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ABSTRACT

We consider the problem of reconstructing a compact 3-
manifold (with boundary) embedded in R

3 from its cross-
sections with a given set of cutting planes having arbitrary
orientations. Under appropriate sampling conditions that
are satisfied when the set of cutting planes is dense enough,
we prove that the algorithm presented by Liu et al. in
[LBD+08] preserves the homotopy type of the original ob-
ject. Using the homotopy equivalence, we also show that
the reconstructed object is homeomorphic (and isotopic) to
the original object. This is the first time that shape re-
construction from cross-sections comes with such theoretical
guarantees.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations

General Terms

Algorithms, Reliability, Theory.

1. INTRODUCTION

Overview.
This paper deals with the reconstruction of 3-dimensional

geometric shapes from unorganized planar cross-sections.
The need for such reconstructions is a result of the advances
in medical imaging technology, specially in ultrasound to-
mography. In this context, the purpose is to construct a 3D
model of an organ from a collection of ultrasonic images.
When the images are provided by free-hand ultrasound de-
vices, the cross-sections of the organ belong to planes that
are not necessarily parallel. However, it is only very re-
cently that reconstruction from unorganized cross-sections
has been considered: A very first work [PT94] by Payne
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and Toga was restricted to easy cases of reconstruction that
do not require branching between sections. In [BG93], Bois-
sonnat and Geiger proposed a Delaunay-based algorithm for
the case of serial planes, that has been generalized to arbi-
trarily oriented planes in [DP97] and [BM07]. Some more
recent work ([JWC+05] and [LBD+08]) can handle the case
of multilabel sections (multiple materials). Barequet and
Vaxman’s work [BV09] extends the work of [LBD+08] and
can handle the case where the sections are only partially
known.
Most of previous work has been restricted to the case of par-
allel cross-sections and is mostly based on the simple idea
of connecting two sections if their orthogonal projections
overlap. This paper, analyzes a natural generalization of
this idea for the case of non parallel sections, that has been
proposed in [LBD+08]. We prove that under appropriate
sampling conditions, the connection between the sections
provided by this generalization is coherent with the connec-
tivity structure of the object and the proposed reconstructed
object is homeomorphic to the object. To the best of our
knowledge, this work is the first to provide such a topo-
logical study in shape modeling from planar cross-sectional
data. The only existing results studying the topology of the
reconstructed object are restricted to the 2D variant of the
problem ([SBG06] and [MB08]).

Reconstruction Problem.
Let O ⊂ R

3 be a compact 3-manifold with boundary (de-
noted by ∂O) of class C1,1. The manifold O is cut by a set
P of so-called cutting planes that are supposed to be in gen-
eral position in the sense that none of these cutting planes
are tangent to ∂O. For any cutting plane P ∈ P, we are
given the intersection O∩P . There is no assumption on the
geometry or the topology of these intersections. The goal is
to reconstruct O from the given intersections.

Arrangement of the Cutting Planes.
We can decompose the problem into several subproblems

as follows. Consider the arrangement of the cutting planes,
i.e., the subdivision of R

3 into convex polyhedral cells in-
duced by the cutting planes. Without loss of generality,
we can restrict our attention to a cell of this arrangement
and reduce the reconstruction of O to the reconstruction of
OC := O ∩ C for all cells C of the arrangement. Since the
various reconstructed pieces will conform to the given sec-
tions, it will be easy to glue them together in the end to get
the overall reconstructed object R.



Sections: Input of the Reconstruction Algorithm.
We now focus on a cell C of the arrangement and describe

how the reconstructed object RC is defined in C. On each
face f of C, the intersection of the object O with f is given
and consists of a set of connected regions called sections. By
definition, the sections of a face of C are disjoint. However,
two sections (on two neighbor faces of C) may intersect along
the intersection between their two corresponding faces. The
boundary of a section A is denoted by ∂A and is a set of
closed curves, called section-contours, that may be nested.

Let us write ∂C for the boundary of C, and FC for the set
of faces of C. In the sequel, SC denotes the union of sections
of all the faces of C and a point of SC is called a section-point.

Methodology.
We know that a point on the boundary of C is in O if it

lies in SC . The goal is now to determine whether a point x
inside C belongs to O or not. The reconstruction method
that we will present here is based on the notion of distance
from ∂C:

A point x ∈ C is in the reconstructed object if
one of its nearest points in ∂C is in SC .

Different distance function (from the boundary of C) may be
used in order to satisfy properties of interest for different ap-
plications (for example, to promote the connection between
sections in the case of sparse data, or to impose a favorite
direction to connect the sections, etc). A natural idea is
to use the Euclidean distance as the distance function from
∂C. In this case, the reconstructed object coincides with the
method introduced by Liu et al in [LBD+08]. In this paper,
we analyze this method and present appropriate sampling
conditions providing topological guarantees for the result-
ing reconstructed object.

Organization of the paper.
After this brief introduction, in Section 2 we provide the def-
inition of the reconstructed object R. The rest of the paper
will be then devoted to prove that in the general case, un-
der two appropriate sampling conditions, R and O are ho-
motopy equivalent, and are more strongly homeomorphic.
Indeed, the first sampling condition, called the Separation
Condition, discussed in Section 2.1, ensures good connectiv-
ity between the sections, but does not necessarily imply the
homotopy equivalence.

As we will see, in order to ensure the homotopy equiva-
lence between R and O, a second so-called Intersection Con-
dition is required, c.f., Section 3.4. To make the connection
between the upcoming sections more clear, we shortly out-
line the general strategy employed in proving the homotopy
equivalence between R and O. In Section 3.5, we provide a
set of properties on the sampling of cutting planes to ensure
the Separation and the Intersection Conditions. Finally, in
Section 3.6 we show that the two shapes O and R are in-
deed homeomorphic (and even isotopic). Some preliminary
notions of homotopy theory we use here are recalled in the
full version of the paper [ABM09].

2. RECONSTRUCTED OBJECT

DEFINITION
Let us first give a definition of the reconstructed object in

a cell C of the arrangement of the cutting planes, which is
related to the Voronoi diagram of C defined as follows.

Voronoi Diagram of a Cell.
For a face f of C, the Voronoi cell of f , denoted by VorC(f),

is defined as the set of all points in C that have f as the
nearest face of C, i.e.,

VorC(f) = { x ∈ C | d(x, f) ≤ d(x, f ′), ∀ face f ′ of C }.

Where d(., .) denotes the Euclidean distance. The collection
of all VorC(f) of the faces of C forms a tiling of C, called the
Voronoi diagram of C.
We write ∂VorC(f) for the boundary of VorC(f). The union
of ∂VorC(f) for all the faces f of C is called the Voronoi
Skeleton of C, and is denoted by VorSkel(C). VorSkel(C)
is also called the medial axis of the cell, and is the locus
of points in C that are at the same distance from at least
two faces of C. To simplify notation, when the cell C is
understood from the context, we simply remove the index C
and write Vor(f), ∂Vor(f), etc.

Definition 1 (Nearest Point) For any point x in C, the
nearest point in ∂C to x is the orthogonal projection of x
onto the nearest face f of C. This projection is denoted by
npf (x). The set of all nearest points to x in ∂C is denoted
by NpC(x). Note that for any x /∈ VorSkel(C), NpC(x) is
reduced to a single point. Based on this, and to simplify the
presentation, sometimes we drop the index f , and by np(x)
we denote a point of NpC(x).

We can now define the reconstructed object in a given
cell C. We first give the formal definition, and then present
a more detailed geometric characterization of the recon-
structed object using the lifting procedure described below.

Definition 2 (Reconstructed Object RC in C) The re-
constructed object RC is the set of all points x in C such that
a nearest point np(x) lies in SC, i.e., NpC(x)∩SC 6= ∅. Note
that in the case where SC is empty, RC will be the empty set
as well.

Definition 3 (Lift Function) Let x ∈ C be a point in the
Voronoi cell of a face f of C. The lift of x in C, denoted by
liftC(x) (or simply lift(x) if C is trivially implied), is defined
to be the unique point of ∂VorC(f) such that the line defined
by the segment [x, lift(x)] is orthogonal to f . In other words,
lift(x) is the unique point in ∂VorC(f) whose the orthogonal
projection onto f is np(x).
The lift of a set of points X ⊆ C, denoted by lift(X), is
the set of all the points lift(x) for x ∈ X, i.e., lift(X) :=
{ lift(x) |x ∈ X }.
The function L : C → VorSkel(C) that maps each point x ∈ C
to its lift in VorSkel(C) will be called the lift function in the
sequel. For any Y ⊂ VorSkel(C), L−1(Y ) denotes the set of
points x ∈ C such that lift(x) = y for some y ∈ Y .

Characterization of the Reconstructed Object RC.
If SC = ∅, then, as we said before, for any point x ∈ C,

np(x) /∈ SC , and so RC is empty. Otherwise, let A ∈ SC be
a section lying on a face of C. For each point a ∈ A, the
locus of all the points x ∈ C that have a as their nearest



Figure 1: A 2D illustration of the partition of a cell C by the Voronoi Skeleton VorSkel(C). Left) The original
shape OC. Right) The reconstructed object RC.

point in ∂C is the line segment [a, lift(a)] joining a to its
lift. Therefore, the reconstructed object RC is the union
of all the line-segments [a, lift(a)] for a point a in a section
A ∈ SC , i.e.,

RC =
[

A∈SC

[

a∈A

[a, lift(a)] = L−1(lift(SC)).

Note that according to this characterization, if the lifts of
two sections intersect in VorSkel(C), then these two sections
are connected in RC . This generalizes the classical overlap-
ping criterion for the case of parallel cutting planes. The
union of all the pieces RC over all cells C will be the overall
reconstructed object R.

The rest of the paper is devoted to prove that under two
appropriate sampling conditions, R and O are homotopy
equivalent, and are indeed homeomorphic (and isotopic).

2.1 First Sampling Condition:
Separation Condition

In this section, we provide the first sampling condition,
under which the connection between the sections in the re-
constructed object R are the same as in the original object
O. Our discussion will be essentially based on the study of
the medial axis, that we define now.

Definition 4 (Medial Axis of ∂O) Consider ∂O as a 2-
manifold without boundary embedded in R

3. The medial axis
of ∂O, denoted by MA(∂O), contains two different parts: the
so-called internal part, denoted by MAi(∂O), which lies in O
and the so-called external part, denoted by MAe(∂O), which
lies in R

3 \ O.

The internal retract mi : ∂O → MAi(∂O) is defined as
follows: for a point x ∈ ∂O, mi(x) is the center of the
maximum ball entirely included in O which passes through
x. For any x ∈ ∂O, mi(x) is unique. Symmetrically, we
define the external retract me : ∂O → MAe(∂O): for a point
x ∈ ∂O, me(x) is the center of the maximum ball entirely
included in R

3 \O which passes through x. For any x ∈ ∂O,
me(x) is unique but may be at infinity. In the sequel, we
may write m(a) for a point in {mi(a), me(a)}.

The interesting point is that as discussed below if the sam-
ple of cutting planes is sufficiently dense, then the internal
part of MA(∂O) lies inside the defined reconstructed object
and the external part of this medial axis lies outside the
reconstructed object.

Definition 5 (Separation Condition) We say that the
set of cutting planes verifies the Separation Condition if

MAi(∂O) ⊂ R and MAe(∂O) ⊂ R
3 \ R .

In other words, ∂R separates the internal and the external
parts of the medial axis of ∂O. (That is where the name
comes from.)

We will show that in each cell C, the Separation Condition
implies that ∂RC separates the internal and the external
parts of the medial axis of ∂OC .

Definition 6 (Medial Axis of ∂OC) In order to study the
Separation Condition in a cell C, we will need to consider
the medial axis of OC, denoted by MA(∂OC), defined as the
set of points in C with at least two closest points in ∂OC.
By MAi(∂OC) (resp. MAe(∂OC)) we denote the part of
MA(∂OC) that lies inside (resp. outside) OC. Note that
the two sets MA(∂OC) and MA(∂O) ∩ C may be different.

We also consider the internal retract mi,C : ∂OC → MAi(∂OC)
defined as follows: for a point x ∈ ∂OC , mi,C(x) is the center
of the maximum ball entirely included in OC which passes
through x. Symmetrically, we can define the external re-
tract me,C : ∂OC → MAe(∂OC): for a point x ∈ ∂OC ,
me,C(x) is the center of the maximum ball entirely included
in C\OC which passes through x. It is easy to see that for any
x ∈ ∂O ∩ C, the segments [x, mi,C(x)] and [x, me,C(x)] are
subsegments of [x, mi(x)] and [x, me(x)] respectively, and lie
on the line defined by the normal to ∂O at x.

Lemma 1 (Separation Condition Restricted to C) If
the Separation Condition is verified then MAi(∂OC) ⊂ RC

and MAe(∂OC) ⊆ C \ RC.

Proof. We prove the first part, MAi(∂OC) ⊂ RC . A
similar proof gives the second part.
Let m be a point in MAi(∂OC), and B(m) be the open
medial ball centered at m. Two cases can happen:

• Either, the closest points to m in ∂OC are in ∂O, in
which case m is a point in MAi(∂O). The Separation Con-
dition states that MAi(∂O) ⊂ R, and so m ∈ RC = R∩ C.

• Otherwise, one of the closest points to m in ∂OC is a
point a in some section A ∈ SC . If a is on the boundary of
A, then since along the section-contours ∂OC is non-smooth,
a lies in MAi(∂OC) and coincides with m, and m = a is



trivially in RC . Hence, we may assume that a lies in the
interior of A. Therefore, the ball B(m) is tangent to A at
a, and the line segment [a, m] is orthogonal to A. Since
B(m) ∩ ∂C = ∅, m and a are in the same Voronoi cell of
the Voronoi diagram of C. Thus, a ∈ SC is the nearest
point in ∂C to m. By the definition of RC , we deduce that
m ∈ RC .

Assume that the Separation Condition is verified. The
first idea which comes to mind is to retract points of ∂O
to ∂R by following the normal-directions. A point x ∈ ∂O
which lies outside R can move towards mi(x) ∈ R and stop
when ∂R is reached. A point x ∈ ∂O which lies inside R,
can move toward me(x) and stop when ∂R is reached. Since
∂O is assumed to be of class C1,1, the normals form a con-
tinuous vector field. Hence, this deformation will be a con-
tinuous retraction if each normal intersects ∂R at a single
point. In such a case, ∂O can be deformed to ∂R home-
omorphically. But a major problem is that R may have a
complex shape (with cavities), so that a normal to ∂O inter-
sects ∂R in several points. In such a case, such a retraction
is not continuous and does not provide a deformation retract
of O onto R. However, we will be essentially following this
intuitive idea by looking for a similar deformation retract of
O onto a subshape of R (the so-called medial shape).

2.2 Guarantees on the Connections
Between the Sections

We now show that if the sample of cutting planes verifies
the Separation Condition, then in each cell C of the arrange-
ment, the connection between the sections is the same in OC

and RC .

Theorem 1 If the sample of cutting planes verifies the Sep-
aration Condition, RC and OC induce the same connectivity
components on the sections of C.

Proof. The proof is given in two parts:

(I) If two sections are connected in RC, then they
are connected in OC. Let A and A′ be two sections
connected in RC . Let γ be a path in RC that connects
a point a ∈ A to a point a′ ∈ A′. For the sake of
a contradiction, suppose that a and a′ are not in the
same connected component of OC . In this case, as γ
joins two points in two different connected components
of OC , it intersects MAe(∂OC). This is a contradiction
with the fact that γ ⊂ RC , since according to Lemma 1
we have MAe(∂OC) ∩RC = ∅.

(II) If two sections are connected in OC, then they
are connected in RC. Let A and A′ be two sections
in a same connected component K of OC . Accord-
ing to the non-smoothness of ∂OC at the boundary of
the sections, ∂A and ∂A′ are contained in MAi(∂OC).
Thus, there is a path γ in MAi(∂OC) ∩ K that con-
nects a point a ∈ ∂A to a point a′ ∈ ∂A′. According
to Lemma 1, MAi(∂OC) ⊂ RC . Thus, γ is a path in
RC that connects A to A′.

We proved that under the Separation condition, the con-
nectivity between the sections of C induced by the recon-
structed object RC is coherent with the original shape OC .

This will imply the homotopy equivalence between RC and
OC for the 2-dimensional variant of the reconstruction prob-
lem, that consists of constructing a 2D-shape from its inter-
sections with arbitrarily oriented cutting lines. In this case
the sections are line-segments.

2.3 2D Shape Reconstruction
from Line Cross-Sections

Consider the 2-dimensional variant of the reconstruction
problem, that consists of constructing a 2D-shape from its
intersections with arbitrarily oriented cutting lines. In this
case the sections are line-segments.
We can focus on a cell C of the arrangement of the plane by
the cutting lines. Similar definitions for the Voronoi diagram
and the Voronoi skeleton of C, the lift function and the re-
constructed object RC can be considered. If for any cell C of
the arrangement, hC < reachC(O) then the Separation Con-
dition is ensured. Under the Separation Condition, there is
a bijection between the connected components of RC and
OC . By the definition of the reconstructed object, it is easy
to see that any connected component of RC is a topological
disk. On the other hand, under the Separation Condition,
any connected component of ∂O is cut by at least one cut-
ting line. We easily deduce that any connected component
of OC is a topological disk.

Using the sufficient condition presented in the last sec-
tion that implies the separation condition, we deduce the
following theorem.

Theorem 2 (Provably Good 2D Reconstruction) If
for any cell C of the arrangement of the cutting lines, hC <
reachC(O) then R is homeomorphic to O.

Proof. We proved that under the separation condition,
there is a bijection between the connected components of
RC and OC . On the other hand, according to the previ-
ous lemma, all the connected components of OC or RC are
2-dimensional disks. Therefore, there is a homotopy equiva-
lence between each pair of corresponding connected compo-
nents of OC or RC . This provides a homotopy equivalence
between RC and OC . As we will explain in detail in Sec-
tion 3.4.1, the homotopy equivalences in the different cells
of the arrangement can be extended to a homotopy equiv-
alence between R and O. Finally, since R and O are two
homotopy equivalent 2-dimensional topological manifolds,
we conclude that there is a homeomorphism between R and
O.

2.4 How to Ensure the Separation Condition?
In this section we provide a sufficient condition for ensur-

ing the Separation Condition. For this, we need first some
definitions.

Definition 7 (Reach) Let O be a connected compact 3-
manifold with smooth boundary ∂O in R

3. For a ∈ ∂O, we
define reach(a) = min

`

d(a, mi(a)), d(a, me(a))
´

. The quan-
tity reach(O) is defined as the minimum distance of ∂O from
the medial axis of ∂O:

reach(O) := min
m∈MA(∂O)

d(m, ∂O) = min
a∈∂O

reach(a).

Note that as O is compact and ∂O is of class C1,1, reach(O)
is strictly positive.



Definition 8 (Reach restricted to a cell) Given a cell
C of the arrangement, we define reachC(O) = min d(a, m(a)),
where either a ∈ ∂O∩ C or m(a) ∈ MA(∂O)∩ C. By defini-
tion, we have reach(O) = minC (reachC(O)).

Definition 9 (Height of a Cell) Let C be a cell of the ar-
rangement of the cutting planes. The height of C, denoted
by hC, is defined as the maximum distance of a point x ∈ C
to its nearest point in the boundary of C. In other words,
hC := maxx∈C d(x, np(x)).

We now show that by upper-bounding the height of the
cells by a factor related to the reach of the object, we can
ensure the Separation Condition.

Lemma 2 (Sufficient Condition) If hC < reachC(O), for
any cell C of the arrangement, then the Separation Condition
is verified.

Proof. The proof is straightforward. Let m be a point
in MA(∂O) in a cell C of the arrangement. We have

d(m, np(m)) ≤ hC < reachC(O) ≤ d(m, ∂O).

Therefore the Separation Condition is verified.

3. TOPOLOGICAL GUARANTEES
To clarify the connection between the upcoming sections,

let us shortly outline the general strategy employed in prov-
ing the homotopy equivalence between R and O.

3.1 Proof Outline of the Homotopy Equiva-
lence Between R and O

We will provide a homotopy equivalence between RC and
OC in each cell of the arrangement. (And then glue these
homotopy equivalences together to form a global homotopy
equivalence between R and O.) In Section 2.2 we showed
that under the first sampling condition called Separation
Condition the connection between the sections in the re-
constructed object RC is the same as in OC , in the sense
that there is a bijection between the connected components
of RC and the connected components of OC . This implies
that for proving the homotopy equivalence between RC and
OC , it will be enough to show that the corresponding con-
nected components have the same homotopy type. In order
to extend these homotopy equivalences to a homotopy equiv-
alence between R and O, we will have to glue together the
homotopy equivalences we obtain in the cells of the arrange-
ment. This needs some care since the restriction to a section
S of the two homotopy equivalences defined in the two adja-
cent cells of S may be different. To overcome this problem,
we need to define an intermediate shape MC in each cell C,
called the medial shape. The medial shape has the following
three properties:

(i) The medial shape contains the sections of C, i.e., SC ⊆
MC .

(ii) There is a (strong) deformation retract r from OC to
MC . In particular, this map is a homotopy equivalence
between OC and MC . And its restriction to SC is the
identity map.

(iii) Under the first sampling condition (Separation Condi-
tion), MC ⊆ RC .

The first two properties will be crucial to guarantee that
the homotopy equivalences conform on each section under
the Separation Condition. Indeed, the map OC → MC →֒
RC , obtained by composing the deformation retract and the
inclusion, restricts to the identity map on each section of
SC . Thus, we can glue all these maps to obtain a global
map from O to R.

Using a generalized version of the nerve theorem (see Sec-
tion 3.4.1) and property (ii) above, we can then reduce the
problem to proving that the inclusion i : MC →֒ RC forms a
homotopy equivalence in each cell. Using Whitehead’s the-
orem, it will be enough to show that the inclusion i induces
isomorphisms between the corresponding homotopy groups.
Under the Separation Condition, we prove that i induces
an injective map on the first homotopy groups, and that all
higher homotopy groups of MC and RC are trivial. Unfortu-
nately, the Separation Condition does not ensure in general
the surjectivity of i on the first homotopy groups. To over-
come this problem, we need to impose a second condition
called Intersection Condition. Under the Intersection Con-
dition, the map i will be surjective on the first homotopy
groups, leading to a homotopy equivalence between O and
R.
According to the guarantees on the connectivity between the
sections (Theorem 1), to prove the homotopy equivalence be-
tween RC and OC under the Separation Condition, we may
restrict to each of the corresponding connected components.

In the sequel, to simplify the notations and the
presentation, we suppose that OC and thus RC

are connected, and we show that OC and RC have
the same homotopy type. It is clear that the same
proofs can be applied to each corresponding con-
nected components of OC and RC to imply the
homotopy equivalence in the general case of mul-
tiple connected components.

3.2 Medial Shape
We now define an intermediate shape in each cell C of

the arrangement called the medial shape. The medial shape
enjoys a certain number of important properties, discussed
in this section, which makes it playing an important role in
obtaining the homotopy equivalence between OC and RC .

Definition 10 (Medial Shape MC) Let x be a point in
SC ⊂ ∂OC. Let w(x) = [x, mi,C(x)] be the segment in the
direction of the normal to ∂OC at x which connects x to the
point mi,C(x) ∈ MAi(∂OC). We add to MAi(∂OC) all the
segment w(x) for all the points x ∈ SC. We call the resulting
shape MC, see Figure 2. More precisely,

MC := MAi(∂OC) ∪ (
[

x∈SC

w(x)).

Proposition 1 The medial shape verifies the following set
of properties:

(i) The medial shape contains the sections of C, i.e., SC ⊆
MC.

(ii) There is a (strong) deformation retract r from OC to
MC. In particular, this map is a homotopy equivalence
between OC and MC. And its restriction to SC is the
identity map.



Figure 2: A 2D illustration of the medial shape.

(iii) Under the Separation Condition, MC ⊆ RC.

Proof. (i) This property is true by the definition of
the medial shape.

(ii) This is obtained by deforming OC to MC in the direc-
tion of the normals to the boundary ∂OC . Note that
the boundary ∂OC is smooth except on the boundaries
of sections in SC , and the boundaries of the sections
in SC are already in MC , thus the deformation retract
is well defined and easily seen to be continuous. (We
refer the interested reader to Lieutier’s paper [Lie04],
for a more general result on the homotopy equivalence
between any open bounded set in R

n and its medial
axis.)

(iii) Since MC = MAi(∂OC) ∪
`

S

x∈SC
w(x)

´

and in ad-

dition MAi(∂OC) ⊂ RC , it will be sufficient to show
that for any x in a section A ∈ SC , w(x) ⊂ RC . (Re-
call that w(x) is the orthogonal segment to ∂OC at x
that joins x to the corresponding medial point mi,C(x)
in MAi(∂OC).) We will show that w(x) is contained
in the segment [x, lift(x)]. The point x is the closest
point in ∂OC to mi,C(x). Thus, the ball centered at
mi,C(a) and passing through x is entirely contained
in O and its interior is empty of points of ∂C. Thus,
in the Voronoi diagram of C, mi,C(a) is in the same
Voronoi cell as x. On the other hand, x is the closest
point in SC ⊂ ∂OC to lift(x). It easily follows that
d(x, lift(x)) ≥ d(x, mi,C(x)). It follows that the seg-
ment [x, mi,C(x)] = w(x) is a subsegment of [x, lift(x)].
Therefore, by the definition of RC , w(x) ⊂ RC .

We end this section with the following important remark
and proposition which will be used in the next section. By
replacing the shape OC with its complementary set we may

define an exterior medial shape fMC . This is more precisely

defined as follows. Let eO be the closure of the complemen-

tary set of O in R
3. And let fOC be the intersection of eO

with the cell C. The medial shape of fOC , denoted by fMC ,
is the union of the medial shapes of the connected compo-

nents of fOC . Similarly, under the Separation Condition, the
following proposition holds.

Proposition 2 Let fOC be the closure of the complementary

set of OC in C and fMC be the medial shape of fOC. Under

the Separation Condition: (i) There is a strong deformation

retract from C \ fMC to OC, and (ii) We have RC ⊂ C \ fMC .

Proof. The proof of Property (i) is similar to the proof
of Proposition 1 by deforming along the normal vectors to

the boundary of fOC . The second property (ii) is equivalent

to fMC ⊂ C \ RC .

3.3 Topological Guarantees
Implied by the Separation Condition

Throughout this section, we suppose that the Separation
Condition holds. By the discussion at the end of Section 3.1,
and without loss of generality, we may suppose that OC and
hence RC are connected. Thus, OC and RC are connected
compact topological 3-manifolds embedded in R

3.
In Section 3.2, we defined the medial shape MC and showed

that MC is homotopy equivalent to OC , by giving a (strong)
deformation retract from OC onto MC . We have also shown
that under the Separation Condition, MC ⊂ RC . Using
these properties, the goal will be to prove that the inclusion
i : MC →֒ RC is a homotopy equivalence. As the objects we
are manipulating are all CW-complexes, homotopy equiva-
lence is equivalent to weak homotopy equivalence according
to Whitehead’s theorem.

Hence, it will be enough to show that i : MC →֒ RC

induces isomorphism between the corresponding homotopy
groups.

3.3.1 Injectivity on the Level of Homotopy Groups

We will make use of the lift function in C, c.f. Section 2.
We consider the restriction of the lift function to the recon-
structed object RC . According to the definition of RC , RC is
the union of all the segments [a, lift(a)], for a ∈ SC . On the
other hand, the lift function retracts each segment [a, lift(a)]
to lift(a) continuously. We infer the following simple obser-
vation.

Proposition 3 The lift function L : RC → lift(SC) is a
homotopy equivalence.

According to the above proposition and the following dia-
gram, to show that i : MC →֒ RC is a homotopy equivalence,
using Whitehead’s theorem it will be sufficient to show that
the restriction of the lift function to MC is a weak homotopy
equivalence.

MC RC

lift(SC)

�

�

//i

��
?

?
?

?
?

?
?

?
?

L

��

L

More precisely, if L : MC → lift(SC) is a weak homotopy
equivalence (what we will prove below), since L : RC →
lift(SC) is also a homotopy equivalence and because of the
commutativity of the above diagram, the inclusion i : MC →֒
RC induces isomorphisms between the homotopy groups of
MC and RC . Thus, Whitehead’s theorem implies that i is
a homotopy equivalence. We first show that under the Sep-
aration Condition, the restricted lift function L|MC

induces
injections on the level of homotopy groups.

Theorem 3 (Injectivity) Under the Separation Condition,
the homomorphisms between the homotopy groups of MC

and lift(SC), induced by the lift function L, are injective.



Proof. Under the Separation Condition, we have MC ⊂

RC . Let gMC be the medial shape of the closure of the com-
plementary set of OC in C. We refer to the discussion at
the end of the previous section for more details. Recall that

by Proposition 2, we have RC ⊂ C \ fMC , and there exists

a deformation retract from C \ fMC to OC (in particular OC

and C \ fMC are homotopy equivalent). We have now the
following commutative diagram in which every map (except
the lift function L) is an injection (or an isomorphism) on
the level of homotopy groups.

OC

MC RC C \ fMC

lift(SC)

wwooooooooooooo

≃

�

�

//i

''OOOOOOOOOOO

L

�

�

//

��

≃

ggOOOOOOOOOOO

≃

Using this diagram, the injectivity on the level of ho-
motopy groups is clear: For any integer j ≥ 1, consider
the induced homomorphism L∗ : πj(MC) → πj(lift(SC)).
Let x ∈ πj(MC) be so that L∗(x) is the zero element of
πj(lift(SC)). It is sufficient to show that x is the zero ele-
ment of πj(MC). Following the maps of the diagram, and
using the homotopy equivalence between lift(SC) and RC ,
we have that i∗(x) is mapped to the zero element of πj(RC).

Then, by the inclusion RC →֒ C \ fMC , it goes to the zero

element of C \ fMC , and by the two retractions, it will be
mapped to the zero element of MC . As this diagram is
commutative, we infer that x is the zero element of MC .
Thus, L∗ : πj(MC) → πj(lift(SC)) is injective for all j ≥ 1.
The injectivity for j = 0 is already proved in Theorem 1.

We have shown that under the Separation Condition, the
lift function L : MC → lift(SC) induces injective morphisms
between the homotopy groups of MC and lift(SC). If these
induced morphisms were surjective, then L would be a ho-
motopy equivalence (by Whitehead’s theorem). We will
show in Section 3.3.2 that the Separation Condition implies
the surjectivity for all the homotopy groups except for di-
mension one (fundamental groups). Indeed, we will show
that under the Separation Condition, all the i-dimensional
homotopy groups of MC and lift(SC) for i ≥ 2 are trivial.
Once this is proved, it will be sufficient to study the surjec-
tivity of L∗ : π1(MC) → π1(lift(SC)).

Remark 1 Note that the injectivity in the general form above
remains valid for the corresponding reconstruction problems
in dimensions greater than three. However, the vanishing
results on higher homotopy groups of OC and RC are only
valid in dimensions two and three.

3.3.2 The topological structures of RC and OC are
determined by their fundamental groups

In this section, we show that if the Separation Condition
is verified, then the topological structure of the portion of
O in a cell C (i.e., OC) is simple enough, in the sense that
for all i ≥ 2, the i-dimensional homotopy group of OC is
trivial. We can easily show that RC has the same prop-

erty.1 As a consequence, the topological structures of OC

and RC are determined by their fundamental group, π1(OC)
and π1(RC).

We first state the following general theorem for an arbi-
trary embedded 3-manifold with connected boundary.

Theorem 4 Let K be a connected 3-manifold in R
3 with

a (non-empty) connected boundary. Then for all i ≥ 2,
πi(K) = {0}.

This theorem can be obtained from Corollary 3.9 of [Hat02].
We also provide a proof of this theorem in the long version
of the paper [ABM09]. From this theorem, we infer the two
following theorems.

Theorem 5 Under the Separation Condition, πi(OC) = {0},
for all i ≥ 2.

Proof. We only make use of the fact that under the Sep-
aration Condition, any connected component of ∂O is cut
by at least one cutting plane. In this case, every connected
component of OC is a 3-manifold with connected boundary.
The theorem follows as a corollary of Theorem 4.

Theorem 6 πi(RC) = {0}, for all i ≥ 2.

Proof. Using Theorem 4, it will be sufficient to show
that the boundary of any connected component K of RC is
connected. Let x and y be two points on the boundary of
K, and let S and S′ be two sections so that x ∈ [a, lift(a)]
for some a ∈ S and y ∈ [b, lift(b)] for some b ∈ S′. By
the definition of RC , x is connected to S in ∂RC , and y is
connected to S′ in ∂RC . On the other hand, since S and S′

are two sections in the connected component K of RC , they
lie on ∂K and are connected to each other in ∂K (and so in
∂RC). Thus, x is connected to y in ∂RC .

3.4 Second Condition: Intersection Condition
In the previous section, we saw that under the Separation

Condition, the topological structures of OC and RC are de-
termined by their fundamental group π1(OC) and π1(RC),
respectively. The goal of this section is to find a way to
ensure an isomorphism between the fundamental groups of
RC and OC . We recall that as OC and MC are homotopy
equivalent, π1(OC) is isomorphic to π1(MC). On the other
hand, RC and lift(SC) are homotopy equivalent, and π1(RC)
is isomorphic to π1(lift(SC)) (c.f. last diagram). Thus, it will
be sufficient to compare π1(MC) and π1(lift(SC)).

We consider L∗ : π1(MC) → π1(lift(SC)), the map induced
by the lift function from MC to lift(SC) on fundamental
groups . We showed that L∗ is injective. A natural condi-
tion to ensure that L∗ is an isomorphism is to imply that any
connected component of lift(SC) is contractible. This is very
common in practice, where the sections are contractible and
sufficiently close to each other. In this case, since π1(lift(SC))
is trivial and L∗ is surjective. Hence, the homotopy equiva-
lence between RC and OC can be deduced.

However, the map L∗ : π1(MC) → π1(lift(SC)) fails to
be surjective in general (where the connected components

1Recall that for simplifying the presentation, we assume that
OC and so RC are connected. The same proof shows that in
the general case, the same property holds for each connected
component of OC or RC .



of lift(SC) are not necessarily contractible). Figure 3 shows
two shapes with different topologies, a torus and a (twisted)
cylinder, that have the same (inter)sections with a set of
(two) cutting planes.

Figure 3: An example of the case where the lift
function from MC to lift(SC) fails to be surjective: x1

and x2 are two points with the same lift in lift(SC).
The lift of any curve γ connecting x1 and x2 in MC

provides a non-zero element of π1(lift(SC), x). The
reconstructed object (at left) is a torus and is not
homotopy equivalent to the original shape (at right)
which is a twisted cylinder.

Hence, whatever is the reconstructed object from these sec-
tions, it would not be topologically consistent for at least one
of these objects. In particular, the proposed reconstructed
object (R) is a torus which is not homotopy equivalent to
the (twisted) cylinder (O). In addition, we note that the
Separation Condition may be verified for such a situation.
Indeed, such a situation is exactly the case when the injec-
tive morphism between the fundamental groups of O and
R is not surjective. This situation can be explained as fol-
lows: let x1 and x2 be two points in the sections S1 and
S2 with the same lift x in lift(SC). The lift of any curve γ
connecting x1 and x2 in MC provides a non-zero element
of π1(lift(SC), x) which is not in the image of L∗. We may
avoid this situation with the following condition.

Definition 11 (Intersection Condition) We say that the
set of cutting planes verifies the Intersection Condition if for
any pair of sections Si and Sj in SC, and for any connected
component X of lift(Si)∩ lift(Sj), the following holds: there
is a path γ ⊂ MC from a point a ∈ Si to a point b ∈ Sj

with lift(a) = lift(b) = x ∈ X so that L∗(γ) is the zero ele-
ment of π1(lift(SC), x), i.e., is contractible in lift(SC) with a
homotopy respecting the base point x.

In Section 3.5, we will show how to verify the Intersection
Condition. Let us first prove the surjectivity of the map L∗

which is deduced directly from the Intersection Condition.

Theorem 7 Under the Intersection Condition, the induced
map L∗ : π1(MC) → π1(lift(SC)) is surjective.

Proof. Let y0 be a fixed point for MC and x0 = L(y0).
We show that L∗ : π1

`

MC , y0

´

→ π1

`

lift(SC), x0

´

is surjec-
tive. Let α be a closed curve in lift(SC) which represents
an element of π1

`

lift(SC), x0

´

. We show the existence of an

element β ∈ π1

`

MC , y0

´

such that L∗(β) = [α], where [α]

denotes the homotopy class of α in π1

`

lift(SC), x0

´

.

We can divide α into subcurves α1, . . . , αm such that αj

joins two points xj−1 and xj , and is entirely in the lift
of one of the sections Sj , for j = 1, . . . , m. We may as-
sume y0 ∈ S1 = Sm. For each j = 1, . . . , m, let βj be the
curve in Sj , joining two points zj to wj , which is mapped
to αj under L. Note that wj and zj+1 (possibly) live in
two different sections, but have the same image (xj) un-
der the lift map L. Let Xj be the connected component of
lift(Sj)∩ lift(Sj+1) which contains xj , see Figure 4. Accord-
ing to the Intersection Condition, there is a path γj ⊂ MC

connecting a point aj ∈ Sj to a point bj+1 ∈ Sj+1 such that
lift(aj) = lift(bj+1) = x′

j ∈ Xj and the image of γj under
L is the zero element of π1(lift(SC), x′

j) (i.e., is contractible
with a homotopy respecting the base point x′

j). Since Xj

is connected, there is a path from xj to x′
j in Xj , so lifting

back this path to two paths from wj to aj in Sj and from
bj+1 to zj+1 and taking the union of these two paths with
γj , we infer the existence of a path γ′

j ⊂ MC connecting wj

to zj+1, such that the image of γ′
j under L is contractible in

lift(SC) with a homotopy respecting the base point xj .

Figure 4: For the proof of Theorem 7.

Let β be the path from x0 to x0 obtained by concatenating
βj and γ′

j alternatively, i.e., β = β1γ
′
1β2γ

′
2 . . . βm−1γ

′
mβmγ′

m.
We claim that L∗([β]) = [α]. This is now easy to show: we
have L∗(β) = α1L∗(γ

′
1)α2 . . .L∗(γ

′
m)αm, and all the paths

L∗(γ
′
j) are contractible to the constant path [xj ] by a homo-

topy fixing xj all the time. We deduce that under a homo-
topy fixing x0, α1L∗(γ

′
1) . . .L∗(γ

′
m)αm is homotopic to

α1α2 . . . αm = α, and this is exactly saying that L∗([β]) =
[α]. And the surjectivity follows.

Putting together all the materials we have obtained, we infer
the main theorem of this section.

Theorem 8 (Main Theorem-Part 0) Under the Separa-
tion and the Intersection Conditions, RC is homotopy equiv-
alent to OC, for any cell C of the arrangement.

3.4.1 Generalized Nerve Theorem and
Homotopy Equivalence of R and O

In this section, we extend the homotopy equivalence be-
tween RC and OC , in each cell C, to a global homotopy
equivalence between R and O. To this end, we make use of
a generalization of the nerve theorem. This is a folklore the-
orem and has been observed and used by different authors.



For a modern proof of a still more general result, we refer
to Segal’s paper [Seg68]. (See also [May03], for a survey of
similar results.)

Theorem 9 (Generalized Nerve Theorem) Let
H : X → Y be a continuous map. Suppose that Y has an
open cover K with the following two properties:

• Finite intersections of sets in K are in K.

• For each U ∈ K, the restriction H : H−1(U) → U is a
weak homotopy equivalence.

Then H is a weak homotopy equivalence.

Let HC : OC → RC be the homotopy equivalence obtained
in the previous sections between OC and RC . (So HC is the
composition of the retraction OC → MC and the inclusion
MC →֒ RC .) Let H : O → R be the map defined by H(x) =
HC(x) if x ∈ OC for a cell C of the arrangement of the cutting
planes. Note that H is well-defined since HC |SC

= idSC
, for

all C. In addition, since for all cell C, HC is continuous, H
is continuous as well.
We can now apply the generalized nerve theorem by the fol-
lowing simple trick. Let ǫ be an infinitesimal positive value.
For any cell C of the arrangement of the cutting planes, we
define Oǫ

C = {x ∈ R
3, d(x,OC) < ǫ }. Let us now consider

the open covering K of O by these open sets and all their
finite intersections. It is straightforward to check that for ǫ
small enough, the restriction of H to each element of K is
a weak homotopy equivalence. Therefore, according to the
generalized nerve theorem, H is a weak homotopy equiva-
lence between R and O. And by Whitehead’s theorem, H is
a homotopy equivalence between R and O. Thus, we have:

Theorem 10 (Main Theorem-Part I) Under the Sepa-
ration and Intersection Conditions, the reconstructed object
R is homotopy equivalent to the unknown original shape O.

3.5 How to Ensure the Intersection Condition?
In Section 2.2, we showed that the Separation Condition

can be ensured with a sufficiently dense sample of cutting
planes. In this section we provide a sufficient condition that
implies the Intersection Condition.

We showed that by upper-bounding the height of the cells
by the reach of the object, we can ensure the Separation
Condition. In order to ensure the Intersection Condition,
we need a stronger condition on the height of the cells. As
we will see, this condition is a transversality condition on the
cutting planes that can be measured by the angle between
the cutting planes and the normal to ∂O at contour-points.

Definition 12 (Angle αa) Let a be a point on the bound-
ary of a section A ∈ SC on the plane PA. We consider
mi(a), that may be outside the cell C. We define αa as the
angle between PA and the normal to ∂O at a, see Figure 5:
αa := angle(PA, [a, mi(a)]).

Sufficient Conditions.
We now define the sampling conditions on the cutting

planes. (See 2.4 for the definitions of hC and reachC(O).)

(C1) Density Condition For any cell C of the arrange-
ment, hC < reachC(O).

Figure 5: Definition of αa

(C2) Transversality Condition For any cell C,

hC <
1

2

`

1 − sin(αa)
´

reach(a), ∀a ∈ ∂SC .

The Density Condition is based on the density of the sec-
tions. The Transversality Condition is defined in a way that
the transversality of the cutting planes to ∂O and the dis-
tance between the sections are controlled simultaneously.
(Indeed, sin(αa) is to control the transversality, and upper-
bounding hC allows us to control the distance between the
sections.)

Remark on the Transversality Condition.
The transversality of the cutting planes to ∂O seems to

be a reasonable condition in practice, specially for applica-
tions in 3D ultrasound. Indeed, according to [Rou03] Section
1.2.1, from a technical point of view if a cut is not sufficiently
transversal to the organ, the quality of the resulting 2D ul-
trasonic image is not acceptable for diagnosis.

According to Lemma 2 in Section 2.2, the Density Con-
dition implies the Separation Condition. Also we can show
that under the Transversality Condition, the Intersection
Condition is verified (the proof is provided in the full ver-
sion [ABM09]). Therefore, by increasing the density of the
sections of O, with preferably transversal cutting planes,
we can ensure the required sampling conditions, and conse-
quently, provide a topologically consistent reconstruction of
O.

Theorem 11 (Main Theorem-Part II) If the set of cut-
ting planes verifies the Density and the Transversality Con-
ditions, then the Separation and the Intersection Conditions
are verified. Therefore, the proposed reconstructed object R
is homotopy equivalent to the unknown original shape O.

3.6 Deforming the Homotopy Equivalence to
a Homeomorphism

Using the homotopy equivalence between R and O, we
can show that they are indeed isotopic.

Theorem 12 (Main Theorem-Part III) Under the Sep-
aration and the Intersection Conditions, the two topological
manifolds R and O are homeomorphic (in addition, they are
isotopic).

Although, this result is stronger than the homotopy equiv-
alence, the way our proof works makes essentially use of the
topological study of the previous sections.

Proof.
Again, we first argue in each cell of the arrangement and

show the existence of a homeomorphism between OC and



RC whose restriction to SC is the identity map. Gluing these
homeomorphisms together, one obtains a global homeomor-
phism between R and O. Let C be a cell of the arrange-
ment of the cutting planes. A similar method used to prove
the homotopy equivalence between RC and OC shows that
∂R∩C and ∂O∩C are homotopy equivalent 2-manifolds and
are therefore homeomorphic, and in addition there exists a
homeomorphism βC : ∂O ∩ C → ∂R∩ C which induces iden-
tity on the boundary of sections in SC . We showed that the
topology of RC and OC is completely determined by their
fundamental groups, i.e., all the higher homotopy groups
of RC and OC are trivial. Moreover, there is an isomor-
phism between π1(OC) and π1(RC), and the induced map
(βC)∗ : π1(∂O∩C) → π1(∂R∩C) on first homotopy groups is
consistent with this isomorphism (in the sense that there ex-
ists a commutative diagram of first homotopy groups). This
shows that there is no obstruction in extending βC to a map
αC : OC → RC , inducing the corresponding isomorphism
between π1(OC) and π1(RC), and such that the restriction
of αC to SC remains identity. Since all the higher homotopy
groups of OC and RC are trivial, it follows that αC is a homo-
topy equivalence. We can now apply the following theorem
due to Waldhausen, which shows that α can be deformed
to homeomorphism between OC and RC , by a deformation
which does not change the homeomorphism αC between the
boundaries. A compact 3-manifold M is called irreducible if
π2(M) is trivial. We note that OC and RC are irreducible.

Theorem 13 (Waldhausen) Let f : M → M ′ be a homo-
topy equivalence between orientable irreducible 3-manifolds
with boundaries such that f takes the boundary of M onto
the boundary of M ′ homeomorphically. Then f can be de-
formed to a homeomorphism M → M ′ by a homotopy which
is fixed all the time on the boundary of M . (See [Mat03],
page 220, for a proof.)

Applying Waldhausen’s theorem, one obtains a homeo-
morphism α̃C from OC to RC which is identity on the sec-
tions in SC . Gluing α̃C , one obtain a global homeomorphism
form O to R. Moreover, according to Chazal and Cohen-
Steiner’s work [CCS05] (Corollary 3.1), since R and O are
homeomorphic and R contains the medial axis of O, R is
isotopic to O. ✷

Conclusion

In this paper, we presented the first topological studies in
shape reconstruction from cross-sectional data. We showed
that the generalization of the classical overlapping criterion
to solve the correspondence problem between unorganized
cross-sections, proposed by Liu et al. in [LBD+08], pre-
serves the homotopy type of the shape under some appropri-
ate sampling conditions. In addition, we proved that in this
case, the homotopy equivalence between the reconstructed
object and the original shape can be deformed to a homeo-
morphism. Even, more strongly, the two objects are isotopic.
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