a skeleton-based parallel programming library. In G. R. Joubert, C. Bischof,
F. J. Peters, T. Lippert, M. Bcker, P. Gibbon, and B. Mohr, editors, Parallel
Computing: Architectures, Algorithms and Applications (Proc. of PARCO 2007,
Julich, Germany), volume 38 of NIC, pages 243–252, Germany, September 2007.
John von Neumann Institute for Computing.

12. G. H. Botorog and H. Kuchen. Efficient high-level parallel programming. Theor.
Comput. Sci., 196(1-2):71–107, 1998.

13. Herbert Kuchen. A skeleton library. In Euro-Par ’02: Proceedings of the 8th
International Euro-Par Conference on Parallel Processing, pages 620–629, London,
UK, 2002. Springer-Verlag.

14. Herbert Kuchen and Murray Cole. The integration of task and data parallel skele-
tons. Parallel Processing Letters, 12(2):141–155, 2002.

15. Bruno Bacci, Marco Danelutto, Salvatore Orlando, Sussana Pelagatti, and Marco
Vanneschi. P3L: A structured high level programming language and its structured
support. Concurrency: Practice and Experience, 7(3):225–255, May 1995.

16. D. Caromel and G. Chazarain. Robust exception handling in an asynchronous
environment. In A. Romanovsky, C. Dony, JL. Knudsen, and A. Tripathi, ed-
itors, Proceedings of ECOOP 2005 Workshop on Exception Handling in Object
Oriented Systems. Tech. Report No 05-050, Dept. of Computer Science, LIRMM,
Montpellier-II Univ. July. France, 2005.

17. Louis Gesbert and Frederic Loulergue. Semantics of an exception mechanism for
bulk synchronous parallel ml. In PDCAT ’07: Proceedings of the Eighth Interna-
tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies, pages 201–208, Washington, DC, USA, 2007. IEEE Computer Society.

18. Aaron W. Keen and Ronald A. Olsson. Exception handling during asynchronous
method invocation (research note). In Euro-Par ’02: Proceedings of the 8th In-
ternational Euro-Par Conference on Parallel Processing, pages 656–660, London,
UK, 2002. Springer-Verlag.

19. John S. Danaher, I.-Ting Angelina Lee, and Charles E. Leiserson. Programming
with exceptions in jcilk. Sci. Comput. Program., 63(2):147–171, 2006.



A Appendix: Operational Semantics for Algorithmic

Skeletons

Notation. The semantics in this section distinguish three types of reductions.
The “⇒” arrow used for global reductions where the context of the execution
(e.g. other parallel processes) is explicitly expressed; the “→” arrow used for
local reductions occurring in a single process, it only focuses on local reductions
of instructions that do not involve communications between processes; and the
“։” arrow used for transformations between languages (i.e. compilation).

A.1 The Instruction Language

Once the skeleton program is defined, it is transformed into a lower-level internal
representation, hidden from programmers, in charge of exploiting the parallelism
patterns. We call these internal representation instructions:

I ::=idI(f) | seqI(f) |pipeI({J}) | ifI(fc, Jtrue, Jfalse) |forI(i, J) | whileI(fc, J) |

mapI(fs, J, fm) | forkI(fs, {J}, fm) |d&cI(fs, fc, J, fm) |

choiceI(p, Jtrue, Jfalse) |divI({J}, fc) | conqI(fm)

J ::= I | J ↑ h(τ)

Where J is an instruction that allows for an exception handler h(τ). Several
instructions can be concatenated into a stack S as:

S-def

S ::= r · J1 · . . . · Jn | J(r) · J1 · . . . · Jn

A stack my allow for an exception handler, which is ready to catch raised
exceptions:

H-def

H ::= S | H ↑ h(τ, p) | H1 · . . . · Hn

Several H can exist in parallel (‖), and Ω ranges over all parallel composi-
tions:

context-def

Ω ::= H | r | Ω ‖ Ω

Parallel activities are commutative, as the order in which stacks can be com-
puted in parallel is irrelevant:

commutativity

Ω‖Ω′ ≡ Ω′‖Ω

Also, parallel activities can progress:



H-progress

H ⇒ H ′

H‖Ω ⇒ H ′‖Ω

context-handler

H ⇒ H ′

H ↑ h(τ, p) ⇒ H ′ ↑ h(τ, p)

context-handler-stack

H ⇒ H ′

H · H2 · . . . · Hn ⇒ H ′ · H2 · . . . · Hn

When a parameter is delivered it is processed by the next instructoin J as
follows:

next

r · J1 · . . . · Jn ⇒ J1(r) · . . . · Jn

A.2 Transformation Rules

Skeletons are transformed (△ ։ J) into instructions as shown in Figure 3.
For example, the PIPE-TRANS says that a pipe skeleton composed of a list of
skeletons [△1, ...,△k] and an exception handler h is transformed into a pipeI

instruction composed of a list of instructions [J1, ..., Jk] and a handler h(τ), if
each skeleton △i can be transformed into a instructions Ji.

A.3 Reduction Rules

Non-atomicity is important to allow concurrent executions. For simplicity, the
reduction rules presented in Figure 4 base all concurrent executions on the non-
atomicity of seqI as it is used to wrap the evaluation of muscles.

Therefore, for non-atomic execution of seqI we define the following rules:

non-atomic-seq-inst

f(p) → f ′(p′)

seqI(f)(p) → seqI(f
′)(p′)

return-value-seq-inst

f(p) → r

seqI(f)(p) → r

The non-atomic-seq-inst rule states that if a function f(p) can be evalu-
ated to an intermediate state f ′(p′), then the seqI(f)(p) instruction can also be
evaluated to an intermediate state seqI(f

′)(p′).
If a skeleton receives multiple parameters, and the instructions of a stack are

stateless, then they can be parallelized as follows:

task-‖

J [p1, . . . , pm] → J(p1)‖ . . . ‖J(pm)

This reduction is what we call task parallelism. The stack S is copied m

times, and each copy is applied to one of the parameters.
On the other hand, data parallelism is expressed with the divI and conqI

instructions. The divI instruction is reduced as follows:



seq-trans

seq(f, h) ։ seqI(f) ↑ h(τ)

farm-trans
△ ։ J

farm(△, h) ։ J ↑ h(τ)

pipe-trans
△i ։ Ji ∀i/0 < i ≤ k

pipe([△1, ...,△k], h) ։ pipeI([J1, ..., Jk]
| {z }

length k

) ↑ h(τ)

while-trans
△ ։ J

while(fc,△, h) ։ whileI(fc, J) ↑ h(τ)

if-trans
△true ։ Jtrue △false ։ Jfalse

if(fc,△true,△false, h) ։ ifI(fc, Jtrue, Jfalse) ↑ h(τ)

for-trans
△ ։ J

for(n,△, h) ։ forI(n, J) ↑ h(τ)

map-trans
△ ։ J

map(fs,△, fm, h) ։ mapI(fs, J, fm) ↑ h(τ)

fork-trans
∀△i ∈ {△} △i ։ Ji

fork(fs, {△}, fm, h) ։ forkI(fs, {S}, fm) ↑ h(τ)

d&c-trans
△ ։ J

d&c(fc, fs,△, fn, h) ։ d&cI(fc, fs, J, fm) ↑ h(τ)

Fig. 3. Transformation Rules



data-‖

{J} = [J1, .., Jn]

divI({J}, fc)([p1, ..., pn]) → conqI(fc)(J1(p1)‖ . . . ‖Jn(pn))

The list of parameters [p1, ..., pn] is spread over the list of instructions {J}
and applied as Ji(pi). Data parallelism is achieved since each instruction can be
computed in parallel with the others.

The progress of the parallel activities is reflected in the conq-inst-progress
rule. When the evaluation of the parallel activities is concluded (r1‖ . . . ‖rn), the
results are passed as parameters to the conqI instruction and reduced by the
conq-inst-reduce rule:

conq-inst-progress

Ω ⇒ Ω′

conqI(fc)(Ω) → conqI(fc)(Ω
′)

conq-inst-reduce

conqI(fc)(r1‖ . . . ‖rn) → seq(fc)([r1, ..., rn])

Note that values (or results) are totally reduced terms that could also be
called normal forms.



pipe-reduction-n
k ≥ 1

pipeI([J1, ..., Jk])(p) → J1(p) · pipeI([J2, ..., Jk])

pipe-reduction-0

pipeI([])(p) → p

if-inst

ifI(fc, Jtrue, Jfalse)(p) → seqI(fc)(p) · choice(p, Jtrue, Jfalse)
id-inst

idI(p) → p

choice-inst-true

choiceI(p, Jtrue, Jfalse)(true) → Jtrue(p)
choice-inst-false

choiceI(p, Jtrue, Jfalse)(false) → Jfalse(p)

while-inst

whileI(fc, J)(p) → ifI(fc, J · whileI(fc, J), idI)(p)

for-inst-n
n > 0

forI(n, J)(p) → J(p) · forI(n − 1, J)

for-inst-0

forI(0, J)(p) → p

map-inst

mapI(fs, J, fm)(p) → seqI(fs)(p) · divI(

k times
z }| {

[J, . . . , J ], fm)

fork-inst

forkI(fs, {J}, fm)(p) → seqI(fs)(p) · divI({J}, fm)

d&c-inst
I = d&cI(fc, fs, J, fm)

I(p) → ifI(fc, seqI(fs) · divI([I, . . . , I], fm), J)(p)

inst-arrow
I(p) → J(r) · J2 · . . . · Jn

I(p) ⇒ J(r) · J2 · . . . · Jn

non-atomic-seq-inst

f(p) → f ′(p′)

seqI(f)(p) → seqI(f
′)(p′)

return-value-seq-inst

f(p) → r

seqI(f)(p) → r

task-‖

J [p1, . . . , pm] → J(p1)‖ . . . ‖J(pm)

data-‖

{J} = [J1, .., Jn]

divI({J}, fc)([p1, ..., pn]) → conqI(fc)(J1(p1)‖ . . . ‖Jn(pn))

conq-inst-progress

Ω ⇒ Ω′

conqI(fc)(Ω) → conqI(fc)(Ω
′)

conq-inst-reduce

conqI(fc)(r1‖ . . . ‖rn) → seq(fc)([r1, ..., rn])

Fig. 4. Reduction Rules
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