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ABSTRACT
We give a provably correct algorithm to reconstruct a k-
dimensional manifold embedded in d-dimensional Euclidean
space. Input to our algorithm is a point sample coming
from an unknown manifold. Our approach is based on two
main ideas : the notion of tangential Delaunay complex de-
fined in [6, 19, 20], and the technique of sliver removal by
weighting the sample points [13]. Differently from previous
methods, we do not construct any subdivision of the embed-
ding d-dimensional space. As a result, the running time of
our algorithm depends only linearly on the extrinsic dimen-
sion d while it depends quadratically on the size of the input
sample, and exponentially on the intrinsic dimension k. To
the best of our knowledge, this is the first certified algorithm
for manifold reconstruction whose complexity depends lin-
early on the ambient dimension. We also prove that for a
dense enough sample the output of our algorithm is isotopic
to the manifold and a close geometric approximation of the
manifold.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and problems]: Geo-
metrical problems and computations; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations.

General Terms
Algorithms, Theory.

Keywords
Tangential Delaunay complex, Weighted Delaunay triangu-
lation, manifold reconstruction, manifold learning, sampling
conditions, sliver exudation.
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1. INTRODUCTION
Manifold reconstruction consists in computing a PL ap-

proximation of an unknown manifold M ⊂ R
d from a finite

sample of unorganized points P lying on M or close to M.
When the manifold is a two-dimensional surface embedded
in R

3, the problem is known as the surface reconstruction
problem. Surface reconstruction is a problem of major prac-
tical interest which has been extensively studied in the fields
of Computational Geometry, Computer Graphics and Com-
puter Vision. In the last decade, solid foundations have been
established and the problem is now pretty well understood.
Refer to Dey’s book [17], and the survey by Cazals and
Giesen in [10] for recent results. The output of those meth-
ods is a triangulated surface that approximates M. This tri-
angulated surface is usually extracted from a 3-dimensional
subdivision of the ambient space (typically a grid or a tri-
angulation). Although rather inoffensive in 3-dimensional
space, such data structures depend exponentially on the di-
mension of the ambient space, and all attempts to extend
those geometric approaches to more general manifolds has
led to algorithms whose complexities depend exponentially
on d [26, 11, 14].

The problem in higher dimensions is also of great prac-
tical interest in data analysis and machine learning. In
those fields, the general assumption is that, even if the data
are represented as points in a very high dimensional space
R

d, they in fact live on a manifold of much smaller intrin-
sic dimension [28]. If the manifold is linear, well-known
global techniques like principal component analysis (PCA)
or multi-dimensional scaling (MDS) can be efficiently ap-
plied. When the manifold is highly nonlinear, several more
local techniques have attracted much attention in visual per-
ception and many other areas of science. Among the promi-
nent algorithms are Isomap [30], LLE [27], Laplacian eigen-
maps [4], Hessian eigenmaps [18], diffusion maps [24, 25],
principal manifolds [31]. Most of those methods reduces to
computing an eigendecomposition of some connection ma-
trix. In all cases, the output is a mapping of the original
data points into R

k where k is the estimated intrinsic di-
mension of M. Those methods come with no or very limited
guarantees. For example, Isomap provides a correct embed-
ding only if M is isometric to a convex open set of R

k. To
be able to better approximate the sampled manifold, an-
other route is to extend the work on surface reconstruction
and to construct a PL approximation of M from the sample
in such a way that, under appropriate sampling conditions,
the quality of the approximation can be guaranteed. First
investigations along this line can be found in the work of



Cheng, Dey and Ramos [14], and Boissonnat, Guibas and
Oudot [8]. In both cases, however, the complexity of the al-
gorithms is exponential in the ambient dimension d, which
highly reduces their practical relevance.

In this paper, we extend the geometric techniques devel-
opped in small dimensions and propose a way to avoid com-
puting data structures in the ambient space. We assume
that M is a smooth manifold of known dimension k and
that we can compute the tangent space to M at any sample
point. Under those conditions, we propose a provably cor-
rect algorithm that allows to construct a simplicial complex
of dimension k that approximates M. The complexity of the
algorithm is linear in d, quadratic in the size n of the sample,
and exponential in k. Our work builds on [14] and [8] but
dramatically reduces the dependance on d. To the best of
our knowledge, this is the first certified algorithm for mani-
fold reconstruction whose complexity depends only linearly
on the ambient dimension. In the same spirit, Chazal and
Oudot [12] have devised an algorithm of intrinsic complexity
to solve the easier problem of computing the homology of a
manifold from a sample.

Our approach is based on two main ideas : the notion of
tangential Delaunay complex defined in [20, 6, 19], and the
technique of sliver removal by weighting the sample points
[13]. The tangential complex is obtained by gluing local
(Delaunay) triangulations around each sample point. The
tangential complex is a subcomplex of the d-dimensional
Delaunay triangulation of the sample points but it can be
computed using mostly operations in the k-dimensional tan-
gent spaces at the sample points. Hence the dependence on
k rather than d in the complexity. However, due to the pres-
ence of so-called inconsistencies, the local triangulations may
not form a triangulated manifold. Although this problem
has already been reported [20], no solution was known ex-
cept for the case of curves (k = 1) [19]. We show that we can
remove inconsistencies by weighting the sample points under
appropriate sample conditions. We can then prove that the
approximation returned by our algorithm is isotopic to M,
and a close geometric approximation of M.

Our algorithm can be seen as a local version of the cocone
algorithm of Cheng et al. [14]. By local, we mean that we
do not compute any d-dimensional data structure like a grid
or a triangulation of the ambient space. Still, the tangential
complex is a subcomplex of the d-dimensional Delaunay tri-
angulation of the data points and therefore implicitly relies
on a global partition of the ambient space. This is key to
our analysis and makes our method depart from other local
algorithms that have been proposed in the surface recon-
struction literature [16, 23].

Notations In the rest of the paper, we assume that M

is a smooth manifold of dimension k embedded in R
d. We

call P = {p1, . . . , pn} a finite sample of points from M. We
denote by Tp the k-dimensional tangent space at point p ∈
M. We write B(c, r) for the d-dimensional ball centered at c
of radius r. We define the angle between two vector spaces
U and V as

UV = max
u∈U

min
v∈V

∠uv. (1)

If τ is a j-simplex, the (d − j)-dimensional normal space
of aff(τ ) is denoted by Nτ .

2. DEFINITIONS AND PRELIMINARIES

2.1 Weighted Delaunay triangulation

2.1.1 Weighted points
A weighted point is a pair consisting of a point p of R

d,
called the center of the weighted point, and a non-negative
real number ω(p), called the weight of the weighted point. It
might be convenient to visualize the weighted point (p, ω(p))
as the hypersphere (we will simply say sphere in the sequel)
centered at p of radius ω(p).

Two weighted points (or spheres) (p, ω(p)) and (q, ω(q))
are called orthogonal when ‖p− q‖2 = ω(p)2 +ω(q)2, further
than orthogonal when ‖p − q‖2 > ω(p)2 + ω(q)2, and closer
than orthogonal when ‖p− q‖2 < ω(p)2 + ω(q)2.

Given a point set P = {p1, . . . , pn} ⊆ R
d, a weight func-

tion on P is a non-negative real-valued function ω : P →
[0,∞). Write pω

i = (pi, ω(pi)) and Pω = {pω
1 , . . . , pω

n}.
We define the relative amplitude of ω, denoted as ω̃, as

maxp∈P,q∈P\{p}
ω(p)

||p−q||
. In the paper, we assume that ω̃ ≤

ω0 < 1/2, for some constant ω0 to be fixed later.
Given a subset τ of d + 1 weighted points whose centers

are affinely independent, there exists a unique sphere or-
thogonal to the weighted points of τ . The sphere is called
the orthosphere of τ and its center and radius are called the
orthocenter and the orthoradius of τ . If τ is a j-simplex,
j < d, the orthosphere of τ is the smallest sphere that is
orthogonal to the (weighted) vertices of τ . Plainly, its cen-
ter oτ lies in aff(τ ). The radius of the orthosphere of τ is
denoted by R′

τ .
A finite set of weighted points Pω is said to be in general

position if there exists no sphere orthogonal to d+2 weighted
points of Pω.

2.1.2 Weighted Voronoi diagram and Delaunay tri-
angulation

Let ω be a weight function defined over P . We define the
weighted Voronoi cell of p ∈ P as

Vorω(p) = {x ∈ R
d : ||p− x||2 − ω2(p)

≤ ||q − x||2 − ω2(q),∀q ∈ P}.

The weighted Voronoi cells and their k-dimensional faces,
0 ≤ k ≤ d, form a cell complex, called the weighted Voronoi
diagram of P , that decomposes R

d into convex polyhedral
cells. See [2].

Let τ be a subset of points of P and write Vorω(τ ) =
∩x ∈ τVorω(x). If the points of P are in general position,
Vorω(τ ) = ∅ when |τ | > d+1. The collection of all simplices
conv(τ ) such that Vorω(τ ) 6= ∅ constitutes the weighted De-
launay triangulation Delω(P). The mapping that associates
to the face Vorω(τ ) of Vorω (P) the face conv(τ ) of Delω(P)
is a duality, i.e. a bijection that reverses the inclusion rela-
tion.

Alternatively, a d-simplex τ is in Delω(P) if the ortho-
sphere of τ is further than orthogonal from all weighted
points in Pω \ {τω}.

The weighted Delaunay triangulation of a set of weighted
points can be computed efficiently in small dimensions and
has found many applications, see e.g. [3, 10]. In this paper,
we use weighted Delaunay triangulations for two main rea-
sons. The first one is that the restriction of a d-dimensional
weighted Voronoi diagram to an affine space of dimension
k is a k-dimensional weighted Voronoi diagram that can
be computed without computing the d-dimensional diagram
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Figure 1: Refer to Lemma 1. The red line denotes
the k-dimensional plane H and the black line denotes
Vorω(pipj).

(see Lemma 1). The other main reason is that some flat
simplices named slivers can be removed from a Delaunay
triangulation by weighting the vertices (see [14, 8, 13] and
Section 4).

Lemma 1. Let H be a k-dimensional affine space of R
d.

The restriction of the weighted Voronoi diagram of P to H
is the k-dimensional weighted Voronoi diagram of P ′ where
P ′ is the orthogonal projection of P onto H and the squared
weight of p′

i is ω2(pi)− ‖pi − p′
i‖2.

Proof. By Pythagoras theorem, we have ∀x ∈ H ∩
Vorω(pi), ‖x− pi‖2 −ω2(pi) ≤ ‖x− pj‖2 −ω2(pj) ⇔ ‖x−
p′

i‖2 + ‖pi− p′
i‖2−ω2(pi) ≤ ‖x− p′

j‖2 + ‖pj − p′
j‖2−ω2(pj),

where p′
i denotes the orthogonal projection of pi ∈ P onto

H . Hence the restriction of Vorω(P) to H is the weighted
Voronoi diagram of the weighted points (p′

i, ωi) ∈ H where
ω2

i = −‖pi − p′
i‖2 + ω2(pi).

Lemma 2 ([13]). If τ is a simplex of Delω(P), then

1. ∀z ∈ aff(Vorω(τ )) and ∀ p, q ∈ τ we have ‖q − z‖ ≤
‖p−z‖√
1−4ω2

0

.

2. Rτ ≤ R′

τ√
1−4ω2

0

.

3. ∀z ∈ aff(Vorω(τ )) and ∀p ∈ τ , rz =
p

‖p− z‖2 − ω2(p)
≥ R′

τ .

2.2 Sampling conditions

2.2.1 Local feature size
The medial axis of M is the closure of the sets of points

of R
d that have more than one nearest neighbor on M. The

local feature size of x ∈ M, lfs(x), is the distance of x to the
medial axis of M. As is well known and can be easily proved,
lfs is Lipschitz continuous i.e, lfs(x) ≤ lfs(y) + ‖x− y‖.

2.2.2 (ε, δ)-sample
The point sample P is said to be an (ε, δ)-sample (where

0 < δ < ε < 1) if (1) for any point x ∈ M there exists a
point p ∈ P such that ||x − p|| ≤ ε lfs(x), and (2) for any
two distinct points p, q ∈ P , ||p − q|| ≥ δ lfs(p).1 The ratio
ε/δ is called the relative density of P .

1Observe that the sparsity condition (2) is mandatory if one
wants to infer the dimension of M from a sample [22].

We will use the following results from [22]. We write lp
for the distance between p ∈ P and its nearest neighbor in
P \ {p}.

Lemma 3. Given an (ε, δ)-sample P of M, we have

1. δ lfs(p) ≤ lp ≤ 2ε
1−ε

lfs(p).

2. For any two points p, q ∈M such that ||p−q|| = t lfs(p),
0 < t < 1, sin ∠(pq, Tp) ≤ t/2.

3. Let p be a point in M. Let x be a point in Tp such that
||p − x|| ≤ t lfs(p) for some 0 < t ≤ 1/4. Let x′ be the
point on M closest to x. Then ||x − x′|| ≤ 2t2 lfs(p).

2.3 Slivers and good simplices
Consider a j-simplex τ , where 1 ≤ j ≤ k + 1. We de-

note by Rτ , Lτ , Vτ and ρ(τ ) = Rτ/Lτ the circumradius, the
shortest edge length, the volume, and the radius-edge ratio

of τ respectively. We further define σ(τ ) =
`

Vτ/Lj
τ

´1/j
, as

the sliverity measure of τ . The orthocenter of τ is denoted
by oτ and its orthoradius by R′

τ .
If p ∈ τ , we define τp = τ \ {p} to be the (j − 1)-face of

τ opposite to p. We also write Dτ (p) for the distance from
p to the affine hull of τp, and Hτ (p) for the signed distance2

from oτ to aff(τp). We state without proof the following
easy lemma.

Lemma 4. Let τ be a simplex of Delω(P) and p ∈ τ s.t.

1. There exists z ∈ aff(Vorω(τ )) s.t. ‖z − p‖ ≤ L1.

2. ‖p− q‖ ≤ L2 for all vertices q of τ .

3. R′
τ ≤ γ0Lτ .

Then |Hτ (x)| = dist(oτ , aff(τx)) ≤ L1 + (1 + γ0 + ω0)L2 for
all vertices x of τ .

Lemma 5 ([13]). Let τ be a simplex of Delω(P). Let p
be any vertex of τ and write Hτ (ω(p)) (instead of Hτ (p))
for the signed distance of oτ to aff(τp) parametrized by the

weight of p. We have Hτ (ω(p)) = Hτ (0)− ω2(p)
2Dτ (p)

.

Slivers are a special type of flat simplices. The property of
being a sliver is measured in terms of a parameter σ0, called
the sliverity bound, to be fixed later in Section 4.

Definition 1 (Sliver). Given a positive parameter σ0,
slivers are defined by induction on the dimension : (1) a sim-
plex of dimension less than 3 is not a σ0-sliver, and (2) for
j ≥ 3, a j-simplex τ is a σ0-sliver if σ(τ ) < σ0 and, ∀τ ′ ⊂ τ ,
σ(τ ′) ≥ σ0.

Lemma 6. If a j-simplex τ is a σ0-sliver, then Dτ (p) <
jσ0Lτ for all vertices p ∈ τ .

Proof. The volume of τ is

Vτ =
Vτp . Dτ (p)

j
=

σj−1(τp)L
j−1
τp

. Dτ (p)

j

and it is also equal to σj(τ )Lj
τ . Since τ is a σ0-sliver, we

have σ(τ ) < σ0 and σ(τp) ≥ σ0. Therefore we get

Dτ (p) = j
σj(τ )

σj−1(τp)
× Lj

τ

Lj−1
τp

< jσ0Lτ .

2H(p) is positive if oτ ∈ aff(τ ) and p lie on the same side
of aff(τp), and it is negative if they lie on different sides of
aff(τp).
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Figure 2: [pq] and [pr] are edges of the star of p in
DelωTM(P) since their dual Voronoi edges intersect the
tangent space Tp at p.

Definition 2 (Good simplex). Given two positive con-
stants ρ0 and σ0, a simplex τ is called a (ρ0, σ0)-good simplex
if ρ(τ ) ≤ ρ0 and τ nor its subsimplices are σ0-slivers.

The following important lemma is known (see e.g. [14]).

Lemma 7 (Normal approximation). Let τ be a (ρ0, σ0)-
good j-simplex for j ≤ k with vertices on a k-dimensional
smooth manifold M, and p ∈ τ s.t. the lengths of the edges
of τ that are incident to p are less than c3εlfs(p) for c3ε < 1.
Then, for any normal vector np of M at p, τ has a normal
nτ such that ∠npnτ ≤ αj(σ0)ε where αj(σ0) depends on j,
σ0, ρ0 and c3, and 1/αj(σ0) vanishes with σ0.

In the sequel, we will simply write α(σ0) for αk(σ0).

2.4 Tangential Delaunay complex and incon-
sistent configurations

Let Delωpi
(P) be the weighted Delaunay triangulation of

P restricted to the tangent space Tpi
. Equivalently, the

simplices of Delωpi
(P) are the simplices of Delω(P) whose

Voronoi dual faces intersect Tpi
, i.e. τ ∈ Delωpi

(P) iff Vorω(τ )∩
Tpi
6= ∅. Observe that Delωpi

(P) is in general a k-dimensional
triangulation. Since this situation can always be ensured
by applying some infinitesimal perturbation on P , we will
assume, in the rest of the paper, that all Delωpi

(P) are k-
dimensional triangulations. Finally, write star(pi) for the
star of pi in Delωpi

(P), i.e. the set of simplices that are inci-
dent to pi in Delωpi

(P).
We call tangential Delaunay complex or tangential com-

plex for short, the simplicial complex {τ, τ ∈ star(p), p ∈
P}. We denote it by DelωTM(P). By our assumption above,
DelωTM(P) is a k-dimensional complex contained in Delω(P).

By duality, computing star(pi) is equivalent to computing
the restriction of the (weighted) Voronoi cell of pi to Tpi

,
which, by Lemma 1, reduces to computing a cell in a k-
dimensional weighted Voronoi diagram embedded in Tpi

. It
follows that the tangential complex can be computed with-
out constructing any data structure of dimension higher
than k, the intrinsic dimension of M.

The tangential Delaunay complex is not in general a tri-
angulated manifold and therefore not a good approximation
of M. This is due to the presence of so-called inconsisten-
cies. Consider a k-simplex τ of DelωTM(P) with two vertices
pi and pj such that τ is in star(pi) but not in star(pj) (refer
to Fig. 3). We write Bi(τ ) for the open ball centered on
Tpi

that is orthogonal to the (weighted) vertices of τω, and

pi

cpi

cpj

pj

Tpi

Tpj

iφ

∈ Vor(pl)

∈ Vor(pipj)

M

∈ Vor(pipjpl)

Figure 3: An inconsistent configuration in the un-
weighted case. Edge [pipj ] is in Delpi

(P) but not in
Delpj

(P) since Vor(pipj) intersects Tpi
but not Tpj

.
This happens because [cpi

cpj
] penetrates (at iφ) the

Voronoi cell of a point pl 6= pi, pj, therefore creating
an inconsistent configuration φ = [pi, pj , pl].

denote by cpi
and rpi

its center and its radius. According
to our definition, τ is inconsistent iff Bi(τ ) is further than
orthogonal from all weighted points in Pω \ τω while there
exists a weighted point of Pω \ τω, say pω

l , that is closer
than orthogonal from Bj(τ ). We deduce from the above
discussion that the line segment [cpi

cpj
] has to penetrate

the interior of Vorω(pl).
We formally define an inconsistent configuration as fol-

lows.

Definition 3 (Inconsistent configuration). φ = [p1

, . . . , pk+2] is called an inconsistent configuration of DelωTM(P)
witnessed by the triplet (pi, pj , pl) if

• The k-simplex τ = φ \ {pl} is in star(pi) but not in
star(pj).

• τ is a (ρ0, σ0)-good simplex.

• Vorω(pl) is the first cell of Vorω(P) whose interior is
intersected (at a point denoted by iφ) by the line seg-
ment [cpi

cpj
] oriented from cpi

to cpj
. Here cpi

=
Tpi
∩Vorω(τ ) and cpj

= Tpj
∩ aff(Vorω(τ )).

Note that iφ is the center of a sphere that is orthogonal to
the weighted vertices of τ and also to pω

l , and further than
orthogonal from all the other weighted points of Pω. Equiv-
alenty, iφ is the point on [cpi

cpj
] that belongs to Vorω(φ).

An inconsistent configuration is thus a (k + 1)-simplex
of Delω(P). Such a configuration or its subfaces do not
necessarily belong to DelωTM(P)3 We write Inω(P) for the
subcomplex of Del(P) consisting of all the inconsistent con-
figurations of DelωTM(P) and their subfaces.

3. STRUCTURAL RESULTS
In the rest of the paper, we will need several constants :

ω0, ρ0 and σ0 (to define slivers, good simplices and incon-
sistent configurations), and c3 (to be able to use lemma 7).
3In fact, as already noted, no (k + 1)-simplex belongs to
DelωTM(P) when the points are in general position.
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Figure 4: Refer to Lemma 8. x′ is a point on the line
segment such that ||p − x′|| = c1ε lfs(p), L = c1ε lfs(p),
∠pax′ = π/2 and ∠ptx ≥ ∠ptx′ > π/2.

These constants will be fixed in Section 3 and in Section 4.
For simplicity, we will write sliver for σ0-sliver and inconsis-
tent configuration for (ρ0, σ0)-inconsistent configuration.

We give now an hypothesis which is assumed to be satis-
fied in the following results.

Hypothesis 1. P is an (ε, δ)-sample of M of bounded
relative density, i.e. ε/δ ≤ η0 for some positive constant
η0. We assume further that ε is small enough and that
2α(σ0)ε < 1. Finally, we assume that ω̃ ≤ ω0 where ω̃
is the relative amplitude of the weight assignement ω and ω0

is a positive constant less than 1/2.

3.1 Properties of the tangential Delaunay com-
plex

We now give the following two lemmas which are slight
variants of results of [14].

Lemma 8. For all x ∈ Tp∩Vorω(p), there exists a positive
constant c1 such that ||p− x|| ≤ c1εlfs(p).

Proof. Assume for a contradiction that there exists a
point x ∈ Vorω(p) ∩ Tp s.t. ||p − x|| > c1εlfs(p) with c1(1−
c1ε) > 2 + c1ε(1 + c1ε) (*). Let q be a point on the line
segment [px] such that ||p − q|| = c1εlfs(p)/2. Let q′ be the
point nearest to q on M. From Lemma 3, we have ||q−q′|| ≤
c2
1ε

2lfs(p)/2.
Hence, ||p− q′|| ≤ ||p− q||+ ||q− q′|| < c1

2
ε(1+ c1ε)lfs(p).

From the 1-Lipschitz property, lfs(q′) ≤ lfs(p) + ||p − q′|| <
(1 + c1

2
ε(1 + c1ε)) lfs(p) < c1

2
(1− c1ε) lfs(p), which yields

||p− q′|| ≥ ||p− q|| − ||q − q′|| > c1

2
ε(1− c1ε) lfs(p)

Since P is an ε-sample, there exists a point t ∈ P , s.t.
||q′ − t|| ≤ εlfs(q′) < c1

2
ε(1− c1ε) lfs(p). We thus have

||q − t|| ≤ ||q − q′||+ ||q′ − t|| < c1

2
εlfs(p).

From Fig. 4, we can see that ∠ptx > π/2. This implies
that ||x − p||2 − ||x− t||2 − ||p− t||2 > 0. Hence,

||x− p||2 − ||x− t||2 − ω2(p) + ω2(t)

≥ ||p− t||2 − ω2(p)

≥ ||p− t||2 − ω2
0 .||p− t||2

> 0 (as ω0 < 1
2
)

This implies x 6∈ Vorω(p), which contradicts our initial as-
sumption. We conclude that Vorω(p)∩Tp ⊆ B(p, c1εlfs(p)) if
Inequality (*) is satisfied, which is true for all c1 = 3+

√
2 ≈

4.41 and ε < 0.09.

Lemma 9. There exists positive constants c2 and ρ′
0 s.t.

1. If pq is an edge of DelωTM(P), then ||p− q|| ≤ c2εlfs(p).

2. If τ is a simplex of DelωTM(P), then R′
τ ≤ ρ′

0Lτ and
ρ(τ ) = Rτ/Lτ ≤ ρ′

0.

Proof. 1a. Consider first the case where pq is an edge of
Delωp (P). Then Tp ∩ Vorω(pq) 6= ∅. Let x ∈ Tp ∩ Vorω(pq).
From Lemma 8, we have ||p− x|| ≤ c1εlfs(p). By Lemma 2,

||q − x|| ≤ ‖p−x‖√
1−4ω2

0

≤ c1εlfs(p)√
1−4ω2

0

. Hence, ‖p − q‖ ≤ c′2εlfs(p)

where c′2 = c1(1 + 1/
p

1− 4ω2
0) > 2c1.

1b. From the definition of DelωTM(P), there exists a vertex
r of τ such that [pq] ∈ star(r). From 1a, ‖r− p‖ and ‖r− q‖
are at most c′2εlfs(r). From the 1-Lipschitz property of lfs
and assuming that 2c′2ε < 1, we have lfs(r) ≤ lfs(p) + ‖p −
r‖ ≤ lfs(p)

1−c′
2
ε
≤ 2 lfs(p). It follows that ‖p − q‖ ≤ ‖p − r‖ +

‖r − q‖ ≤ 4c′2εlfs(p). The first part of the lemma is proved
by taking c2 = 4c′2 > 8c1.

2. Assume that τ ∈ star(p). Let z ∈ Vorω(τ ) ∩ Tp, and

rz =
p

||z − p||2 − ω2(p). By definition, the ball centered at
z with radius rz is orthogonal to the weighted vertices of τ .
From Lemma 2, we have rz ≥ R′

τ . Hence it suffices to prove
rz ≤ ρ′

0Lτ . Since z ∈ Vorω(τ )∩ Tp, we deduce from Lemma
8 that ||z − p|| ≤ c1εlfs(p). Therefore

rz =
p

||z − p||2 − ω2(p) ≤ ||z − p|| ≤ c1εlfs(p).

For any vertex q of τ , we have ‖p − q‖ ≤ c2εlfs(p) (By
1.). Assuming 2c2ε ≤ 1 and using the fact that lfs is 1-
Lipschitz, lfs(p) ≤ 2lfs(q). Therefore, taking for q a vertex
of the shortest edge of τ , we have, using Lemma 3,

rz ≤ c1

“ ε

δ

”

δ lfs(p) ≤ c1

“ε

δ

”

δ × 2lfs(q)

≤ 2c1η0 Lτ = ρ′′
0Lτ .

From Lemma 2, we have Rτ ≤ R′

τ√
1−4ω2

0

. Therefore ρ(τ ) ≤

ρ′
0 =

ρ′′

0√
1−4ω2

0

.

3.2 Properties of inconsistent configurations
We now give the lemmas on inconsistent configurations

which are central to the proof of correctness of the recon-
struction algorithm given later in the paper.

Lemma 10. Let φ ∈ Inω(P) be an inconsistent configu-
ration witnessed by (pi, pj , pl). Then, there exists positive
constants c3 > c2 and ρ0 > ρ′

0 s.t.

1. ‖p− iφ‖ ≤ c3
2

εlfs(p) for all vertices p of φ.

2. If pq is an edge of φ then ‖p− q‖ ≤ c3ε lfs(p).

3. If τ is a j-dimensional face of φ (j ≤ k + 1) and R′
τ

is the orthosphere of τ , then R′
τ ≤ ρ0Lτ and Rτ/Lτ ≤

ρ0.

Proof. From the definition, τ = φ \ {pl} belongs to
Delωpi

(P). We first bound dist(iφ, aff(τ )) = ‖oτ − iφ‖ where



oτ is the orthocenter of τ . By Lemma 8, ‖pi − cpi
‖ ≤

c1εlfs(pi) and, by Lemma 2, we have

‖pj − cpi
‖ ≤ ‖pi − cpi

‖
p

1− 4ω2
0

≤ c1ε lfs(pi)
p

1− 4ω2
0

Let c3 = c2/
p

1− 4ω2
0 > c2. By Lemma 7, ∠(aff(τ ), Tpi

) ≤
α(σ0) ε, which implies that sin ∠(aff(τ ), Tpi

) ≤ α(σ0)ε and

tan2
∠(aff(τ ), Tpi

) ≤ α2(σ0) ε2

1− α2(σ0) ε2
< 4α2(σ0) ε2,

since 2α(σ0)ε < 1 (Hypothesis 1). Observing that ||pi −
oτ || ≤ ||pi−cpi

||, since oτ belongs to aff(Vorω(τ )) and there-
fore is the closest point to pi in aff(Vorω(τ )), we deduce

‖cpi
− oτ‖ ≤ ‖cpi

− pi‖ sin ∠(aff(τ ), Tpi
) ≤ α(σ0)c1ε

2lfs(pi).

Moreover, ||pj−oτ || ≤ ||pj−cpi
|| as oτ is the closest point

to pj in aff(Vorω(τ )). Hence we have,

‖cpj
− oτ‖ ≤ ‖pj − oτ‖ tan ∠(aff(τ ), Tpj

)

<
2 α(σ0) c1 ε2

p

1− 4ω2
0

lfs(pi)

As iφ ∈ [cpi
cpj

], we conclude that

‖oτ − iφ‖ ≤
2α(σ0) c1 ε2

p

1− 4ω2
0

lfs(pi).

1. Assuming that 2α(σ0) ε < 1 and using the facts that
‖pi − oτ‖ ≤ ‖pi − iφ‖, we get

‖pi − iφ‖ ≤ ‖pi − oτ‖+ ‖oτ − iφ‖
≤ ‖pi − cpi

‖+ ‖oτ − iφ‖

≤
 

c1ε +
2α(σ0)c1ε

2

p

1− 4ω2
0

!

lfs(pi)

≤ c2

4
εlfs(pi)

From Lemma 2, we have ‖p − iφ‖ ≤ ‖pi−iφ‖√
1−4ω2

0

= c3
4

εlfs(pi)

for all vertices p of φ.
2. Using part 1 of this lemma, we have

‖p− q‖ ≤ ‖p− iφ‖+ ‖q − iφ‖ ≤
c3

2
εlfs(pi)

Moreover, lfs(pi) ≤ 2lfs(p) since lfs is a 1-Lipschitz function
and by taking c3ε < 1. Hence ‖p − iφ‖ ≤ c3

2
εlfs(p) and

‖p− q‖ ≤ c3ε lfs(p).

3. Let rφ =
p

‖iφ − pi‖2 − ω2(pi). Since iφ ∈ Vorω(τ ),
the ball centered at iφ with radius rφ is orthogonal to the
weighted vertices of τ . From Lemma 2, we have rφ ≥ R′

τ .
Hence it suffices to show that rφ ≤ ρ0Lτ . Using ‖pi− iφ‖ ≤
c3
4

εlfs(pi) we get

rφ =
p

‖iφ − pi‖ − ω2(pi) ≤ ‖iφ − pi‖ ≤ c3

4
εlfs(pi).

Let q be a vertex of a shortest edge of τ . We have, from
part 2 of this lemma, ‖pi − q‖ ≤ c3 εlfs(q). Therefore

R′
τ ≤ rφ ≤ c3 εlfs(q) ≤ c3

“ ε

δ

”

δ × lfs(q) ≤ c3 η0 Lτ

From Lemma 2, we have Rτ ≤ R′
τ/
p

1− 4ω2
0 . Therefore ,

Rτ/Lτ ≤ ρ0 = c3η0/
p

1− 4ω2
0 .

Lemma 11. Let τ be a j-simplex of DelωTM(P) ∪ Inω(P),
j ≤ k + 1. For any vertex p of τ , there exists a constant
c4 s.t. the distance between the orthocenter o(τ ) of τ and
aff(τp) is at most c4εlfs(p).

Proof. 1. We first consider the case where τ ∈ Inω(P).
Then there exists an inconsistent configuration φ witnessed
by points (pi, pj , pl) s.t. τ is a j-dimensional subsimplex of
φ. From Lemma 10, we have ‖iφ−p‖ ≤ c3

2
εlfs(p), ‖q−p‖ ≤

c3lfs(p) for all q ∈ φ and, since τ ∈ Inω(P), ρ(τ ) ≤ ρ0. Using
the above facts and Lemma 4, we get

dist(oτ , aff(τp)) ≤ dist(iφ, aff(τp))

≤ c3

2
εlfs(p) + (1 + ρ0 + ω0)c3lfs(p)

≤ (
3

2
+ ρ0 + ω0)c3εlfs(p) = c4εlfs(p),

2. Consider now the case where τ ∈ DelωTM(P). By def-
inition, τ ∈ Delωq (P) for some vertex q of τ . From Lemma
8, we have ‖q − cq‖ ≤ c1εlfs(q) ≤ 2c1εlfs(p) where cq =
Vorω(τ )∩Tq and p is any vertex of τ . The last inequality fol-
lows from the facts that lfs is 1-Lipschitz, ‖p−q‖ ≤ c2εlfs(p)
(Lemma 9) and by taking c2ε ≤ 1. Therefore, using Lemma
4, we get

dist(oτ , aff(τp)) ≤ 2c1εlfs(p)
p

1− 4ω2
0

+ (1 + ρ′
0 + ω0)c2 εlfs(p).

The next lemma shows that inconsistent configurations
are slivers provided that σ0 is sufficiently large wrt ε.

Lemma 12. Let φ be an inconsistent configuration and

ε < f(σ0) =
(k + 1) σ0

ρ0 (c3 + 2 α(σ0))
.

If the subfaces of φ are not slivers, then φ is a sliver.

Proof. Let pq be the smallest edge of φ and let r be a
vertex in φ \ {p, q}. Since φr = φ \ {r} is not a sliver (as all
subfaces of φ are not slivers) and ‖r−x‖ ≤ c3lfs(x) (Lemma
10), we have sin ∠(aff(φr), Tx) ≤ α(σ0) ε for all vertices x
of φr by Lemma 7. From Lemma 3, sin ∠(pr, Tp) ≤ c3

2
ε.

Therefore

Dφ(r) = sin ∠(pr, aff(φr))× ‖p− r‖
≤ (sin ∠(pr, Tp) + sin ∠(aff(φr), Tp))× ‖p− r‖
≤ (

c3

2
+ α(σ0)) ε‖p− r‖.

Using the facts that vol(φr) = σk(φr) Lk
φr

, σ(φr) ≥ σ0, ‖p−
r‖ ≤ 2Rφ, ρ(φr) ≤ ρ0 and ε < f(σ0), we get

vol(φ) = Dφ(r)× vol(φr)

k + 1

≤
“ c3

2
+ α(σ0)

”

ε‖p− r‖ × σk(φr)L
k
φ

k + 1

≤ (c3 + 2α(σ0)) εRφ ×
σk

0Lk
φ

k + 1

≤ ρ0(c3 + 2α(σ0))ε

k + 1
× σk

0 Lk+1
φ

< σk+1
0 Lk+1

φ



3.3 Number of local neighbors
Lemmas 9 and 10 show that, in order to construct star(p)

and search for inconsistencies involving p, it is enough to
consider the points of P that lie in ball Bp = B(p, c3εlfs(p)).
Since ε and lfs(p) are not known in practice, we will consider
instead the ball B′

p = B(p, c3η0 lp) where

lx = min
q∈P,q 6=x

‖x− q‖.

It is easily seen that lx : M → R is 1-Lipschitz and, by
Lemma 3, we have δlfs(p) ≤ lp ≤ 2ε

1−ε
lfs(p). It follows that

B′
p contains Bp if ε/δ ≤ η0. We call LNp = B′

p ∩P the local
neighborhood of p.

Lemma 13. The number of points of LNp is less than
N < 2O(k).

Proof. For convenience, write ν = 4c3η0ε and assume
that ν ≤ 1/2. We observe that LNp ⊂ B′′

p = B(p, νlfs(p))
since, by Lemma 3, lp ≤ 2ε

1−ε
lfs(p) ≤ 4εlfs(p). We will count

the number of points in B′′
p ∩ P . Let x and y be two points

of B′′
p ∩ P . We have lfs(x), lfs(y) ≥ lfs(p)(1− ν) ≥ lfs(p)/2,

since lfs is 1-Lipschitz. The balls B(x, lx/2) and B(y, ly/2)
are disjoint, and, since lx ≥ δ lfs(x) ≥ δ

2
lfs(p) (and similarly

for ly), the balls Bx = B(x, δ
4

lfs(p)) and By = B(y, δ
4

lfs(p))
are also disjoint. Observe that both balls Bx and By are
contained in B+

p = B(p, µ εlfs(p)) where µ = ν
ε

+ δ
4ε
≤

4c3η0 + 1
4
.

A packing argument now allows to conclude. Specifically,

by Lemma 15, we have that vol(Bx ∩M) > φk

“

δ lfs(p)
8

”k

and vol(B+
p ∩M) < φk (µεlfs(p))k, where φk is the volume

of the k-dimensional unit ball. We conclude that the number
of points of P ∩B′′

p is less than
`

8µε
δ

´k ≤ (32c3η0 +2)k ηk
0 =

2O(k).

4. MANIFOLD RECONSTRUCTION
In this section, we will show how to find a weight as-

signment for the point set P so that we can remove all in-
consistent configurations. Once this is done, all the stars
become coherent and the resulting weighted tangential De-
launay complex is a simplicial k-manifold.

4.1 Algorithm
The input to the algorithm is a point sample P = {p1, . . . , pn}

together with a bound on the relative density η0 of P . We
assume in addition that the dimension k of M is given and
that we know the tangent space Tp at each point p ∈ P .

The algorithm fixes ω0 in (0, 1/2) and then computes a
weight assignment ω ∈ [0, ω0] such that no inconsistent con-
figuration remains in the weighted tangential Delaunay com-
plex. More precisely, we will assign a weight to each point
p ∈ P in turn so as to remove all j-dimensional slivers in-
cident to p in DelωTM(P) ∪ Inω(P) for j ∈ {3, . . . , k + 1}.
By Lemma 12, we know that, if σ0 is large enough, remov-
ing inconsistent configurations from the tangential Delaunay
complex reduces to removing slivers.

For a given j-simplex τ = [p0, . . . , pj ] ∈ DelωTM(P) ∪
Inω(P) we have

σj(τ ) =
|det(p1 − p0, . . . , pj − p0)|

j! Lj
τ

≤ Πj
i=1 ‖pi − p0‖

j! Lj
τ

≤ 2j ρj
0

j!
≤ 2ρj

0,

the last inequalities follow from the facts that Lτ ≤ 2Rτ ,
and the radius-edge ratio of the simplices in DelωTM(P) ∪
Inω(P) is ≤ ρ0 (Lemmas 9 and 10). This implies that σ(τ ) ∈
(0, 2 ρ0]. In the first step of our reconstruction algorithm,
we pick a random value of σ0 from (0, 2ρ0], and once σ0 is se-
lected, we try to remove all slivers from DelωTM(P)∪ Inω(P).
If we fail to remove slivers or if we still have inconsistencies,
then we go back and select a new value of σ0.

Manifold-Reconstruction(P = {p1, . . . , pn})
S0 Calculate LNpi

∀pi ∈ P and ρ1

S1 Select σ0 at random from (0, 2 ρ1]

S2 for i = 1 to n do
if weight(pi, σ0) = “FAIL” then go-to S1
else update(DelωTM(P), pi)

S3 if Inω(P) 6= ∅ then go-to S1
else output DelωTM(P)

Before we give the details of the function weight() we first
define the subroutine skyline(p,S, σ0) that will be used in
the function. Let S be a set of simplices incident on p.

Let τ be a simplex in S whose subfaces are not σ0-slivers.
Such a simplex is called a candidate simplex. We associate
to τ interval W (τ ) that consists of all squared weights ω2(p)
for which τ appears as a simplex in DelωTM(P)∪ Inω(P). We
define the skyline of p as the lower boundary of the union
of all rectangles R(τ ) = W (τ ) × [σ(τ ),+∞) for all candi-
date simplices over W (p) = [0, ω2

0 l2p], see Figure 5. For any
ω2(p), the minimum sliverity ratio of any candidate sim-
plex incident to p is the height of skyline(p,Sp, σ0) over
ω2(p) ∈ W (p). The best choice for ω(p) is the weight of p
corresponding to the highest point on the skyline(p,Sp, σ0),
i.e skyline(p,Sp, σ0) has the maximum height over ω2(p).

Function weight(p,σ0)

S1 Sp ← detect simplices(p, σ0)

S2 skyline(p,Sp, σ0) begin
for i = 1 to n do

if none of the subfaces of τ are σ0-slivers then
include R(τ ) = W (τ )× [σ(τ ), +∞)

end

S3 Θ← highest point on skyline(p,Sp, σ0)

S4 if Θ < σ0 then return “FAIL”
else ω(p)← weight of p corresponding to a highest

point on skyline(p,Sp, σ0)

Function update(DelωTM(P), p)

− Update the stars of p and of all points x ∈ LNp by
modifying Delωx (LNx).

Function detect simplices(p,σ0)

1. We first detect all possible j-simplices for all 3 ≤ j ≤
k + 1 of DelωTM(P) incident on p for all possible ω(p).
This is done in the following way: (1) we vary the
weight of p from 0 to to ω0lp, keeping the weights of
the other points constant; (2) for each new weight as-
signment to p, we modify the stars of the points in LNp

and detect from the stars the new j-simplices incident



ω2

0
l2
p

W (p)

0

Figure 5: The above figure shows a skyline(p,Sp, σ0)
over W (p) = [0, ω2 l2p] for point p.

to p that have not been detected thus far. The weight
of point p changes only in a finite number of instances
0 = P0 < P1 < · · · < Pn−1 < Pn = ω0lp.

We determine the next weight assignment of p in the
following way. For each new simplex τ currently inci-
dent to p, we keep it in a priority queue ordered by the
weight of p at which τ will disappear for the first time.
Hence the minimum weight in the priority queue gives
the next weight assignment for p. Since the number
of points in LNp is bounded, the number of simplices
incident to p is also bounded, as well as the number of
times we have to change the weight of p.

2. Once we have detected all possible j-simplices, for all
j ∈ {1, . . . , k + 1}, that can be incident on p in the
weighted tangential Delaunay complex, we then de-
tect all possible inconsistent configurations incident
on p, by calling the function detect inconsistent-
configuration(p, σ0).

Function detect inconsistent-configurations(p, σ0)

1. We vary the weight of p from 0 to ω0lp, keeping the
weight of the rest of the points constant. Once we have
assigned a new weight to p we modify the stars of the
points in LNp.

2. Detecting the inconsistent configurations incident to p
is more complicated than detecting the simplices inci-
dent to p. We consider all points pi in LNp. Let τ be
a k-simplex in the star of pi, and let pj be a vertex
of τ such that τ is not in the star of pj . We calculate
the Voronoi diagram of the points in LNp restricted to
the line segment [cpi

cpj
], where cpi

= Tpi
∩ Vorω(τ )

and cpj
= Tpj

∩ aff(Vorω(τ )). From the restricted
Voronoi diagram, we find a point p whose Voronoi cell
intersects for the first time the line segment [cpi

cpj
]

oriented from cpi
to cpj

. If p ∈ φ = τ ∪ {l}, then we
report φ.

3. As in the detect simplices function the weight of p
is changed only a finite number of times. For each
current inconsistent configuration φ incident to p, we
keep in a priority queue the weight of p for which φ
will disappear for the first time. The minimum weight
in the priority queue gives the next weight assignment
of p.

4.2 Analysis of the algorithm

Definition 4 (Sliverity range). Let ω be a weight
assignment of relative amplitude at most ω0 we keep fixed

except for ω(p). The sliverity range of a point p ∈ P is the
measure of the set of all squared weights ω2(p) for which p
is incident to a sliver in DelωTM(P) ∪ Inω(P).

Lemma 14. Under Hypothesis 1, the sliverity range of p
is at most Σ(p) = Nk+2(k + 1)c5 σ0 l2p for some constant c5.

Proof. Let τ be a simplex incident on p. We call the
sliverity range of τ the measure of the set of squared weights
for which τ is a sliver in DelωTM(P) ∪ Inω(P). If ω(p) is
the weight of p, we write H(ω(p)) for the signed distance
of the orthocenter of τ to aff(τp). From Lemma 11, we
have |H(ω(p))| ≤ c4εlfs(p), for all τ ∈ DelωTM(P) ∪ Inω(P).
Moreover, using Lemma 5 and the fact that τ is a sliver,

H(ω(p)) = H(0) − ω2(p)
2Dp

≤ H(0) − ω2(p)
2jσ0Lτ

. It follows that

the sliverity range of τ is at most 4jσ0Lτ c4εlfs(p). Using
the facts that Lτ ≤ c3εlfs(p) (from Lemmas 9 and 10),
lfs(p) ≤ lp/δ and ε/δ ≤ η0, the sliverity range of τ is less
than 4jc3c4σ0η

2
0 l2p = j c5σ0 l2p. By Lemma 13, the number

of j-simplices that are incident to p is at most Nj . Hence,
the sliverity range of p is less that

Σ(p) =
k+1
X

3

Nj jc5 σ0 l2p ≤ Nk+2(k + 1)c5 σ0 l2p.

Theorem 1. Under Hypothesis 1 and if

σmax =
ω2

0

(k + 1) c5 Nk+2
> σmin = inf{σ|ε < f(σ)},

then, for any σ0 ∈ [σmin, σmax], the above algorithm outputs
DelωTM(P) without any slivers nor inconsistent configuration.

Proof. As in subroutine skyline(), let Sp denotes the
set of all possible simplices that can be incident on p in the
complex DelωTM(P) ∪ Inω(P) for all possible weight assign-
ments ω of relative amplitude ω̃ ≤ ω0. By Lemma 14, the
sliverity range of p is less than Nk+2(k + 1)c5 σ0 l2p. If the
sliverity range of p is less than ω2

0l2p, the total range of all
possible squared weights, or, equivalently, if

σ0 < σmax =
ω2

0

(k + 1) c5 Nk+2
,

then we will be able to remove all slivers incident on p by
selecting the highest point on the skyline.

If we select a value of σ0 in the interval (σmin, σmax],
Lemma 14 ensures that removing all j-dimensional slivers
for all j ∈ {3, . . . , k +1} in DelωTM(P)∪ Inω(P) will also re-
sult in removing inconsistent configurations from DelωTM(P),
i.e. Inω(P) = ∅.

4.3 Time and space complexity

Theorem 2. The time complexity of the algorithm is

O(d) |P|2 +
1

λ
× 2O(k2)+log d |P|,

where λ = (σmax − σmin)/(2ρ0), and its space complexity is

2O(k2)+log d |P|.
Proof. We only sketch the complexity analysis. See [7]

for a detailed discussion. Step S0 of Manifold-Reconstruc-
tion can easily be performed in O(d) |P|2 time.



We show now that the expected number of times Step S1
of ManifoldReconstruction is repeated is 1

λ
. Indeed, for

any simplex τ ∈ DelωTM(P)∪Inω(P), we have σ(τ ) ∈ (0, 2ρ0].
Hence, the probability that, for the selected value of σ0,
the algorithm removes all slivers and inconsistencies is at
least λ = (σmax − σmin)/(2ρ0). It follows that the expected
number of times S1 is performed is less than

∞
X

i=1

i(1− λ)i−1λ =
1

λ
.

The time complexities of functions update(DelωTM(P), p),
detect simplices (p, σ0), and detect inconsistent-confi-

gurations(p, σ0) are 2O(k(k+log d)). Indeed, we need to pro-

ject |LNp| < N < 2O(k) points onto Tp, which costs O(kd)×
|LNp| = O(d) 2O(k) time. The Delaunay simplices that are
computed have their vertices in LNp and are of dimension

at most k + 1. Hence their number is 2O(k2). The basic op-
erations (mainly in-sphere predicates) amount to evaluating
signs of determinants of k × k matrices. The cost of such a
basic operation is O(k3). The total cost of both functions is

thus O(d) 2O(k) + O(k3) 2O(k2) = 2O(k2)+log d.
We deduce that the expected time complexity of Manifold-

Reconstruction is

O(d) |P|2 +
1

λ
× 2O(k2)+log d |P|.

We easily deduce from the above discussion that the total
space complexity of the algorithm is

2O(k2)+log d |P|. (2)

4.4 Topological and Geometric guarantees
We assume that the conditions of Theorem 1 are satisfied

and denote by DelωTM(P) the tangential complex output by
our algorithm. Let π be the mapping that maps any point of
DelωTM(P) to its closest point on M. The proof of topological
correctness (see [7]) uses ideas from [1, 8, 11, 14].

Theorem 3. Under the conditions of Theorem 1, our al-
gorithm outputs DelωTM(P) without any slivers and inconsis-
tent configurations, and DelωTM(P) has the following proper-
ties

• Bijection : The restriction of π to DelωTM(P) is a
bijection;

• Pointwise approximation : ∀x ∈ M, dist(x, π−1(x))
= O(ε2lfs(x));

• Normal approximation : ∀x ∈ M, ∠NxNτ = O(ε),
where τ is a k-simplex of DelωTM(P) containing the
point π−1(x),

• Topological correctness : π defines an isotopy be-
tween DelωTM(P) and M.

Proof sketch. By Lemma 7, one can show that the
maximum distance from a point of a simplex τ ∈ DelωTM(P)
to the closest point on M is O(ε2lfs(x)). It follows that the
projection π that maps every point of τ to its closest point
on M is injective: if we extend an open segment of length
lfs(y) from every manifold point y in all normal directions
to M, these segments do not intersect, and they can be used

as the fibers of a tubular neighborhood M̂ of M. Each point
of such a segment has y as its unique closest neighbor on
M. For small enough ε, the simplex τ is contained in M̂.
Thus, the mapping π defines an isotopy between τ and a
corresponding manifold patch.

One can show that two k-simplices of DelωTM(P) that share
a subface have normal spaces that differ by at most O(ε),
and that the mapping π extends continuously across the
subfaces. It follows that the projection π restricted to the
two adjacent k-simplices is a homeomorphism that is invert-
ible locally. (In topological terms, π : DelωTM(P) → M is a
covering map, if we can establish that it is surjective.) By
assumption, on every component, there is at least one vertex
of a simplex of DelωTM(P). This ensures that π(DelωTM(P))
contains that vertex, and since the mapping can be contin-
ued locally, it follows that every component of S is covered
at least once. It is now still possible that some component is
covered more than once by π. This would imply that some
sample point p ∈ P is covered more than once. However, one
can show quite easily that no point p of DelωTM(P) except p
itself has p as its closest neighbor on M.

It follows that the mapping π defines an ambient isotopy
between DelωTM(P) and M.

5. CONCLUSION
We have given the first algorithm that is able to recon-

struct a smooth manifold in a time that depends only lin-
early on the dimension of the ambient space. We believe
that our algorithm is of practical interest when the dimen-
sion of the manifold is small, even if it is embedded in a space
of very high dimension. This situation is quite common in
practical applications in machine learning.

The algorithm is rather simple. The basic ingredients we
need are data structures for constructing weighted Delaunay
triangulations in k-flats. We will report experimental results
in a forthcoming paper.

We have assumed that dimension of M is known. If not,
we can use algorithms given in [22, 15] to estimate the di-
mension of M and the tangent space at each sample point.
One interesting feature of our approach is that it is pretty
robust and still works if we only have approximate tangent
spaces at the sample points.

We have also assumed that we know an upper bound on
the relative density η0 of the input sample P . Ideas from
[21, 8] may be useful to convert a sample to a subsample
with a bounded relative density.

We forsee other applications of the tangential complex and
of our construction each time computations in the tangent
space of a manifold are required, e.g. for dimensionality
reduction and approximating the Laplace Beltrami operator
[5].

Finally, let us mention that removing inconsistencies among
stars that have been computed independently is a useful
paradigm that has already been used for maintaining dy-
namic meshes [29] and generating anisotropic meshes [9].
We hope that this paper will motivate further applications.
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APPENDIX
Lemma 15 ( [26]). Let A = B(p, r) ∩ M where r ≤

εlfs(M). Then, φkrk ≥ vol(A)φkrk/2k, where φk is volume
of the k-dimensional unit ball.


