Manifold reconstruction using Tangential Delaunay Complexes

Jean-Daniel Boissonnat, Arijit Ghosh

To cite this version:

Jean-Daniel Boissonnat, Arijit Ghosh. Manifold reconstruction using Tangential Delaunay Complexes. ACM Symposium on Computational Geometry, Jun 2010, Snowbird, United States. pp.200. hal00487862

HAL Id: hal-00487862
 https://hal.archives-ouvertes.fr/hal-00487862

Submitted on 31 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Manifold Reconstruction using Tangential Delaunay Complexes *

Jean-Daniel Boissonnat
Jean-Daniel.Boissonnat@sophia.inria.fr

Arijit Ghosh
Arijit.Ghosh@sophia.inria.fr

INRIA, Team Geometrica
2004 route des Lucioles
06902 Sophia-Antipolis, France

Abstract

We give a provably correct algorithm to reconstruct a k dimensional manifold embedded in d-dimensional Euclidean space. Input to our algorithm is a point sample coming from an unknown manifold. Our approach is based on two main ideas : the notion of tangential Delaunay complex defined in $[6,19,20]$, and the technique of sliver removal by weighting the sample points [13]. Differently from previous methods, we do not construct any subdivision of the embedding d-dimensional space. As a result, the running time of our algorithm depends only linearly on the extrinsic dimension d while it depends quadratically on the size of the input sample, and exponentially on the intrinsic dimension k. To the best of our knowledge, this is the first certified algorithm for manifold reconstruction whose complexity depends linearly on the ambient dimension. We also prove that for a dense enough sample the output of our algorithm is isotopic to the manifold and a close geometric approximation of the manifold.

Categories and Subject Descriptors

F. 2.2 [Nonnumerical Algorithms and problems]: Geometrical problems and computations; I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and object representations.

General Terms

Algorithms, Theory.

Keywords

Tangential Delaunay complex, Weighted Delaunay triangulation, manifold reconstruction, manifold learning, sampling conditions, sliver exudation.

[^0][^1]
1. INTRODUCTION

Manifold reconstruction consists in computing a PL approximation of an unknown manifold $\mathbb{M} \subset \mathbb{R}^{d}$ from a finite sample of unorganized points \mathcal{P} lying on \mathbb{M} or close to \mathbb{M}. When the manifold is a two-dimensional surface embedded in \mathbb{R}^{3}, the problem is known as the surface reconstruction problem. Surface reconstruction is a problem of major practical interest which has been extensively studied in the fields of Computational Geometry, Computer Graphics and Computer Vision. In the last decade, solid foundations have been established and the problem is now pretty well understood. Refer to Dey's book [17], and the survey by Cazals and Giesen in [10] for recent results. The output of those methods is a triangulated surface that approximates \mathbb{M}. This triangulated surface is usually extracted from a 3-dimensional subdivision of the ambient space (typically a grid or a triangulation). Although rather inoffensive in 3-dimensional space, such data structures depend exponentially on the dimension of the ambient space, and all attempts to extend those geometric approaches to more general manifolds has led to algorithms whose complexities depend exponentially on $d[26,11,14]$.

The problem in higher dimensions is also of great practical interest in data analysis and machine learning. In those fields, the general assumption is that, even if the data are represented as points in a very high dimensional space \mathbb{R}^{d}, they in fact live on a manifold of much smaller intrinsic dimension [28]. If the manifold is linear, well-known global techniques like principal component analysis (PCA) or multi-dimensional scaling (MDS) can be efficiently applied. When the manifold is highly nonlinear, several more local techniques have attracted much attention in visual perception and many other areas of science. Among the prominent algorithms are Isomap [30], LLE [27], Laplacian eigenmaps [4], Hessian eigenmaps [18], diffusion maps [24, 25], principal manifolds [31]. Most of those methods reduces to computing an eigendecomposition of some connection matrix. In all cases, the output is a mapping of the original data points into \mathbb{R}^{k} where k is the estimated intrinsic dimension of \mathbb{M}. Those methods come with no or very limited guarantees. For example, Isomap provides a correct embedding only if \mathbb{M} is isometric to a convex open set of \mathbb{R}^{k}. To be able to better approximate the sampled manifold, another route is to extend the work on surface reconstruction and to construct a PL approximation of \mathbb{M} from the sample in such a way that, under appropriate sampling conditions, the quality of the approximation can be guaranteed. First investigations along this line can be found in the work of

Cheng, Dey and Ramos [14], and Boissonnat, Guibas and Oudot [8]. In both cases, however, the complexity of the algorithms is exponential in the ambient dimension d, which highly reduces their practical relevance.
In this paper, we extend the geometric techniques developped in small dimensions and propose a way to avoid computing data structures in the ambient space. We assume that \mathbb{M} is a smooth manifold of known dimension k and that we can compute the tangent space to \mathbb{M} at any sample point. Under those conditions, we propose a provably correct algorithm that allows to construct a simplicial complex of dimension k that approximates \mathbb{M}. The complexity of the algorithm is linear in d, quadratic in the size n of the sample, and exponential in k. Our work builds on [14] and [8] but dramatically reduces the dependance on d. To the best of our knowledge, this is the first certified algorithm for manifold reconstruction whose complexity depends only linearly on the ambient dimension. In the same spirit, Chazal and Oudot [12] have devised an algorithm of intrinsic complexity to solve the easier problem of computing the homology of a manifold from a sample.

Our approach is based on two main ideas : the notion of tangential Delaunay complex defined in [20, 6, 19], and the technique of sliver removal by weighting the sample points [13]. The tangential complex is obtained by gluing local (Delaunay) triangulations around each sample point. The tangential complex is a subcomplex of the d-dimensional Delaunay triangulation of the sample points but it can be computed using mostly operations in the k-dimensional tangent spaces at the sample points. Hence the dependence on k rather than d in the complexity. However, due to the presence of so-called inconsistencies, the local triangulations may not form a triangulated manifold. Although this problem has already been reported [20], no solution was known except for the case of curves $(k=1)$ [19]. We show that we can remove inconsistencies by weighting the sample points under appropriate sample conditions. We can then prove that the approximation returned by our algorithm is isotopic to \mathbb{M}, and a close geometric approximation of \mathbb{M}.

Our algorithm can be seen as a local version of the cocone algorithm of Cheng et al. [14]. By local, we mean that we do not compute any d-dimensional data structure like a grid or a triangulation of the ambient space. Still, the tangential complex is a subcomplex of the d-dimensional Delaunay triangulation of the data points and therefore implicitly relies on a global partition of the ambient space. This is key to our analysis and makes our method depart from other local algorithms that have been proposed in the surface reconstruction literature [16, 23].
Notations In the rest of the paper, we assume that \mathbb{M} is a smooth manifold of dimension k embedded in \mathbb{R}^{d}. We call $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ a finite sample of points from \mathbb{M}. We denote by T_{p} the k-dimensional tangent space at point $p \in$ \mathbb{M}. We write $B(c, r)$ for the d-dimensional ball centered at c of radius r. We define the angle between two vector spaces U and V as

$$
\begin{equation*}
U V=\max _{u \in U} \min _{v \in V} \angle u v \tag{1}
\end{equation*}
$$

If τ is a j-simplex, the $(d-j)$-dimensional normal space of $\operatorname{aff}(\tau)$ is denoted by N_{τ}.

2. DEFINITIONS AND PRELIMINARIES

2.1 Weighted Delaunay triangulation

2.1.1 Weighted points

A weighted point is a pair consisting of a point p of \mathbb{R}^{d}, called the center of the weighted point, and a non-negative real number $\omega(p)$, called the weight of the weighted point. It might be convenient to visualize the weighted point $(p, \omega(p))$ as the hypersphere (we will simply say sphere in the sequel) centered at p of radius $\omega(p)$.
Two weighted points (or spheres) $(p, \omega(p))$ and $(q, \omega(q))$ are called orthogonal when $\|p-q\|^{2}=\omega(p)^{2}+\omega(q)^{2}$, further than orthogonal when $\|p-q\|^{2}>\omega(p)^{2}+\omega(q)^{2}$, and closer than orthogonal when $\|p-q\|^{2}<\omega(p)^{2}+\omega(q)^{2}$.
Given a point set $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$, a weight function on \mathcal{P} is a non-negative real-valued function $\omega: \mathcal{P} \rightarrow$ $[0, \infty)$. Write $p_{i}^{\omega}=\left(p_{i}, \omega\left(p_{i}\right)\right)$ and $\mathcal{P}^{\omega}=\left\{p_{1}^{\omega}, \ldots, p_{n}^{\omega}\right\}$.
We define the relative amplitude of ω, denoted as $\tilde{\omega}$, as $\max _{p \in \mathcal{P}, q \in \mathcal{P} \backslash\{p\}} \frac{\omega(p)}{\|p-q\|}$. In the paper, we assume that $\tilde{\omega} \leq$ $\omega_{0}<1 / 2$, for some constant ω_{0} to be fixed later.

Given a subset τ of $d+1$ weighted points whose centers are affinely independent, there exists a unique sphere orthogonal to the weighted points of τ. The sphere is called the orthosphere of τ and its center and radius are called the orthocenter and the orthoradius of τ. If τ is a j-simplex, $j<d$, the orthosphere of τ is the smallest sphere that is orthogonal to the (weighted) vertices of τ. Plainly, its center o_{τ} lies in $\operatorname{aff}(\tau)$. The radius of the orthosphere of τ is denoted by R_{τ}^{\prime}.
A finite set of weighted points \mathcal{P}^{ω} is said to be in general position if there exists no sphere orthogonal to $d+2$ weighted points of \mathcal{P}^{ω}.

2.1.2 Weighted Voronoi diagram and Delaunay triangulation

Let ω be a weight function defined over \mathcal{P}. We define the weighted Voronoi cell of $p \in \mathcal{P}$ as

$$
\begin{aligned}
\operatorname{Vor}^{\omega}(p)=\left\{x \in \mathbb{R}^{d}\right. & :\|p-x\|^{2}-\omega^{2}(p) \\
& \left.\leq\|q-x\|^{2}-\omega^{2}(q), \forall q \in \mathcal{P}\right\} .
\end{aligned}
$$

The weighted Voronoi cells and their k-dimensional faces, $0 \leq k \leq d$, form a cell complex, called the weighted Voronoi diagram of \mathcal{P}, that decomposes \mathbb{R}^{d} into convex polyhedral cells. See [2].
Let τ be a subset of points of \mathcal{P} and write $\operatorname{Vor}^{\omega}(\tau)=$ $\cap_{x \in \tau} \operatorname{Vor}^{\omega}(x)$. If the points of \mathcal{P} are in general position, $\operatorname{Vor}^{\omega}(\tau)=\emptyset$ when $|\tau|>d+1$. The collection of all simplices $\operatorname{conv}(\tau)$ such that $\operatorname{Vor}^{\omega}(\tau) \neq \emptyset$ constitutes the weighted Delaunay triangulation $\operatorname{Del}^{\omega}(\mathcal{P})$. The mapping that associates to the face $\operatorname{Vor}^{\omega}(\tau)$ of $\operatorname{Vor}^{\omega}(\mathcal{P})$ the face $\operatorname{conv}(\tau)$ of $\operatorname{Del}^{\omega}(\mathcal{P})$ is a duality, i.e. a bijection that reverses the inclusion relation.
Alternatively, a d-simplex τ is in $\operatorname{Del}^{\omega}(\mathcal{P})$ if the orthosphere of τ is further than orthogonal from all weighted points in $\mathcal{P}^{\omega} \backslash\left\{\tau^{\omega}\right\}$.
The weighted Delaunay triangulation of a set of weighted points can be computed efficiently in small dimensions and has found many applications, see e.g. [3,10]. In this paper, we use weighted Delaunay triangulations for two main reasons. The first one is that the restriction of a d-dimensional weighted Voronoi diagram to an affine space of dimension k is a k-dimensional weighted Voronoi diagram that can be computed without computing the d-dimensional diagram

Figure 1: Refer to Lemma 1. The red line denotes the k-dimensional plane H and the black line denotes $\operatorname{Vor}^{\omega}\left(p_{i} p_{j}\right)$.
(see Lemma 1). The other main reason is that some flat simplices named slivers can be removed from a Delaunay triangulation by weighting the vertices (see [14, 8, 13] and Section 4).

Lemma 1. Let H be a k-dimensional affine space of \mathbb{R}^{d}. The restriction of the weighted Voronoi diagram of \mathcal{P} to H is the k-dimensional weighted Voronoi diagram of \mathcal{P}^{\prime} where \mathcal{P}^{\prime} is the orthogonal projection of \mathcal{P} onto H and the squared weight of p_{i}^{\prime} is $\omega^{2}\left(p_{i}\right)-\left\|p_{i}-p_{i}^{\prime}\right\|^{2}$.

Proof. By Pythagoras theorem, we have $\forall x \in H \cap$ $\operatorname{Vor}^{\omega}\left(p_{i}\right), \quad\left\|x-p_{i}\right\|^{2}-\omega^{2}\left(p_{i}\right) \leq\left\|x-p_{j}\right\|^{2}-\omega^{2}\left(p_{j}\right) \Leftrightarrow \| x-$ $p_{i}^{\prime}\left\|^{2}+\right\| p_{i}-p_{i}^{\prime}\left\|^{2}-\omega^{2}\left(p_{i}\right) \leq\right\| x-p_{j}^{\prime}\left\|^{2}+\right\| p_{j}-p_{j}^{\prime} \|^{2}-\omega^{2}\left(p_{j}\right)$, where p_{i}^{\prime} denotes the orthogonal projection of $p_{i} \in \mathcal{P}$ onto H. Hence the restriction of $\operatorname{Vor}^{\omega}(\mathcal{P})$ to H is the weighted Voronoi diagram of the weighted points $\left(p_{i}^{\prime}, \omega_{i}\right) \in H$ where $\omega_{i}^{2}=-\left\|p_{i}-p_{i}^{\prime}\right\|^{2}+\omega^{2}\left(p_{i}\right)$.

Lemma 2 ([13]). If τ is a simplex of $\operatorname{Del}^{\omega}(\mathcal{P})$, then

1. $\forall z \in \operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$ and $\forall p, q \in \tau$ we have $\|q-z\| \leq$ $\frac{\|p-z\|}{\sqrt{1-4 \omega_{0}^{2}}}$
2. $R_{\tau} \leq \frac{R_{\tau}^{\prime}}{\sqrt{1-4 \omega_{0}^{2}}}$.
3. $\forall z \in \operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$ and $\forall p \in \tau, r_{z}=\sqrt{\|p-z\|^{2}-\omega^{2}(p)}$ $\geq R_{\tau}^{\prime}$.

2.2 Sampling conditions

2.2.1 Local feature size

The medial axis of \mathbb{M} is the closure of the sets of points of \mathbb{R}^{d} that have more than one nearest neighbor on \mathbb{M}. The local feature size of $x \in \mathbb{M}$, $\operatorname{lfs}(x)$, is the distance of x to the medial axis of \mathbb{M}. As is well known and can be easily proved, lfs is Lipschitz continuous i.e, $\operatorname{lfs}(x) \leq \operatorname{lfs}(y)+\|x-y\|$.

2.2.2 (ε, δ)-sample

The point sample \mathcal{P} is said to be an (ε, δ)-sample (where $0<\delta<\varepsilon<1$) if (1) for any point $x \in \mathbb{M}$ there exists a point $p \in \mathcal{P}$ such that $\|x-p\| \leq \varepsilon \operatorname{lfs}(x)$, and (2) for any two distinct points $p, q \in \mathcal{P},\|p-q\| \geq \delta \operatorname{lfs}(p){ }^{1}{ }^{1}$ The ratio ε / δ is called the relative density of \mathcal{P}.

[^2]We will use the following results from [22]. We write l_{p} for the distance between $p \in \mathcal{P}$ and its nearest neighbor in $\mathcal{P} \backslash\{p\}$.

Lemma 3. Given an (ε, δ)-sample \mathcal{P} of \mathbb{M}, we have

1. $\delta \operatorname{lfs}(p) \leq l_{p} \leq \frac{2 \varepsilon}{1-\varepsilon} \mathrm{lfs}(p)$.
2. For any two points $p, q \in \mathbb{M}$ such that $\|p-q\|=t \operatorname{lfs}(p)$, $0<t<1, \sin \angle\left(p q, T_{p}\right) \leq t / 2$.
3. Let p be a point in \mathbb{M}. Let x be a point in T_{p} such that $\|p-x\| \leq t \mathrm{lfs}(p)$ for some $0<t \leq 1 / 4$. Let x^{\prime} be the point on \mathbb{M} closest to x. Then $\left\|x-x^{\prime}\right\| \leq 2 t^{2} \operatorname{lfs}(p)$.

2.3 Slivers and good simplices

Consider a j-simplex τ, where $1 \leq j \leq k+1$. We denote by $R_{\tau}, L_{\tau}, V_{\tau}$ and $\rho(\tau)=R_{\tau} / L_{\tau}$ the circumradius, the shortest edge length, the volume, and the radius-edge ratio of τ respectively. We further define $\sigma(\tau)=\left(V_{\tau} / L_{\tau}^{j}\right)^{1 / j}$, as the sliverity measure of τ. The orthocenter of τ is denoted by o_{τ} and its orthoradius by R_{τ}^{\prime}.

If $p \in \tau$, we define $\tau_{p}=\tau \backslash\{p\}$ to be the $(j-1)$-face of τ opposite to p. We also write $D_{\tau}(p)$ for the distance from p to the affine hull of τ_{p}, and $H_{\tau}(p)$ for the signed distance ${ }^{2}$ from o_{τ} to $\operatorname{aff}\left(\tau_{p}\right)$. We state without proof the following easy lemma.

Lemma 4. Let τ be a simplex of $\operatorname{Del}^{\omega}(\mathcal{P})$ and $p \in \tau$ s.t.

1. There exists $z \in \operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$ s.t. $\|z-p\| \leq L_{1}$.
2. $\|p-q\| \leq L_{2}$ for all vertices q of τ.
3. $R_{\tau}^{\prime} \leq \gamma_{0} L_{\tau}$.

Then $\left|H_{\tau}(x)\right|=\operatorname{dist}\left(\mathrm{o}_{\tau}, \operatorname{aff}\left(\tau_{\mathrm{x}}\right)\right) \leq \mathrm{L}_{1}+\left(1+\gamma_{0}+\omega_{0}\right) \mathrm{L}_{2}$ for all vertices x of τ.
Lemma 5 ([13]). Let τ be a simplex of $\operatorname{Del}^{\omega}(\mathcal{P})$. Let p be any vertex of τ and write $H_{\tau}(\omega(p))$ (instead of $H_{\tau}(p)$) for the signed distance of o_{τ} to $\operatorname{aff}\left(\tau_{p}\right)$ parametrized by the weight of p. We have $H_{\tau}(\omega(p))=H_{\tau}(0)-\frac{\omega^{2}(p)}{2 D_{\tau}(p)}$.
Slivers are a special type of flat simplices. The property of being a sliver is measured in terms of a parameter σ_{0}, called the sliverity bound, to be fixed later in Section 4.

Definition 1 (Sliver). Given a positive parameter σ_{0}, slivers are defined by induction on the dimension : (1) a simplex of dimension less than 3 is not a σ_{0}-sliver, and (2) for $j \geq 3$, a j-simplex τ is a σ_{0}-sliver if $\sigma(\tau)<\sigma_{0}$ and, $\forall \tau^{\prime} \subset \tau$, $\sigma\left(\tau^{\prime}\right) \geq \sigma_{0}$.

Lemma 6. If a j-simplex τ is a σ_{0}-sliver, then $D_{\tau}(p)<$ $j \sigma_{0} L_{\tau}$ for all vertices $p \in \tau$.

Proof. The volume of τ is

$$
V_{\tau}=\frac{V_{\tau_{p}} \cdot D_{\tau}(p)}{j}=\frac{\sigma^{j-1}\left(\tau_{p}\right) L_{\tau_{p}}^{j-1} \cdot D_{\tau}(p)}{j}
$$

and it is also equal to $\sigma^{j}(\tau) L_{\tau}^{j}$. Since τ is a σ_{0}-sliver, we have $\sigma(\tau)<\sigma_{0}$ and $\sigma\left(\tau_{p}\right) \geq \sigma_{0}$. Therefore we get

$$
D_{\tau}(p)=j \frac{\sigma^{j}(\tau)}{\sigma^{j-1}\left(\tau_{p}\right)} \times \frac{L_{\tau}^{j}}{L_{\tau_{p}}^{j-1}}<j \sigma_{0} L_{\tau} .
$$

${ }^{2} H(p)$ is positive if $o_{\tau} \in \operatorname{aff}(\tau)$ and p lie on the same side of aff $\left(\tau_{p}\right)$, and it is negative if they lie on different sides of $\operatorname{aff}\left(\tau_{p}\right)$.

Figure 2: $[p q]$ and $[p r]$ are edges of the star of p in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ since their dual Voronoi edges intersect the tangent space T_{p} at p.

Definition 2 (Good simplex). Given two positive constants ρ_{0} and σ_{0}, a simplex τ is called a $\left(\rho_{0}, \sigma_{0}\right)$-good simplex if $\rho(\tau) \leq \rho_{0}$ and τ nor its subsimplices are σ_{0}-slivers.

The following important lemma is known (see e.g. [14]).
Lemma 7 (Normal approximation). Let τ be a (ρ_{0}, σ_{0})good j-simplex for $j \leq k$ with vertices on a k-dimensional smooth manifold \mathbb{M}, and $p \in \tau$ s.t. the lengths of the edges of τ that are incident to p are less than $c_{3} \varepsilon \operatorname{lfs}(p)$ for $c_{3} \varepsilon<1$. Then, for any normal vector n_{p} of \mathbb{M} at p, τ has a normal n_{τ} such that $\angle n_{p} n_{\tau} \leq \alpha_{j}\left(\sigma_{0}\right) \varepsilon$ where $\alpha_{j}\left(\sigma_{0}\right)$ depends on j, σ_{0}, ρ_{0} and c_{3}, and $1 / \alpha_{j}\left(\sigma_{0}\right)$ vanishes with σ_{0}.

In the sequel, we will simply write $\alpha\left(\sigma_{0}\right)$ for $\alpha_{k}\left(\sigma_{0}\right)$.

2.4 Tangential Delaunay complex and inconsistent configurations

Let $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$ be the weighted Delaunay triangulation of \mathcal{P} restricted to the tangent space $T_{p_{i}}$. Equivalently, the simplices of $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$ are the simplices of $\operatorname{Del}^{\omega}(\mathcal{P})$ whose Voronoi dual faces intersect $T_{p_{i}}$, i.e. $\tau \in \operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$ iff $\operatorname{Vor}^{\omega}(\tau) \cap$ $T_{p_{i}} \neq \emptyset$. Observe that $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$ is in general a k-dimensional triangulation. Since this situation can always be ensured by applying some infinitesimal perturbation on \mathcal{P}, we will assume, in the rest of the paper, that all $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$ are k dimensional triangulations. Finally, write $\operatorname{star}\left(p_{i}\right)$ for the star of p_{i} in $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$, i.e. the set of simplices that are incident to p_{i} in $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$.

We call tangential Delaunay complex or tangential complex for short, the simplicial complex $\{\tau, \tau \in \operatorname{star}(p), p \in$ $\mathcal{P}\}$. We denote it by $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$. By our assumption above, $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ is a k-dimensional complex contained in $\operatorname{Del}^{\omega}(\mathcal{P})$.

By duality, computing $\operatorname{star}\left(p_{i}\right)$ is equivalent to computing the restriction of the (weighted) Voronoi cell of p_{i} to $T_{p_{i}}$, which, by Lemma 1, reduces to computing a cell in a k dimensional weighted Voronoi diagram embedded in $T_{p_{i}}$. It follows that the tangential complex can be computed without constructing any data structure of dimension higher than k, the intrinsic dimension of \mathbb{M}.

The tangential Delaunay complex is not in general a triangulated manifold and therefore not a good approximation of \mathbb{M}. This is due to the presence of so-called inconsistencies. Consider a k-simplex τ of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ with two vertices p_{i} and p_{j} such that τ is in $\operatorname{star}\left(p_{i}\right)$ but not in $\operatorname{star}\left(p_{j}\right)$ (refer to Fig. 3). We write $B_{i}(\tau)$ for the open ball centered on $T_{p_{i}}$ that is orthogonal to the (weighted) vertices of τ^{ω}, and

Figure 3: An inconsistent configuration in the unweighted case. Edge $\left[p_{i} p_{j}\right]$ is in $\operatorname{Del}_{p_{i}}(\mathcal{P})$ but not in $\operatorname{Del}_{p_{j}}(\mathcal{P})$ since $\operatorname{Vor}\left(p_{i} p_{j}\right)$ intersects $T_{p_{i}}$ but not $T_{p_{j}}$. This happens because $\left[c_{p_{i}} c_{p_{j}}\right]$ penetrates (at i_{ϕ}) the Voronoi cell of a point $p_{l} \neq p_{i}, p_{j}$, therefore creating an inconsistent configuration $\phi=\left[p_{i}, p_{j}, p_{l}\right]$.
denote by $c_{p_{i}}$ and $r_{p_{i}}$ its center and its radius. According to our definition, τ is inconsistent iff $B_{i}(\tau)$ is further than orthogonal from all weighted points in $\mathcal{P}^{\omega} \backslash \tau^{\omega}$ while there exists a weighted point of $\mathcal{P}^{\omega} \backslash \tau^{\omega}$, say p_{l}^{ω}, that is closer than orthogonal from $B_{j}(\tau)$. We deduce from the above discussion that the line segment $\left[c_{p_{i}} c_{p_{j}}\right]$ has to penetrate the interior of $\operatorname{Vor}^{\omega}\left(p_{l}\right)$.

We formally define an inconsistent configuration as follows.

Definition 3 (Inconsistent configuration). $\phi=\left[p_{1}\right.$ $\left., \ldots, p_{k+2}\right]$ is called an inconsistent configuration of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ witnessed by the triplet $\left(p_{i}, p_{j}, p_{l}\right)$ if

- The k-simplex $\tau=\phi \backslash\left\{p_{l}\right\}$ is in $\operatorname{star}\left(p_{i}\right)$ but not in $\operatorname{star}\left(p_{j}\right)$.
- τ is a $\left(\rho_{0}, \sigma_{0}\right)$-good simplex.
- $\operatorname{Vor}^{\omega}\left(p_{l}\right)$ is the first cell of $\operatorname{Vor}^{\omega}(\mathcal{P})$ whose interior is intersected (at a point denoted by i_{ϕ}) by the line segment $\left[c_{p_{i}} c_{p_{j}}\right]$ oriented from $c_{p_{i}}$ to $c_{p_{j}}$. Here $c_{p_{i}}=$ $T_{p_{i}} \cap \operatorname{Vor}^{\omega}(\tau)$ and $c_{p_{j}}=T_{p_{j}} \cap \operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$.

Note that i_{ϕ} is the center of a sphere that is orthogonal to the weighted vertices of τ and also to p_{l}^{ω}, and further than orthogonal from all the other weighted points of \mathcal{P}^{ω}. Equivalenty, i_{ϕ} is the point on $\left[c_{p_{i}} c_{p_{j}}\right]$ that belongs to $\operatorname{Vor}^{\omega}(\phi)$.

An inconsistent configuration is thus a $(k+1)$-simplex of $\operatorname{Del}^{\omega}(\mathcal{P})$. Such a configuration or its subfaces do not necessarily belong to $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})^{3}$ We write $\operatorname{In}^{\omega}(\mathcal{P})$ for the subcomplex of $\operatorname{Del}(\mathcal{P})$ consisting of all the inconsistent configurations of $\operatorname{Del}_{T \mathrm{M}}^{\omega}(\mathcal{P})$ and their subfaces.

3. STRUCTURAL RESULTS

In the rest of the paper, we will need several constants : ω_{0}, ρ_{0} and σ_{0} (to define slivers, good simplices and inconsistent configurations), and c_{3} (to be able to use lemma 7).

[^3]

Figure 4: Refer to Lemma 8. x^{\prime} is a point on the line segment such that $\left\|p-x^{\prime}\right\|=c_{1} \varepsilon \operatorname{lfs}(p), L=c_{1} \varepsilon \operatorname{lfs}(p)$, $\angle p a x^{\prime}=\pi / 2$ and $\angle p t x \geq \angle p t x^{\prime}>\pi / 2$.

These constants will be fixed in Section 3 and in Section 4. For simplicity, we will write sliver for σ_{0}-sliver and inconsistent configuration for (ρ_{0}, σ_{0})-inconsistent configuration.

We give now an hypothesis which is assumed to be satisfied in the following results.

Hypothesis 1. \mathcal{P} is an (ε, δ)-sample of \mathbb{M} of bounded relative density, i.e. $\varepsilon / \delta \leq \eta_{0}$ for some positive constant η_{0}. We assume further that ε is small enough and that $2 \alpha\left(\sigma_{0}\right) \varepsilon<1$. Finally, we assume that $\tilde{\omega} \leq \omega_{0}$ where $\tilde{\omega}$ is the relative amplitude of the weight assignement ω and ω_{0} is a positive constant less than 1/2.

3.1 Properties of the tangential Delaunay complex

We now give the following two lemmas which are slight variants of results of [14].

Lemma 8. For all $x \in T_{p} \cap \operatorname{Vor}^{\omega}(p)$, there exists a positive constant c_{1} such that $\|p-x\| \leq c_{1} \varepsilon \operatorname{lfs}(p)$.

Proof. Assume for a contradiction that there exists a point $x \in \operatorname{Vor}^{\omega}(p) \cap T_{p}$ s.t. $\|p-x\|>c_{1} \varepsilon \operatorname{lfs}(p)$ with $c_{1}(1-$ $\left.c_{1} \varepsilon\right)>2+c_{1} \varepsilon\left(1+c_{1} \varepsilon\right)\left(^{*}\right)$. Let q be a point on the line segment $[p x]$ such that $\|p-q\|=c_{1} \varepsilon \operatorname{lfs}(p) / 2$. Let q^{\prime} be the point nearest to q on \mathbb{M}. From Lemma 3, we have $\left\|q-q^{\prime}\right\| \leq$ $c_{1}^{2} \varepsilon^{2} \operatorname{lfs}(p) / 2$.

Hence, $\left\|p-q^{\prime}\right\| \leq\|p-q\|+\left\|q-q^{\prime}\right\|<\frac{c_{1}}{2} \varepsilon\left(1+c_{1} \varepsilon\right) \operatorname{lfs}(p)$. From the 1-Lipschitz property, $\operatorname{lfs}\left(q^{\prime}\right) \leq \operatorname{lfs}(p)+\left\|p-q^{\prime}\right\|<$ $\left(1+\frac{c_{1}}{2} \varepsilon\left(1+c_{1} \varepsilon\right)\right) \operatorname{lfs}(p)<\frac{c_{1}}{2}\left(1-c_{1} \varepsilon\right) \operatorname{lfs}(p)$, which yields

$$
\left\|p-q^{\prime}\right\| \geq\|p-q\|-\left\|q-q^{\prime}\right\|>\frac{c_{1}}{2} \varepsilon\left(1-c_{1} \varepsilon\right) \operatorname{lfs}(p)
$$

Since \mathcal{P} is an ε-sample, there exists a point $t \in \mathcal{P}$, s.t. $\left\|q^{\prime}-t\right\| \leq \varepsilon \operatorname{lfs}\left(q^{\prime}\right)<\frac{c_{1}}{2} \varepsilon\left(1-c_{1} \varepsilon\right) \operatorname{lfs}(p)$. We thus have

$$
\|q-t\| \leq\left\|q-q^{\prime}\right\|+\left\|q^{\prime}-t\right\|<\frac{c_{1}}{2} \varepsilon \operatorname{lfs}(p)
$$

From Fig. 4, we can see that $\angle p t x>\pi / 2$. This implies that $\|x-p\|^{2}-\|x-t\|^{2}-\|p-t\|^{2}>0$. Hence,

$$
\begin{aligned}
\|x-p\|^{2} & -\|x-t\|^{2}-\omega^{2}(p)+\omega^{2}(t) \\
& \geq\|p-t\|^{2}-\omega^{2}(p) \\
& \geq\|p-t\|^{2}-\omega_{0}^{2} \cdot\|p-t\|^{2} \\
& >0 \quad\left(\text { as } \omega_{0}<\frac{1}{2}\right)
\end{aligned}
$$

This implies $x \notin \operatorname{Vor}^{\omega}(p)$, which contradicts our initial assumption. We conclude that $\operatorname{Vor}^{\omega}(p) \cap T_{p} \subseteq B\left(p, c_{1} \varepsilon \operatorname{lfs}(p)\right)$ if Inequality $(*)$ is satisfied, which is true for all $c_{1}=3+\sqrt{2} \approx$ 4.41 and $\varepsilon<0.09$.

Lemma 9. There exists positive constants c_{2} and ρ_{0}^{\prime} s.t.

1. If $p q$ is an edge of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$, then $\|p-q\| \leq c_{2} \varepsilon \operatorname{lfs}(p)$.
2. If τ is a simplex of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$, then $R_{\tau}^{\prime} \leq \rho_{0}^{\prime} L_{\tau}$ and $\rho(\tau)=R_{\tau} / L_{\tau} \leq \rho_{0}^{\prime}$.

Proof. 1a. Consider first the case where $p q$ is an edge of $\operatorname{Del}_{p}^{\omega}(\mathcal{P})$. Then $T_{p} \cap \operatorname{Vor}^{\omega}(p q) \neq \emptyset$. Let $x \in T_{p} \cap \operatorname{Vor}^{\omega}(p q)$. From Lemma 8 , we have $\|p-x\| \leq c_{1} \varepsilon \operatorname{lfs}(p)$. By Lemma 2, $\|q-x\| \leq \frac{\|p-x\|}{\sqrt{1-4 \omega_{0}^{2}}} \leq \frac{c_{1} \varepsilon \operatorname{lfs}(p)}{\sqrt{1-4 \omega_{0}^{2}}}$. Hence, $\|p-q\| \leq c_{2}^{\prime} \varepsilon \operatorname{lfs}(p)$ where $c_{2}^{\prime}=c_{1}\left(1+1 / \sqrt{1-4 \omega_{0}^{2}}\right)>2 c_{1}$.

1b. From the definition of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$, there exists a vertex r of τ such that $[p q] \in \operatorname{star}(r)$. From 1a, $\|r-p\|$ and $\|r-q\|$ are at most $c_{2}^{\prime} \varepsilon \operatorname{lfs}(r)$. From the 1-Lipschitz property of lfs and assuming that $2 c_{2}^{\prime} \varepsilon<1$, we have $\operatorname{lfs}(r) \leq \operatorname{lfs}(p)+\| p-$ $r \| \leq \frac{\operatorname{lfs}(p)}{1-c_{2}^{\prime} \varepsilon} \leq 2 \operatorname{lfs}(p)$. It follows that $\|p-q\| \leq\|p-r\|+$ $\|r-q\| \leq 4 c_{2}^{\prime} \varepsilon \operatorname{lfs}(p)$. The first part of the lemma is proved by taking $c_{2}=4 c_{2}^{\prime}>8 c_{1}$.
2. Assume that $\tau \in \operatorname{star}(p)$. Let $z \in \operatorname{Vor}^{\omega}(\tau) \cap T_{p}$, and $r_{z}=\sqrt{\|z-p\|^{2}-\omega^{2}(p)}$. By definition, the ball centered at z with radius r_{z} is orthogonal to the weighted vertices of τ. From Lemma 2, we have $r_{z} \geq R_{\tau}^{\prime}$. Hence it suffices to prove $r_{z} \leq \rho_{0}^{\prime} L_{\tau}$. Since $z \in \operatorname{Vor}^{\omega}(\tau) \cap T_{p}$, we deduce from Lemma 8 that $\|z-p\| \leq c_{1} \varepsilon \operatorname{lfs}(p)$. Therefore

$$
r_{z}=\sqrt{\|z-p\|^{2}-\omega^{2}(p)} \leq\|z-p\| \leq c_{1} \varepsilon \operatorname{lfs}(p)
$$

For any vertex q of τ, we have $\|p-q\| \leq c_{2} \varepsilon \operatorname{lfs}(p)$ (By 1.). Assuming $2 c_{2} \varepsilon \leq 1$ and using the fact that lfs is 1 Lipschitz, $\operatorname{lfs}(p) \leq 2 \operatorname{lfs}(q)$. Therefore, taking for q a vertex of the shortest edge of τ, we have, using Lemma 3,

$$
\begin{aligned}
r_{z} \leq & c_{1}\left(\frac{\varepsilon}{\delta}\right) \delta \operatorname{lfs}(p) \leq c_{1}\left(\frac{\varepsilon}{\delta}\right) \delta \times 2 \operatorname{lfs}(q) \\
& \leq 2 c_{1} \eta_{0} L_{\tau}=\rho_{0}^{\prime \prime} L_{\tau}
\end{aligned}
$$

From Lemma 2, we have $R_{\tau} \leq \frac{R_{\tau}^{\prime}}{\sqrt{1-4 \omega_{0}^{2}}}$. Therefore $\rho(\tau) \leq$ $\rho_{0}^{\prime}=\frac{\rho_{0}^{\prime \prime}}{\sqrt{1-4 \omega_{0}^{2}}}$.

3.2 Properties of inconsistent configurations

We now give the lemmas on inconsistent configurations which are central to the proof of correctness of the reconstruction algorithm given later in the paper.

Lemma 10. Let $\phi \in \operatorname{In}^{\omega}(\mathcal{P})$ be an inconsistent configuration witnessed by $\left(p_{i}, p_{j}, p_{l}\right)$. Then, there exists positive constants $c_{3}>c_{2}$ and $\rho_{0}>\rho_{0}^{\prime}$ s.t.

1. $\left\|p-i_{\phi}\right\| \leq \frac{c_{3}}{2} \varepsilon \operatorname{lfs}(p)$ for all vertices p of ϕ.
2. If $p q$ is an edge of ϕ then $\|p-q\| \leq c_{3} \varepsilon \operatorname{lfs}(p)$.
3. If τ is a j-dimensional face of $\phi(j \leq k+1)$ and R_{τ}^{\prime} is the orthosphere of τ, then $R_{\tau}^{\prime} \leq \rho_{0} L_{\tau}$ and $R_{\tau} / L_{\tau} \leq$ ρ_{0}.
Proof. From the definition, $\tau=\phi \backslash\left\{p_{l}\right\}$ belongs to $\operatorname{Del}_{p_{i}}^{\omega}(\mathcal{P})$. We first bound $\operatorname{dist}\left(\mathrm{i}_{\phi}, \operatorname{aff}(\tau)\right)=\left\|\mathrm{o}_{\tau}-\mathrm{i}_{\phi}\right\|$ where
o_{τ} is the orthocenter of τ. By Lemma 8, $\left\|p_{i}-c_{p_{i}}\right\| \leq$ $c_{1} \varepsilon \mathrm{lfs}\left(p_{i}\right)$ and, by Lemma 2, we have

$$
\left\|p_{j}-c_{p_{i}}\right\| \leq \frac{\left\|p_{i}-c_{p_{i}}\right\|}{\sqrt{1-4 \omega_{0}^{2}}} \leq \frac{c_{1} \varepsilon \operatorname{lfs}\left(p_{i}\right)}{\sqrt{1-4 \omega_{0}^{2}}}
$$

Let $c_{3}=c_{2} / \sqrt{1-4 \omega_{0}^{2}}>c_{2}$. By Lemma 7, $\angle\left(\operatorname{aff}(\tau), T_{p_{i}}\right) \leq$ $\alpha\left(\sigma_{0}\right) \varepsilon$, which implies that $\sin \angle\left(\operatorname{aff}(\tau), T_{p_{i}}\right) \leq \alpha\left(\sigma_{0}\right) \varepsilon$ and

$$
\tan ^{2} \angle\left(\operatorname{aff}(\tau), T_{p_{i}}\right) \leq \frac{\alpha^{2}\left(\sigma_{0}\right) \varepsilon^{2}}{1-\alpha^{2}\left(\sigma_{0}\right) \varepsilon^{2}}<4 \alpha^{2}\left(\sigma_{0}\right) \varepsilon^{2}
$$

since $2 \alpha\left(\sigma_{0}\right) \varepsilon<1$ (Hypothesis 1). Observing that $\| p_{i}-$ $o_{\tau}\|\leq\| p_{i}-c_{p_{i}} \|$, since o_{τ} belongs to aff $\left(\operatorname{Vor}^{\omega}(\tau)\right)$ and therefore is the closest point to p_{i} in $\operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$, we deduce
$\left\|c_{p_{i}}-o_{\tau}\right\| \leq\left\|c_{p_{i}}-p_{i}\right\| \sin \angle\left(\operatorname{aff}(\tau), T_{p_{i}}\right) \leq \alpha\left(\sigma_{0}\right) c_{1} \varepsilon^{2} \operatorname{lfs}\left(p_{i}\right)$.
Moreover, $\left\|p_{j}-o_{\tau}\right\| \leq\left\|p_{j}-c_{p_{i}}\right\|$ as o_{τ} is the closest point to p_{j} in $\operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$. Hence we have,

$$
\begin{aligned}
\left\|c_{p_{j}}-o_{\tau}\right\| & \leq\left\|p_{j}-o_{\tau}\right\| \tan \angle\left(\operatorname{aff}(\tau), T_{p_{j}}\right) \\
& <\frac{2 \alpha\left(\sigma_{0}\right) c_{1} \varepsilon^{2}}{\sqrt{1-4 \omega_{0}^{2}}} \operatorname{lfs}\left(p_{i}\right)
\end{aligned}
$$

As $i_{\phi} \in\left[c_{p_{i}} c_{p_{j}}\right]$, we conclude that

$$
\left\|o_{\tau}-i_{\phi}\right\| \leq \frac{2 \alpha\left(\sigma_{0}\right) c_{1} \varepsilon^{2}}{\sqrt{1-4 \omega_{0}^{2}}} \operatorname{lfs}\left(p_{i}\right)
$$

1. Assuming that $2 \alpha\left(\sigma_{0}\right) \varepsilon<1$ and using the facts that $\left\|p_{i}-o_{\tau}\right\| \leq\left\|p_{i}-i_{\phi}\right\|$, we get

$$
\begin{aligned}
\left\|p_{i}-i_{\phi}\right\| & \leq\left\|p_{i}-o_{\tau}\right\|+\left\|o_{\tau}-i_{\phi}\right\| \\
& \leq\left\|p_{i}-c_{p_{i}}\right\|+\left\|o_{\tau}-i_{\phi}\right\| \\
& \leq\left(c_{1} \varepsilon+\frac{2 \alpha\left(\sigma_{0}\right) c_{1} \varepsilon^{2}}{\sqrt{1-4 \omega_{0}^{2}}}\right) \operatorname{lfs}\left(p_{i}\right) \\
& \leq \frac{c_{2}}{4} \varepsilon \operatorname{lfs}\left(p_{i}\right)
\end{aligned}
$$

From Lemma 2, we have $\left\|p-i_{\phi}\right\| \leq \frac{\left\|p_{i}-i_{\phi}\right\|}{\sqrt{1-4 \omega_{0}^{2}}}=\frac{c_{3}}{4} \varepsilon \operatorname{lfs}\left(p_{i}\right)$ for all vertices p of ϕ.
2. Using part 1 of this lemma, we have

$$
\|p-q\| \leq\left\|p-i_{\phi}\right\|+\left\|q-i_{\phi}\right\| \leq \frac{c_{3}}{2} \varepsilon \operatorname{lfs}\left(p_{i}\right)
$$

Moreover, $\operatorname{lfs}\left(p_{i}\right) \leq 2 \operatorname{lfs}(p)$ since lfs is a 1 -Lipschitz function and by taking $c_{3} \varepsilon<1$. Hence $\left\|p-i_{\phi}\right\| \leq \frac{c_{3}}{2} \varepsilon \operatorname{lfs}(p)$ and $\|p-q\| \leq c_{3} \varepsilon \operatorname{lfs}(p)$.
3. Let $r_{\phi}=\sqrt{\left\|i_{\phi}-p_{i}\right\|^{2}-\omega^{2}\left(p_{i}\right)}$. Since $i_{\phi} \in \operatorname{Vor}^{\omega}(\tau)$, the ball centered at i_{ϕ} with radius r_{ϕ} is orthogonal to the weighted vertices of τ. From Lemma 2, we have $r_{\phi} \geq R_{\tau}^{\prime}$. Hence it suffices to show that $r_{\phi} \leq \rho_{0} L_{\tau}$. Using $\left\|p_{i}-i_{\phi}\right\| \leq$ $\frac{c_{3}}{4} \varepsilon \operatorname{lfs}\left(p_{i}\right)$ we get

$$
r_{\phi}=\sqrt{\left\|i_{\phi}-p_{i}\right\|-\omega^{2}\left(p_{i}\right)} \leq\left\|i_{\phi}-p_{i}\right\| \leq \frac{c_{3}}{4} \varepsilon \operatorname{lfs}\left(p_{i}\right) .
$$

Let q be a vertex of a shortest edge of τ. We have, from part 2 of this lemma, $\left\|p_{i}-q\right\| \leq c_{3} \varepsilon \mathrm{ffs}(q)$. Therefore

$$
R_{\tau}^{\prime} \leq r_{\phi} \leq c_{3} \varepsilon \operatorname{lfs}(q) \leq c_{3}\left(\frac{\varepsilon}{\delta}\right) \delta \times \operatorname{lfs}(q) \leq c_{3} \eta_{0} L_{\tau}
$$

From Lemma 2, we have $R_{\tau} \leq R_{\tau}^{\prime} / \sqrt{1-4 \omega_{0}^{2}}$. Therefore, $R_{\tau} / L_{\tau} \leq \rho_{0}=c_{3} \eta_{0} / \sqrt{1-4 \omega_{0}^{2}}$.

Lemma 11. Let τ be a j-simplex of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$, $j \leq k+1$. For any vertex p of τ, there exists a constant c_{4} s.t. the distance between the orthocenter $o(\tau)$ of τ and $\operatorname{aff}\left(\tau_{p}\right)$ is at most $c_{4} \varepsilon \operatorname{lfs}(p)$.

Proof. 1. We first consider the case where $\tau \in \operatorname{In}^{\omega}(\mathcal{P})$. Then there exists an inconsistent configuration ϕ witnessed by points $\left(p_{i}, p_{j}, p_{l}\right)$ s.t. τ is a j-dimensional subsimplex of ϕ. From Lemma 10, we have $\left\|i_{\phi}-p\right\| \leq \frac{c_{3}}{2} \varepsilon \operatorname{lfs}(p),\|q-p\| \leq$ $c_{3} \operatorname{lfs}(p)$ for all $q \in \phi$ and, since $\tau \in \operatorname{In}^{\omega}(\mathcal{P}), \rho(\tau) \leq \rho_{0}$. Using the above facts and Lemma 4, we get

$$
\begin{aligned}
\operatorname{dist}\left(\mathrm{o}_{\tau}, \operatorname{aff}\left(\tau_{\mathrm{P}}\right)\right) & \leq \operatorname{dist}\left(\mathrm{i}_{\phi}, \operatorname{aff}\left(\tau_{\mathrm{P}}\right)\right) \\
& \leq \frac{c_{3}}{2} \varepsilon \operatorname{lfs}(p)+\left(1+\rho_{0}+\omega_{0}\right) c_{3} \operatorname{lfs}(p) \\
& \leq\left(\frac{3}{2}+\rho_{0}+\omega_{0}\right) c_{3} \varepsilon \operatorname{lfs}(p)=c_{4} \varepsilon \operatorname{lfs}(p)
\end{aligned}
$$

2. Consider now the case where $\tau \in \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$. By definition, $\tau \in \operatorname{Del}_{q}^{\omega}(\mathcal{P})$ for some vertex q of τ. From Lemma 8, we have $\left\|q-c_{q}\right\| \leq c_{1} \varepsilon \operatorname{lfs}(q) \leq 2 c_{1} \varepsilon \operatorname{lfs}(p)$ where $c_{q}=$ $\operatorname{Vor}^{\omega}(\tau) \cap T_{q}$ and p is any vertex of τ. The last inequality follows from the facts that lfs is 1-Lipschitz, $\|p-q\| \leq c_{2} \varepsilon \mathrm{lfs}(p)$ (Lemma 9) and by taking $c_{2} \varepsilon \leq 1$. Therefore, using Lemma 4, we get
$\operatorname{dist}\left(\mathrm{o}_{\tau}, \operatorname{aff}\left(\tau_{\mathrm{p}}\right)\right) \leq \frac{2 c_{1} \varepsilon \operatorname{lfs}(p)}{\sqrt{1-4 \omega_{0}^{2}}}+\left(1+\rho_{0}^{\prime}+\omega_{0}\right) c_{2} \varepsilon \operatorname{lfs}(p)$.

The next lemma shows that inconsistent configurations are slivers provided that σ_{0} is sufficiently large wrt ε.

Lemma 12. Let ϕ be an inconsistent configuration and

$$
\varepsilon<\mathrm{f}\left(\sigma_{0}\right)=\frac{(k+1) \sigma_{0}}{\rho_{0}\left(c_{3}+2 \alpha\left(\sigma_{0}\right)\right)}
$$

If the subfaces of ϕ are not slivers, then ϕ is a sliver.
Proof. Let $p q$ be the smallest edge of ϕ and let r be a vertex in $\phi \backslash\{p, q\}$. Since $\phi_{r}=\phi \backslash\{r\}$ is not a sliver (as all subfaces of ϕ are not slivers) and $\|r-x\| \leq c_{3} \mathrm{lfs}(x)$ (Lemma 10), we have $\sin \angle\left(\operatorname{aff}\left(\phi_{r}\right), T_{x}\right) \leq \alpha\left(\sigma_{0}\right) \varepsilon$ for all vertices x of ϕ_{r} by Lemma 7. From Lemma 3, $\sin \angle\left(p r, T_{p}\right) \leq \frac{c_{3}}{2} \varepsilon$. Therefore

$$
\begin{aligned}
D_{\phi}(r) & =\sin \angle\left(p r, \operatorname{aff}\left(\phi_{r}\right)\right) \times\|p-r\| \\
& \leq\left(\sin \angle\left(p r, T_{p}\right)+\sin \angle\left(\operatorname{aff}\left(\phi_{r}\right), T_{p}\right)\right) \times\|p-r\| \\
& \leq\left(\frac{c_{3}}{2}+\alpha\left(\sigma_{0}\right)\right) \varepsilon\|p-r\| .
\end{aligned}
$$

Using the facts that $\operatorname{vol}\left(\phi_{r}\right)=\sigma^{k}\left(\phi_{r}\right) L_{\phi_{r}}^{k}, \sigma\left(\phi_{r}\right) \geq \sigma_{0}, \| p-$ $r \| \leq 2 R_{\phi}, \rho\left(\phi_{r}\right) \leq \rho_{0}$ and $\varepsilon<\mathrm{f}\left(\sigma_{0}\right)$, we get

$$
\begin{aligned}
\operatorname{vol}(\phi) & =D_{\phi}(r) \times \frac{\operatorname{vol}\left(\phi_{r}\right)}{k+1} \\
& \leq\left(\frac{c_{3}}{2}+\alpha\left(\sigma_{0}\right)\right) \varepsilon\|p-r\| \times \frac{\sigma^{k}\left(\phi_{r}\right) L_{\phi}^{k}}{k+1} \\
& \leq\left(c_{3}+2 \alpha\left(\sigma_{0}\right)\right) \varepsilon R_{\phi} \times \frac{\sigma_{0}^{k} L_{\phi}^{k}}{k+1} \\
& \leq \frac{\rho_{0}\left(c_{3}+2 \alpha\left(\sigma_{0}\right)\right) \varepsilon}{k+1} \times \sigma_{0}^{k} L_{\phi}^{k+1} \\
& <\sigma_{0}^{k+1} L_{\phi}^{k+1}
\end{aligned}
$$

3.3 Number of local neighbors

Lemmas 9 and 10 show that, in order to construct $\operatorname{star}(p)$ and search for inconsistencies involving p, it is enough to consider the points of \mathcal{P} that lie in ball $B_{p}=B\left(p, c_{3} \varepsilon \operatorname{lfs}(p)\right)$. Since ε and lfs (p) are not known in practice, we will consider instead the ball $B_{p}^{\prime}=B\left(p, c_{3} \eta_{0} l_{p}\right)$ where

$$
l_{x}=\min _{q \in \mathcal{P}, q \neq x}\|x-q\|
$$

It is easily seen that $l_{x}: \mathbb{M} \rightarrow \mathbb{R}$ is 1 -Lipschitz and, by Lemma 3, we have $\delta \operatorname{lfs}(p) \leq l_{p} \leq \frac{2 \varepsilon}{1-\varepsilon} \operatorname{lfs}(p)$. It follows that B_{p}^{\prime} contains B_{p} if $\varepsilon / \delta \leq \eta_{0}$. We call $L N_{p}=B_{p}^{\prime} \cap \mathcal{P}$ the local neighborhood of p.

LEMMA 13. The number of points of $L N_{p}$ is less than $N<2^{O(k)}$.

Proof. For convenience, write $\nu=4 c_{3} \eta_{0} \varepsilon$ and assume that $\nu \leq 1 / 2$. We observe that $L N_{p} \subset B_{p}^{\prime \prime}=B(p, \nu \operatorname{lfs}(p))$ since, by Lemma $3, l_{p} \leq \frac{2 \varepsilon}{1-\varepsilon} \operatorname{lfs}(p) \leq 4 \varepsilon \operatorname{lfs}(p)$. We will count the number of points in $B_{p}^{\prime \prime} \cap \mathcal{P}$. Let x and y be two points of $B_{p}^{\prime \prime} \cap \mathcal{P}$. We have $\operatorname{lfs}(x), \operatorname{lfs}(y) \geq \operatorname{lfs}(p)(1-\nu) \geq \operatorname{lfs}(p) / 2$, since lfs is 1-Lipschitz. The balls $B\left(x, l_{x} / 2\right)$ and $B\left(y, l_{y} / 2\right)$ are disjoint, and, since $l_{x} \geq \delta \operatorname{lfs}(x) \geq \frac{\delta}{2} \operatorname{lfs}(p)$ (and similarly for $\left.l_{y}\right)$, the balls $B_{x}=B\left(x, \frac{\delta}{4} \operatorname{lfs}(p)\right)$ and $B_{y}=B\left(y, \frac{\delta}{4} \operatorname{lfs}(p)\right)$ are also disjoint. Observe that both balls B_{x} and B_{y} are contained in $B_{p}^{+}=B(p, \mu \varepsilon \operatorname{lfs}(p))$ where $\mu=\frac{\nu}{\varepsilon}+\frac{\delta}{4 \varepsilon} \leq$ $4 c_{3} \eta_{0}+\frac{1}{4}$.

A packing argument now allows to conclude. Specifically, by Lemma 15 , we have that $\operatorname{vol}\left(B_{x} \cap \mathbb{M}\right)>\phi_{k}\left(\frac{\delta \mathrm{lfs}(p)}{8}\right)^{k}$ and $\operatorname{vol}\left(B_{p}^{+} \cap \mathbb{M}\right)<\phi_{k}(\mu \varepsilon \operatorname{lfs}(p))^{k}$, where ϕ_{k} is the volume of the k-dimensional unit ball. We conclude that the number of points of $\mathcal{P} \cap B_{p}^{\prime \prime}$ is less than $\left(\frac{8 \mu \varepsilon}{\delta}\right)^{k} \leq\left(32 c_{3} \eta_{0}+2\right)^{k} \eta_{0}^{k}=$ $2^{O(k)}$.

4. MANIFOLD RECONSTRUCTION

In this section, we will show how to find a weight assignment for the point set \mathcal{P} so that we can remove all inconsistent configurations. Once this is done, all the stars become coherent and the resulting weighted tangential Delaunay complex is a simplicial k-manifold.

4.1 Algorithm

The input to the algorithm is a point sample $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ together with a bound on the relative density η_{0} of \mathcal{P}. We assume in addition that the dimension k of \mathbb{M} is given and that we know the tangent space T_{p} at each point $p \in \mathcal{P}$.

The algorithm fixes ω_{0} in $(0,1 / 2)$ and then computes a weight assignment $\omega \in\left[0, \omega_{0}\right]$ such that no inconsistent configuration remains in the weighted tangential Delaunay complex. More precisely, we will assign a weight to each point $p \in \mathcal{P}$ in turn so as to remove all j-dimensional slivers incident to p in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$ for $j \in\{3, \ldots, k+1\}$. By Lemma 12, we know that, if σ_{0} is large enough, removing inconsistent configurations from the tangential Delaunay complex reduces to removing slivers.
For a given j-simplex $\tau=\left[p_{0}, \ldots, p_{j}\right] \in \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup$ $\operatorname{In}^{\omega}(\mathcal{P})$ we have

$$
\begin{aligned}
\sigma^{j}(\tau) & =\frac{\left|\operatorname{det}\left(p_{1}-p_{0}, \ldots, p_{j}-p_{0}\right)\right|}{j!L_{\tau}^{j}} \\
& \leq \frac{\Pi_{i=1}^{j}\left\|p_{i}-p_{0}\right\|}{j!L_{\tau}^{j}} \leq \frac{2^{j} \rho_{0}^{j}}{j!} \leq 2 \rho_{0}^{j},
\end{aligned}
$$

the last inequalities follow from the facts that $L_{\tau} \leq 2 R_{\tau}$, and the radius-edge ratio of the simplices in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup$ $\operatorname{In}^{\omega}(\mathcal{P})$ is $\leq \rho_{0}$ (Lemmas 9 and 10). This implies that $\sigma(\tau) \in$ $\left(0,2 \rho_{0}\right]$. In the first step of our reconstruction algorithm, we pick a random value of σ_{0} from $\left(0,2 \rho_{0}\right]$, and once σ_{0} is selected, we try to remove all slivers from $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$. If we fail to remove slivers or if we still have inconsistencies, then we go back and select a new value of σ_{0}.

Manifold-Reconstruction $\left(\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}\right)$

S0 Calculate $L N_{p_{i}} \forall p_{i} \in \mathcal{P}$ and ρ_{1}
S1 Select σ_{0} at random from $\left(0,2 \rho_{1}\right.$]
S2 for $i=1$ to n do
if weight $\left(p_{i}, \sigma_{0}\right)=$ "FAIL" then go-to S1 else update $\left(\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}), p_{i}\right)$

S3 if $\operatorname{In}^{\omega}(\mathcal{P}) \neq \emptyset$ then go-to S 1 else output $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$

Before we give the details of the function weight() we first define the subroutine skyline $\left(p, S, \sigma_{0}\right)$ that will be used in the function. Let S be a set of simplices incident on p.

Let τ be a simplex in S whose subfaces are not σ_{0}-slivers. Such a simplex is called a candidate simplex. We associate to τ interval $W(\tau)$ that consists of all squared weights $\omega^{2}(p)$ for which τ appears as a simplex in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$. We define the skyline of p as the lower boundary of the union of all rectangles $R(\tau)=W(\tau) \times[\sigma(\tau),+\infty)$ for all candidate simplices over $W(p)=\left[0, \omega_{0}^{2} l_{p}^{2}\right]$, see Figure 5 . For any $\omega^{2}(p)$, the minimum sliverity ratio of any candidate simplex incident to p is the height of skyline $\left(p, S_{p}, \sigma_{0}\right)$ over $\omega^{2}(p) \in W(p)$. The best choice for $\omega(p)$ is the weight of p corresponding to the highest point on the skyline $\left(p, S_{p}, \sigma_{0}\right)$, i.e skyline $\left(p, S_{p}, \sigma_{0}\right)$ has the maximum height over $\omega^{2}(p)$.

Function weight $\left(p, \sigma_{0}\right)$
S1 $S_{p} \leftarrow$ detect_simplices $\left(p, \sigma_{0}\right)$
S 2 skyline $\left(p, S_{p}, \sigma_{0}\right)$ begin for $i=1$ to n do
if none of the subfaces of τ are σ_{0}-slivers then include $R(\tau)=W(\tau) \times[\sigma(\tau),+\infty)$
end
S3 $\Theta \leftarrow$ highest point on skyline $\left(p, S_{p}, \sigma_{0}\right)$
S4 if $\Theta<\sigma_{0}$ then return "FAIL"
else $\omega(p) \leftarrow$ weight of p corresponding to a highest point on skyline $\left(p, S_{p}, \sigma_{0}\right)$

Function update $\left(\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}), p\right)$

- Update the stars of p and of all points $x \in L N_{p}$ by modifying $\operatorname{Del}_{x}^{\omega}\left(L N_{x}\right)$.

Function detect_simplices $\left(p, \sigma_{0}\right)$

1. We first detect all possible j-simplices for all $3 \leq j \leq$ $k+1$ of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ incident on p for all possible $\omega(p)$. This is done in the following way: (1) we vary the weight of p from 0 to to $\omega_{0} l_{p}$, keeping the weights of the other points constant; (2) for each new weight assignment to p, we modify the stars of the points in $L N_{p}$ and detect from the stars the new j-simplices incident

Figure 5: The above figure shows a skyline $\left(p, S_{p}, \sigma_{0}\right)$ over $W(p)=\left[0, \omega^{2} l_{p}^{2}\right]$ for point p.
to p that have not been detected thus far. The weight of point p changes only in a finite number of instances $0=P_{0}<P_{1}<\cdots<P_{n-1}<P_{n}=\omega_{0} l_{p}$.
We determine the next weight assignment of p in the following way. For each new simplex τ currently incident to p, we keep it in a priority queue ordered by the weight of p at which τ will disappear for the first time. Hence the minimum weight in the priority queue gives the next weight assignment for p. Since the number of points in $L N_{p}$ is bounded, the number of simplices incident to p is also bounded, as well as the number of times we have to change the weight of p.
2. Once we have detected all possible j-simplices, for all $j \in\{1, \ldots, k+1\}$, that can be incident on p in the weighted tangential Delaunay complex, we then detect all possible inconsistent configurations incident on p, by calling the function detect_inconsistentconfiguration $\left(p, \sigma_{0}\right)$.

Function detect_inconsistent-configurations $\left(p, \sigma_{0}\right)$

1. We vary the weight of p from 0 to $\omega_{0} l_{p}$, keeping the weight of the rest of the points constant. Once we have assigned a new weight to p we modify the stars of the points in $L N_{p}$.
2. Detecting the inconsistent configurations incident to p is more complicated than detecting the simplices incident to p. We consider all points p_{i} in $L N_{p}$. Let τ be a k-simplex in the star of p_{i}, and let p_{j} be a vertex of τ such that τ is not in the star of p_{j}. We calculate the Voronoi diagram of the points in $L N_{p}$ restricted to the line segment $\left[c_{p_{i}} c_{p_{j}}\right]$, where $c_{p_{i}}=T_{p_{i}} \cap \operatorname{Vor}^{\omega}(\tau)$ and $c_{p_{j}}=T_{p_{j}} \cap \operatorname{aff}\left(\operatorname{Vor}^{\omega}(\tau)\right)$. From the restricted Voronoi diagram, we find a point p whose Voronoi cell intersects for the first time the line segment $\left[c_{p_{i}} c_{p_{j}}\right]$ oriented from $c_{p_{i}}$ to $c_{p_{j}}$. If $p \in \phi=\tau \cup\{l\}$, then we report ϕ.
3. As in the detect_simplices function the weight of p is changed only a finite number of times. For each current inconsistent configuration ϕ incident to p, we keep in a priority queue the weight of p for which ϕ will disappear for the first time. The minimum weight in the priority queue gives the next weight assignment of p.

4.2 Analysis of the algorithm

Definition 4 (Sliverity range). Let ω be a weight assignment of relative amplitude at most ω_{0} we keep fixed
except for $\omega(p)$. The sliverity range of a point $p \in \mathcal{P}$ is the measure of the set of all squared weights $\omega^{2}(p)$ for which p is incident to a sliver in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$.

Lemma 14. Under Hypothesis 1, the sliverity range of p is at most $\Sigma(p)=N^{k+2}(k+1) c_{5} \sigma_{0} l_{p}^{2}$ for some constant c_{5}.

Proof. Let τ be a simplex incident on p. We call the sliverity range of τ the measure of the set of squared weights for which τ is a sliver in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$. If $\omega(p)$ is the weight of p, we write $H(\omega(p))$ for the signed distance of the orthocenter of τ to aff $\left(\tau_{p}\right)$. From Lemma 11, we have $|H(\omega(p))| \leq c_{4} \varepsilon \operatorname{lfs}(p)$, for all $\tau \in \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$. Moreover, using Lemma 5 and the fact that τ is a sliver, $H(\omega(p))=H(0)-\frac{\omega^{2}(p)}{2 D_{p}} \leq H(0)-\frac{\omega^{2}(p)}{2 j \sigma_{0} L_{\tau}}$. It follows that the sliverity range of τ is at most $4 j \sigma_{0} L_{\tau} c_{4} \varepsilon \mathrm{lfs}(p)$. Using the facts that $L_{\tau} \leq c_{3} \varepsilon \operatorname{lfs}(p)$ (from Lemmas 9 and 10), $\operatorname{lfs}(p) \leq l_{p} / \delta$ and $\varepsilon / \delta \leq \eta_{0}$, the sliverity range of τ is less than $4 j c_{3} c_{4} \sigma_{0} \eta_{0}^{2} l_{p}^{2}=j c_{5} \sigma_{0} l_{p}^{2}$. By Lemma 13, the number of j-simplices that are incident to p is at most N^{j}. Hence, the sliverity range of p is less that

$$
\Sigma(p)=\sum_{3}^{k+1} N^{j} j c_{5} \sigma_{0} l_{p}^{2} \leq N^{k+2}(k+1) c_{5} \sigma_{0} l_{p}^{2}
$$

Theorem 1. Under Hypothesis 1 and if

$$
\sigma_{\max }=\frac{\omega_{0}^{2}}{(k+1) c_{5} N^{k+2}}>\sigma_{\min }=\inf \{\sigma \mid \varepsilon<\mathrm{f}(\sigma)\}
$$

then, for any $\sigma_{0} \in\left[\sigma_{\min }, \sigma_{\max }\right]$, the above algorithm outputs $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ without any slivers nor inconsistent configuration.

Proof. As in subroutine skyline(), let S_{p} denotes the set of all possible simplices that can be incident on p in the complex $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$ for all possible weight assignments ω of relative amplitude $\tilde{\omega} \leq \omega_{0}$. By Lemma 14, the sliverity range of p is less than ${N^{k+2}}^{k}(k+1) c_{5} \sigma_{0} l_{p}^{2}$. If the sliverity range of p is less than $\omega_{0}^{2} l_{p}^{2}$, the total range of all possible squared weights, or, equivalently, if

$$
\sigma_{0}<\sigma_{\max }=\frac{\omega_{0}^{2}}{(k+1) c_{5} N^{k+2}}
$$

then we will be able to remove all slivers incident on p by selecting the highest point on the skyline.
If we select a value of σ_{0} in the interval $\left(\sigma_{\min }, \sigma_{\max }\right]$, Lemma 14 ensures that removing all j-dimensional slivers for all $j \in\{3, \ldots, k+1\}$ in $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$ will also result in removing inconsistent configurations from $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$, i.e. $\operatorname{In}^{\omega}(\mathcal{P})=\emptyset$.

4.3 Time and space complexity

Theorem 2. The time complexity of the algorithm is

$$
O(d)|\mathcal{P}|^{2}+\frac{1}{\lambda} \times 2^{O\left(k^{2}\right)+\log d}|\mathcal{P}|,
$$

where $\lambda=\left(\sigma_{\max }-\sigma_{\min }\right) /\left(2 \rho_{0}\right)$, and its space complexity is $2^{O\left(k^{2}\right)+\log d}|\mathcal{P}|$.
Proof. We only sketch the complexity analysis. See [7] for a detailed discussion. Step S0 of Manifold-Reconstruction can easily be performed in $O(d)|\mathcal{P}|^{2}$ time.

We show now that the expected number of times Step $\mathbf{S} 1$ of ManifoldReconstruction is repeated is $\frac{1}{\lambda}$. Indeed, for any simplex $\tau \in \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \cup \operatorname{In}^{\omega}(\mathcal{P})$, we have $\sigma(\tau) \in\left(0,2 \rho_{0}\right]$. Hence, the probability that, for the selected value of σ_{0}, the algorithm removes all slivers and inconsistencies is at least $\lambda=\left(\sigma_{\max }-\sigma_{\min }\right) /\left(2 \rho_{0}\right)$. It follows that the expected number of times $\mathbf{S} 1$ is performed is less than

$$
\sum_{i=1}^{\infty} i(1-\lambda)^{i-1} \lambda=\frac{1}{\lambda}
$$

The time complexities of functions update $\left(\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}), p\right)$, detect_simplices (p, σ_{0}), and detect_inconsistent-configurations $\left(p, \sigma_{0}\right)$ are $2^{O(k(k+\log d))}$. Indeed, we need to project $\left|L N_{p}\right|<N<2^{O(k)}$ points onto T_{p}, which costs $O(k d) \times$ $\left|L N_{p}\right|=O(d) 2^{O(k)}$ time. The Delaunay simplices that are computed have their vertices in $L N_{p}$ and are of dimension at most $k+1$. Hence their number is $2^{O\left(k^{2}\right)}$. The basic operations (mainly in-sphere predicates) amount to evaluating signs of determinants of $k \times k$ matrices. The cost of such a basic operation is $O\left(k^{3}\right)$. The total cost of both functions is thus $O(d) 2^{O(k)}+O\left(k^{3}\right) 2^{O\left(k^{2}\right)}=2^{O\left(k^{2}\right)+\log d}$.
We deduce that the expected time complexity of ManifoldReconstruction is

$$
O(d)|\mathcal{P}|^{2}+\frac{1}{\lambda} \times 2^{O\left(k^{2}\right)+\log d}|\mathcal{P}|
$$

We easily deduce from the above discussion that the total space complexity of the algorithm is

$$
\begin{equation*}
2^{O\left(k^{2}\right)+\log d}|\mathcal{P}| \tag{2}
\end{equation*}
$$

4.4 Topological and Geometric guarantees

We assume that the conditions of Theorem 1 are satisfied and denote by $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ the tangential complex output by our algorithm. Let π be the mapping that maps any point of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ to its closest point on \mathbb{M}. The proof of topological correctness (see [7]) uses ideas from [1, 8, 11, 14].

Theorem 3. Under the conditions of Theorem 1, our algorithm outputs $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ without any slivers and inconsistent configurations, and $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ has the following properties

- Bijection : The restriction of π to $\operatorname{Del}_{T \mathrm{M}}^{\omega}(\mathcal{P})$ is a bijection;
- Pointwise approximation : $\forall x \in \mathbb{M}, \operatorname{dist}\left(\mathrm{x}, \pi^{-1}(\mathrm{x})\right)$ $=O\left(\varepsilon^{2} \mathrm{lfs}(x)\right)$;
- Normal approximation : $\forall x \in \mathbb{M}, \angle N_{x} N_{\tau}=O(\varepsilon)$, where τ is a k-simplex of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ containing the point $\pi^{-1}(x)$,
- Topological correctness : π defines an isotopy between $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ and \mathbb{M}.

Proof sketch. By Lemma 7, one can show that the maximum distance from a point of a simplex $\tau \in \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ to the closest point on \mathbb{M} is $O\left(\varepsilon^{2} \operatorname{lfs}(x)\right)$. It follows that the projection π that maps every point of τ to its closest point on \mathbb{M} is injective: if we extend an open segment of length lfs (y) from every manifold point y in all normal directions to \mathbb{M}, these segments do not intersect, and they can be used
as the fibers of a tubular neighborhood $\hat{\mathbb{M}}$ of \mathbb{M}. Each point of such a segment has y as its unique closest neighbor on \mathbb{M}. For small enough ε, the simplex τ is contained in $\hat{\mathbb{M}}$. Thus, the mapping π defines an isotopy between τ and a corresponding manifold patch.

One can show that two k-simplices of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ that share a subface have normal spaces that differ by at most $O(\varepsilon)$, and that the mapping π extends continuously across the subfaces. It follows that the projection π restricted to the two adjacent k-simplices is a homeomorphism that is invertible locally. (In topological terms, $\pi: \operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P}) \rightarrow \mathbb{M}$ is a covering map, if we can establish that it is surjective.) By assumption, on every component, there is at least one vertex of a simplex of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$. This ensures that $\pi\left(\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})\right)$ contains that vertex, and since the mapping can be continued locally, it follows that every component of S is covered at least once. It is now still possible that some component is covered more than once by π. This would imply that some sample point $p \in P$ is covered more than once. However, one can show quite easily that no point p of $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ except p itself has p as its closest neighbor on \mathbb{M}.
It follows that the mapping π defines an ambient isotopy between $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ and \mathbb{M}.

5. CONCLUSION

We have given the first algorithm that is able to reconstruct a smooth manifold in a time that depends only linearly on the dimension of the ambient space. We believe that our algorithm is of practical interest when the dimension of the manifold is small, even if it is embedded in a space of very high dimension. This situation is quite common in practical applications in machine learning.
The algorithm is rather simple. The basic ingredients we need are data structures for constructing weighted Delaunay triangulations in k-flats. We will report experimental results in a forthcoming paper.

We have assumed that dimension of \mathbb{M} is known. If not, we can use algorithms given in $[22,15]$ to estimate the dimension of \mathbb{M} and the tangent space at each sample point. One interesting feature of our approach is that it is pretty robust and still works if we only have approximate tangent spaces at the sample points.
We have also assumed that we know an upper bound on the relative density η_{0} of the input sample \mathcal{P}. Ideas from [21, 8] may be useful to convert a sample to a subsample with a bounded relative density.

We forsee other applications of the tangential complex and of our construction each time computations in the tangent space of a manifold are required, e.g. for dimensionality reduction and approximating the Laplace Beltrami operator [5].

Finally, let us mention that removing inconsistencies among stars that have been computed independently is a useful paradigm that has already been used for maintaining dynamic meshes [29] and generating anisotropic meshes [9]. We hope that this paper will motivate further applications.

6. ACKNOWLEDGEMENTS

The authors thank the anonymous referees for their insightful comments, and Mariette Yvinec for helpful discussions.

7. REFERENCES

[1] N. Amenta, S. Choi, T. K. Dey, , and N. Leekha. A simple algorithm for homeomorphic surface reconstruction. Intl. Journal of Computational Geometry and Application, 12:125-141, 2002.
[2] F. Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM J. Comput., 16(1), 1987.
[3] F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing the weighted voronoi diagram in the plane. Pattern Recognition, 17(2):251-257, 1984.
[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems, 2001.
[5] M. Belkin, J. Sun, and Y. Wang. Discrete laplace operator on meshed surfaces. In Proc. ACM Symp. on Computational Geometry, 2008.
[6] J.-D. Boissonnat and J. Flötotto. A coordinate system associated with points scattered on a surface. Computer-Aided Design, 36:161-174, 2004.
[7] J.-D. Boissonnat and A. Ghosh. Manifold Reconstruction using Tangential Delaunay Complexes. INRIA Research Report 7142, 2009.
[8] J. D. Boissonnat, L. Guibas, and S. Y. Oudot. Manifold reconstruction in arbitary dimensions using witness complexes. In Proc. ACM Symp. on Computational Geometry, pages 193-204, 2007.
[9] J.-D. Boissonnat, C. Wormser, and M. Yvinec. Locally uniform anisotropic meshing. In Proc. ACM Symp. on Computational Geometry, pages 270-277, 2008.
[10] F. Cazals and J. Giesen. Delaunay triangulation based surface reconstruction. In J. Boissonnat and M. Teillaud, editors, Effective Computational Geometry for Curve and Surfaces. Springer, 2006.
[11] F. Chazal and A. Lieutier. Smooth Manifold Reconstruction from Noisy and Non uniform Approximation with Guarantees. Comp. Geom: Theory and Applications, 40:156-170, 2008.
[12] F. Chazal and S. Y. Oudot. Towards Persistence-Based Reconstruction in Euclidean Spaces. In Proc. ACM Symp. on Computational Geometry, pages 232-241, 2008.
[13] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. Sliver Exudation. Journal of ACM, 47:883-904, 2000.
[14] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold Reconstruction from Point Samples. In Proc. ACM-SIAM Symp. Discrete Algorithms, pages 1018-1027, 2005.
[15] S.-W. Cheng, Y. Wang, and Z. Wu. Provable Dimension Detection using Principle Component Analysis. Intl. Journal of Computational Geometry and Application, 18(5):415-440, 2008.
[16] D. Cohen-Steiner and T. K. F. Da. A greedy Delaunay Based Surface Reconstruction Algorithm. The Visual Computer, 20:4-16, 2004.
[17] T. K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, 2006.
[18] D. L. Donohu and C. Grimes. Hessian eigenmaps: new
locally linear embedding techniques for high dimensional data. Proceedings of the Natural Academy of Sciences, 100:5591-5596, 2003.
[19] J. Flötotto. A coordinate system associated to a point cloud issued from a manifold: definition, properties and applications. PhD thesis, Université of Nice Sophia-Antipolis, 2003.
[20] D. Freedman. Efficient simplicial reconstructions of manifolds from their samples. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(10), 2002.
[21] S. Funke and E. Ramos. Smooth-surface reconstruction in near-linear time. In Proc. ACM-SIAM Symp. Discrete Algorithms, pages 781-780, 2002.
[22] J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of manifolds. In Proc. ACM Symp. on Computational Geometry, pages 329-337, 2003.
[23] M. Gopi, S. Khrisnan, and C. T. Silva. Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation. Eurographics, 19 (3), 2000.
[24] S. Lafon and A. B. Lee. Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1393-1403, 2006.
[25] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. Neural Information Processing Systems, 18, 2005.
[26] P. Niyogi, S. Smale, and S. Weinberger. Finding the Homology of Submanifolds with High Confidence from Random Samples. Discrete and Computational Geometry, 39(1-3), March 2008.
[27] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
[28] H. S. Seung and D. D. lee. The manifold ways of perception. Science, 290:2268-2269, 2000.
[29] J. Shewchuk. Star splaying: An algorithm for repairing delaunay triangulations and convex hulls. In Proc. ACM Symp. on Computational Geometry, pages 237-246, 2005.
[30] J. B. Tenenbaum, V. deSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
[31] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing, 26(1):313-338, 2004.

APPENDIX

Lemma 15 ([26]). Let $A=B(p, r) \cap \mathbb{M}$ where $r \leq$ $\varepsilon \mathrm{lfs}(\mathbb{M})$. Then, $\phi_{k} r^{k} \geq \operatorname{vol}(A) \phi_{k} r^{k} / 2^{k}$, where ϕ_{k} is volume of the k-dimensional unit ball.

[^0]: *This work was partially supported by the ANR project GAIA. For the full version of the paper refer to [7].

[^1]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 SCG'10, June 13-16, 2010, Snowbird, Utah, USA.
 Copyright 2010 ACM 978-1-4503-0016-2/10/06 ...\$10.00.

[^2]: ${ }^{1}$ Observe that the sparsity condition (2) is mandatory if one wants to infer the dimension of \mathbb{M} from a sample [22].

[^3]: ${ }^{3}$ In fact, as already noted, no $(k+1)$-simplex belongs to $\operatorname{Del}_{T \mathbb{M}}^{\omega}(\mathcal{P})$ when the points are in general position.

