
HAL Id: inria-00439232
https://hal.inria.fr/inria-00439232v2

Submitted on 28 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic types and pattern matching in the logical
language of the Why verification platform

Andrei Paskevich

To cite this version:
Andrei Paskevich. Algebraic types and pattern matching in the logical language of the Why verification
platform. [Research Report] RR-7128, INRIA. 2009. �inria-00439232v2�

https://hal.inria.fr/inria-00439232v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
1

2
8

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Algebraic types and pattern matching in the logical

language of the WHY verification platform

Andrei Paskevich

N° 7128

Novembre 2009

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Algebraic types and pattern matching in the

logical language of the Why verification platform

Andrei Paskevich
∗

Thème : Programmation, vérification et preuves
Équipe-Projet Proval

Rapport de recherche n° 7128 — Novembre 2009 — 12 pages

Abstract: We introduce an extension of the logical language of a software
verification tool Why with algebraic types and pattern matching expressions.
We describe the corresponding additions to the syntax of Why and give the
semantics of the new constructions in terms of first-order logic with polymorphic
types as it is adopted in Why and the Alt-Ergo prover.

Key-words: formal language, first-order logic, algebraic types, pattern match-
ing

∗ This work is supported by the ANR CAT project.

Les types algébriques et le filtrage par motif dans

le langage logique de la plateforme de vérification

Why

Résumé : On introduit une extension du langage logique de l’outil de vérifica-
tion des logiciels Why avec des types algébriques et des expressions de filtrage
par motif. On décrit les modifications correspondantes de la syntaxe de Why et
on donne la sémantique des nouvelles constructions dans la logique du premier
ordre avec des type polymorphes telle qu’elle est adoptée dans Why et dans le
démonstrateur automatique Alt-Ergo.

Mots-clés : langage formel, logique du premier ordre, types algébriques,
filtrage par motif

Algebraic types and pattern matching in Why 3

1 Motivation

This work was inspired by the recent experiments [1] with verification of floating-
point computations in Why [2]. According to the IEEE Standard 754, which
specifies the representation and operation for the floating-point numbers, at any
point a programmer can choose: one of five different encodings (binary numbers
of single, double, and quadruple precision and decimal numbers of double and
quadruple precision); one of five rounding algorithms; a computation mode with
or without overflows. Correspondingly, the logical annotations in a floating-
point program must take into account the encoding of a particular variable or
constant, as well as the current rounding algorithm and computation mode.
This can be done, of course, with a number of appropriately chosen predicates
and series of «if-then-else» expressions. However, a more elegant solution would
be to use three enumerated types, namely:

FPencoding = {BinSingle, BinDouble, BinQuad, DecDouble, DecQuad}

FProunding = {NearestTieEven, NearestTieInf, ToZero, ToPInf, ToNInf}

FPoverflow = {OFallowed, OFexception}

and to use branching constructions in logical formulas and terms. And since the
logic of Why supports polymorphism, it is just natural to treat enumerations
as a special case of polymorphic algebraic types à la Haskell or ML.

The principal objectives of this work are as follows:

1. Propose a syntax for algebraic types declaration and for pattern matching
expressions which is consistent with the overall syntax of Why.

2. Devise an appropriate semantics for algebraic types and pattern matching
expressions in terms of first-order logic with polymorphism, which is han-
dled by the Alt-Ergo prover [3] and (via encoding) by other automated
SMT provers supported by Why.

3. Based on this semantics, implement a translation procedure optimized for
an efficient proof search in an SMT prover.

2 Syntax

We use BNF notation to present grammar rules. Non-terminals are written in
italic (e.g. typedefn) and terminals in typewriter font (e.g. match). Grammar
productions have the form:

nonterm → alt1 | alt2 | . . . | altn

and the following conventions are adopted:

pat
1
| pat

2
choice (pattern) grouping

[pattern] optional { pattern } zero or more repetitions

RR n° 7128

4 Andrei Paskevich

2.1 Type declaration

In the original language of Why, the declaration of an abstract logical type has
the following syntax:

typeDecl → type typeHead

typeHead → ident

| typeVar ident

| (typeVar , typeVar { , typeVar }) ident

typeVar → ’ ident

ident → (_|a| . . . |z|A| . . . |Z) {_|a| . . . |z|A| . . . |Z|0| . . . |9|’}

The three variants of the typeHead non-terminal describe, respectively, the in-
troduction of nullary, unary, and n-ary type constructors (for n > 1). In the
third variant, all the type variables must be distinct. Built-in types and abstract
types are the pure types of Why:

pureType → ident

| pureType ident

| (pureType , pureType { , pureType }) ident

| int | bool | real | unit

| typeVar

Every ident occurring in a pure type must be a previously declared type con-
structor of the corresponding arity.

To introduce algebraic types, we augment the above syntax as follows:

typeDecl → type typeHead [= typeDefn { typeDeclCont }]

typeDeclCont → and typeHead = typeDefn

typeDefn → [|] constructor { | constructor }

constructor → ident [(pureType { , pureType })]

An example of algebraic type declaration is given in Figure 1. It represents
partially interpreted first-order formulas and terms with Hilbert’s epsilon oper-
ator. The constructors Forall and Epsilon bind a variable in the underlying
formula; bound variables are encoded as de Bruijn’s indexes. The type of signa-
ture symbols and the carrier type are passed as the arguments (’sym and ’val,
respectively) to the type constructors formula and term.

An algebraic type declaration must have at least one constructor, since every
type is inhabited in the logic of Why. Just as with abstract types, all type
variables in an occurrence of typeHead must be distinct. In mutually recursive
type declarations, the type constructors do not need to be given the same list of
arguments (though they are in this example). Every type variable occurring in a
constructor declaration must appear among the arguments of the corresponding
type constructor in typeHead; for instance, heterogeneous lists are not supported.

INRIA

Algebraic types and pattern matching in Why 5

type ’a list = Nil | Cons (’a, ’a list)

type (’sym,’val) formula =

| False

| Implies ((’sym,’val) formula, (’sym,’val) formula)

| Forall ((’sym,’val) formula)

| Atom (’sym, (’sym,’val) term list)

and (’sym,’val) term =

| Value (’val)

| Variable (int)

| Epsilon ((’sym,’val) formula)

| Term (’sym, (’sym,’val) term list)

Figure 1: Algebraic type declaration

2.2 Match expressions

We extend the logicExpr non-terminal (which describes both terms and formulas
in the logical language) with the following productions:

logicExpr → . . .

| match logicExpr with matchCases end

matchCases → [|] matchCase { | matchCase }

matchCase → pattern -> logicExpr

pattern → ident [(ident { , ident })]

Match expressions can occur both as formulas and as terms. Matching must be
exhaustive and all patterns must be linear (i.e. all the variables in a pattern are
distinct). Currently, we do not support nested patterns in match expressions;
any match expression must have exactly one branch per constructor. Note that
constructors and pattern variables are represented by the same lexeme, ident.
This does not pose a problem as long as all patterns are flat: the upper ident is
necessarily a constructor and the rest are variables. For nested patterns, some
discrimination rules will have to be established.

In the current syntax of Why, the underscore character _ is a valid variable
name. Thus, we cannot use it as an anonymous wildcard in patterns; in partic-
ular, several underscores in a pattern would violate linearity. While making a
single underscore a reserved lexeme is a reasonable decision, this would create
a non-conservative change of syntax and has to be taken with greater care.

Examples of match expressions are given in Figure 2. We do not consider
recursive functions here, as Why does not currently support such definitions.

RR n° 7128

6 Andrei Paskevich

predicate isEmpty (l : ’a list) =

match l with

| Nil -> true

| Cons (a,b) -> false

end

type float

type FPencoding = BinSingle | BinDouble | BinQuad

| DecDouble | DecQuad

logic floatEnc : float -> FPencoding

function expMax (r : float) : int =

match (floatEnc (r)) with

| BinSingle -> 127

| BinDouble -> 1023

| BinQuad -> 16383

| DecDouble -> 384

| DecQuad -> 6144

end

Figure 2: Match expressions

3 Translation

3.1 Type declaration

Let us consider a generic algebraic type declaration:

type (α1, . . . , αm) D = C1 (T1,1, . . . ,T1,e1)
...

| Cn (Tn,1, . . . ,Tn,en)

We denote the type constructor by D, type variables by αi, constructors by Ck,
and pure types by Tk,l. This declaration corresponds to the following suite of
declarations in the base logic of Why.

First of all, the type constructor is declared as an abstract type:

type (α1, . . . , αm) D

Then each constructor is declared as an abstract function to this type:

logic C1 : T1,1, . . . ,T1,e1 -> (α1, . . . ,αm) D
...

logic Cn : Tn,1, . . . ,Tn,en -> (α1, . . . ,αm) D

INRIA

Algebraic types and pattern matching in Why 7

In order to ensure uniqueness of matching, we define a discrimination function
D_match of arity n+ 1 (below, β is a fresh type variable):

logic D_match : (α1, . . . ,αm) D, β, . . . , β -> β

axiom D_match_C1 :

forall y1, . . . ,yn :β. forall x1 :T1,1. . . . forall xe1 :T1,e1.

D_match(C1(x1, . . . ,xe1), y1, . . . , yn) = y1
...

axiom D_match_Cn :

forall y1, . . . ,yn :β. forall x1 :Tn,1. . . . forall xen :Tn,en.

D_match(Cn(x1, . . . ,xen), y1, . . . , yn) = yn

To ensure that the constructors are injective, each argument position in each
constructor is provided with an access function:

logic C1_proj_1 : (α1, . . . ,αm) D -> T1,1

axiom C1_proj_1_def : forall x1 :T1,1. . . . forall xe1 :T1,e1.

C1_proj_1(C1(x1, . . . ,xe1)) = x1

...

logic C1_proj_e1 : (α1, . . . ,αm) D -> T1,e1

axiom C1_proj_e1_def : forall x1 :T1,1. . . . forall xe1 :T1,e1.

C1_proj_e1(C1(x1, . . . ,xe1)) = xe1
...

logic Cn_proj_1 : (α1, . . . ,αm) D -> Tn,1

axiom Cn_proj_1_def : forall x1 :Tn,1. . . . forall xen :Tn,en.

Cn_proj_1(Cn(x1, . . . ,xen)) = x1

...

logic Cn_proj_en : (α1, . . . ,αm) D -> Tn,en

axiom Cn_proj_en_def : forall x1 :Tn,1. . . . forall xen :Tn,en.

Cn_proj_en(Cn(x1, . . . ,xen)) = xen

Finally, we provide the inversion axiom postulating that every element of the
type is the result of a constructor application:

axiom D_inversion : forall x : (α1, . . . ,αm) D.

x = C1(proj_C1_1(x), . . . , proj_C1_e1(x)) or . . .

. . . or x = Cn(proj_Cn_1(x), . . . , proj_Cn_en(x))

The minimality of the type carrier (i.e. that every element of the type is
expressible as a finite superposition of constructors) is not directly expressible
in a first-order language, and so we omit it.

The case of mutually recursive type declarations is handled in the same way,
except that the abstract type declarations are put out first, before all the logic
and axiom declarations.

RR n° 7128

8 Andrei Paskevich

The axioms for D_match given above are sufficient to prove, for instance,
that two different constructors never produce the same value. However, such
an inference is unlikely to be reproduced in an SMT prover such as Alt-Ergo.
Therefore, it may be advantageous to introduce in translation a special instance
of the D_match function:

logic D_to_int : (α1, . . . ,αm) D -> int

axiom D_to_int_C1 : forall x1 :T1,1. . . . forall xe1 :T1,e1.

D_to_int(C1(x1, . . . ,xe1)) = 1
...

axiom D_to_int_Cn : forall x1 :Tn,1. . . . forall xen :Tn,en.

D_to_int(Cn(x1, . . . ,xen)) = n

In Figure 3, we show the automatically generated translation of the list type
declaration (see Figure 1) in the syntax of Alt-Ergo. The terms in square
brackets are so-called «triggers» which are used to guide instantiation in SMT
provers: basically, a universally quantified formula is instantiated whenever its
trigger matches a ground subterm in some other formula, initial or inferred.
Note that we hint the subordinate SMT prover to instantiate definitions of
projection and discrimination functions (Ci_proj_j and D_to_int) for every
ground occurrence of a constructor.

3.2 Match expression

Translation of match expressions depends on whether they occur as terms or as
formulas. Let us consider a generic match expression:

match t with

| C1 (x1,1, . . . ,x1,e1) -> E1

...

| Cn (xn,1, . . . ,xn,en) -> En

end

Here, t is a term of some algebraic type (T1, . . . ,Tm) D; C1, . . . , Cn are the
constructors of this type; xi,j are the pattern variables bound in Ei; and Ei are
either formulas or terms of the same type. Recall that xi,1, . . . , xi,ei must be
distinct variables.

If this match expression occurs as a term, it is translated to an application
of the D_match function as follows:

D_match(t , E1[x1,1/C1_proj_1(t), . . . , x1,e1/C1_proj_e1(t)] ,
...

En[xn,1/Cn_proj_1(t), . . . , xn,en/Cn_proj_en(t)])

The pattern variables are simultaneously replaced with the corresponding pro-
jections in the arguments of D_match.

When the match expression is a formula, the expressions E1, . . . , En are for-
mulas, too, and so we cannot pass them as the arguments to D_match. Instead,

INRIA

Algebraic types and pattern matching in Why 9

type ’a3 list

logic Nil : ’a1 list

logic Cons : ’a1, ’a1 list -> ’a1 list

logic list_match : ’a1 list, ’a2, ’a2 -> ’a2

axiom list_match_Nil :

(forall x_1 : ’a2. (forall x_2 : ’a2

[list_match(Nil, x_1, x_2)].

(list_match(Nil, x_1, x_2) = x_1)))

axiom list_match_Cons :

(forall x_1 : ’a2. (forall x_2 : ’a2.

(forall x_3 : ’a1. (forall x_4 : ’a1 list

[list_match(Cons(x_3, x_4), x_1, x_2)].

(list_match(Cons(x_3, x_4), x_1, x_2) = x_2)))))

logic Cons_proj_1 : ’a1 list -> ’a1

axiom Cons_proj_1_def :

(forall x_6 : ’a1. (forall x_7 : ’a1 list

[Cons(x_6, x_7)].

(Cons_proj_1(Cons(x_6, x_7)) = x_6)))

logic Cons_proj_2 : ’a1 list -> ’a1 list

axiom Cons_proj_2_def :

(forall x_6 : ’a1. (forall x_7 : ’a1 list

[Cons(x_6, x_7)].

(Cons_proj_2(Cons(x_6, x_7)) = x_7)))

axiom list_inversion :

(forall x_5 : ’a1 list.

((x_5 = Nil) or

(x_5 = Cons(Cons_proj_1(x_5), Cons_proj_2(x_5)))))

logic list_to_int : ’a1 list -> int

axiom list_to_int_Nil :

(list_to_int(Nil) = 0)

axiom list_to_int_Cons :

(forall x_1 : ’a1. (forall x_2 : ’a1 list

[Cons(x_1, x_2)].

(list_to_int(Cons(x_1, x_2)) = 1)))

Figure 3: Algebraic type declaration (translation)

RR n° 7128

10 Andrei Paskevich

we choose one of the two possible translations:

(t = C1(proj_C1_1(t), . . . , proj_C1_e1(t)) ->

E1[x1,1/C1_proj_1(t), . . . , x1,e1/C1_proj_e1(t)]) and . . .

. . . and (t = Cn(proj_Cn_1(t), . . . , proj_Cn_en(t)) ->

En[xn,1/Cn_proj_1(t), . . . , xn,en/Cn_proj_en(t)])

or

(t = C1(proj_C1_1(t), . . . , proj_C1_e1(t)) and

E1[x1,1/C1_proj_1(t), . . . , x1,e1/C1_proj_e1(t)]) or . . .

. . . or (t = Cn(proj_Cn_1(t), . . . , proj_Cn_en(t)) and

En[xn,1/Cn_proj_1(t), . . . , xn,en/Cn_proj_en(t)])

The two formulas are equivalent in presence of the inversion axiom and the
axioms for D_match. The current implementation always chooses the second
one. In future, the choice will be driven by the polarity of the match expression’s
occurrence.

Thus, the definition of the isEmpty predicate from Figure 2 is translated
into the syntax of Alt-Ergo as follows:

predicate isEmpty(l : ’a1 list) =

(((l = Nil) and true) or

((l = Cons(Cons_proj_1(l), Cons_proj_2(l))) and false))

And here is the translation of the definition of the expMax function from Figure 2:

function expMax(r : float) : int =

FPencoding_match(floatEnc(r), 127, 1023, 16383, 384, 6144)

Finally, the rev2_def axiom shown at the screen-shot in Figure 4 is rendered
by the following declaration:

axiom rev2_def :

(forall l1: ’a1 list. (forall l2: ’a1 list [rev2(l1, l2)].

(rev2(l1, l2) = list_match(l1, l2,

rev2(Cons_proj_2(l1), Cons(Cons_proj_1(l1), l2))))))

4 Experiments

We made tests on several examples; see examples/linked_lists/reverse.why
and lib/why/floats_common.why in the standard distribution of Why [4].

In the first example, we introduce the algebraic type of lists (as in Figure 1)
and define recursive functions app (concatenation of lists) and rev2 (concate-
nation with reversal). Since recursive function definitions are not allowed in
Why, we declare app and rev2 as abstract logical symbols and provide suitable
axioms. See Figure 4 for the definition of rev2. Then we formulate several sim-
ple lemmas which do not require induction («User goals» section in Figure 4).
With the help of provided triggers, the SMT provers Alt-Ergo and Simplify

INRIA

Algebraic types and pattern matching in Why 11

Figure 4: Simple lemmas about lists (GWhy interface)

[5] prove all these lemmas. Also, the CVC3 [6] prover, which does not rely on
user-defined triggers, proves 9 of 11 lemmas.

The second example introduces enumerated types representing floating num-
ber formats and rounding modes as described in the introduction. Then several
constants (e.g. the maximal and minimal representable value) are defined as
functions of the number format using a match expression. A number of simple
statements invoking these functions are then automatically proved.

5 Future work

We conclude by briefly enumerating the planned enhancements to this work in
the upcoming versions of Why.

Extended matching. The syntax of match expressions is to be generalized
to support tuple matching and nested patterns with wildcards:

logicExpr → . . .

| match logicExpr { , logicExpr } with matchCases end

matchCases → [|] matchCase { | matchCase }

matchCase → pattern { , pattern } -> logicExpr

pattern → ident [(pattern { , pattern })]

| _

Internally, these expressions will be compiled into superpositions of simple match
expressions as it is done, e.g. in ML-like languages [7]. The exhaustiveness of
matching would still be required.

RR n° 7128

12 Andrei Paskevich

Recursive functions and predicates. The potential of algebraic data types
is quite limited without recursive functions and predicates. Currently, recursive
definitions are not supported in Why. Instead, they are simulated with abstract
logic declarations and appropriate axioms. We plan to extend the definition
syntax of Why so as to allow occurrence of a defined symbol in the right-
hand part of a definition. Simple forms of structural recursion over algebraic
types would be recognized and translated, e.g. for the Coq proof assistant, into
Fixpoint declarations. Otherwise, if the well-foundness of a definition cannot
be established automatically, the definition will be translated into an axiom.

Proofs by induction. When dealing with first-order automated provers that
do not support reasoning by induction, Why can be instructed to apply some
induction rule before sending the problem to a prover. Specifically, a particular
goal in the input file for Why can be annotated with an induction term having
an algebraic type. In the simplest case, this induction term would be some uni-
versally quantified variable in the goal. Then Why can automatically generate
the appropriate sub-goals for the base and step cases. When nested induction
is needed, the inner statements must be separated into standalone lemmas.

References

[1] A. Ayad and C. Marché. Behavioral properties of floating-point programs.
Hisseo publications, 2009. http://hisseo.saclay.inria.fr/ayad09.pdf

[2] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Re-
search Report 1366, LRI, Université Paris-Sud 11, March 2003.

[3] F. Bobot, S. Conchon, É. Contejean, and S. Lescuyer. Implementing Poly-
morphism in SMT solvers. In Barrett and de Moura, editors, SMT 2008:

6th International Workshop on Satisfiability Modulo, 2008.

[4] Why: a software verification platform. http://why.lri.fr

[5] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for pro-
gram checking. Journal of the ACM, 2005

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors,
CAV ’07: 19th International Conference on Computer Aided Verification,
volume 4590 of Lecture Notes in Computer Science, 2007.

[7] Ph. Wadler. Efficient Compilation of Pattern Matching. In Peyton Jones,
editor, The Implementation of Functional Programming Languages, chapter
6. Prentice-Hall, 1987.

INRIA

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

