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Bregman Voronoi Diagrams∗

Jean-Daniel Boissonnat† Frank Nielsen‡ Richard Nock§

February 19, 2010

Abstract

The Voronoi diagram of a finite set of objects is a fundamental geometric structure
that subdivides the embedding space into regions, each region consisting of the points
that are closer to a given object than to the others. We may define various variants
of Voronoi diagrams depending on the class of objects, the distance function and the
embedding space. In this paper, we investigate a framework for defining and building
Voronoi diagrams for a broad class of distance functions called Bregman divergences.
Bregman divergences include not only the traditional (squared) Euclidean distance but
also various divergence measures based on entropic functions. Accordingly, Bregman
Voronoi diagrams allow one to define information-theoretic Voronoi diagrams in sta-
tistical parametric spaces based on the relative entropy of distributions. We define
several types of Bregman diagrams, establish correspondences between those diagrams
(using the Legendre transformation), and show how to compute them efficiently. We
also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi
diagrams, and introduce Bregman triangulations of a set of points and their connection
with Bregman Voronoi diagrams. We show that these triangulations capture many of
the properties of the celebrated Delaunay triangulation.

∗A preliminary version appeared in the 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 746-
755, 2007. Related materials including demos and videos are available online at http://www.csl.sony.co.
jp/person/nielsen/BregmanVoronoi/
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Categories and Subject Descriptors: I.3.5 [Computer Graphics] Computational Ge-
ometry and Object Modeling — Geometric algorithms, languages, and systems; F.2.2 [Anal-
ysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems
— Geometrical problems and computations; G.2.1 [Discrete Mathematics]: Combina-
torics.

General Terms: Algorithms, Theory

Keywords: Computational Information Geometry, Voronoi diagram, Delaunay triangula-
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1 Introduction and prior work

The Voronoi diagram vor(S) of a set of n points S = {p1, ...,pn} of the d-dimensional space
R

d is defined as the cell complex whose d-cells are the Voronoi regions {vor(pi)}i∈{1,..,n} where
vor(pi) is the set of points of R

d closer to pi than to any other point of S with respect to a
distance function δ:

vor(pi)
def
= {x ∈ R

d | δ(pi,x) ≤ δ(pj,x) ∀ pj ∈ S}.

Points {pi}i are called the Voronoi sites or Voronoi generators. Since its inception in disguise
by Descartes in the 17th century [20], the Voronoi diagram has found a broad spectrum of
applications in science. Computational geometers have focused at first on Euclidean Voronoi
diagrams [5] by considering the case where δ(x,y) is the Euclidean distance ||x − y|| =
√

∑d

i=1(xi − yi)2. Voronoi diagrams have been later on defined and studied for other distance

functions, most notably the L1 distance ||x − y||1 =
∑d

i=1 |xi − yi| (Manhattan distance)
and the L∞ distance ||x − y||∞ = maxi∈{1,...,d} |xi − yi| [10, 5]. Klein further presented an
abstract framework for describing and computing the fundamental structures of abstract
Voronoi diagrams [24, 9].

In Artificial Intelligence, Machine Learning techniques also rely on geometric concepts for
building classifiers in supervised problems (e.g., linear separators, oblique decision trees,
etc.) or clustering data in unsupervised settings (e.g., k-means, support vector clustering [7],
etc.). However, the considered data sets S and their underlying spaces X are sometimes not
metric spaces. The notion of distance between two elements of X needs to be replaced by a
pseudo-distance that is not necessarily symmetric and may not satisfy the triangle inequality.
Such a pseudo-distance is also referred to as a distortion, a (dis)similarity or a divergence
in the literature. For example, in parametric statistical spaces, a vector point represents a
distribution and its coordinates store the parameters of the associated distribution. A notion
of “distance” between two such points is then needed to represent the divergence between
the corresponding distributions.

Very few works have tackled an in-depth study of Voronoi diagrams and their applications
for such a kind of statistical spaces. This is important even for ordinary Voronoi diagrams as
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Figure 1: Ordinary Euclidean Voronoi diagram of a given set S of nine sites.

Euclidean point location of sites are usually observed in noisy environments (e.g., imprecise
point measures in computer vision experiments), and “noise” is often modeled by means of
normal distributions (so-called “Gaussian noise”). To the best of our knowledge, statistical
Voronoi diagrams have only been considered in a 4-page short paper of Onishi and Imai [34]
which relies on Kullback–Leibler divergence of d-dimensional multivariate normal distribu-
tions to study combinatorics of their Voronoi diagrams, and subsequently in a 2-page video
paper of Sadakane et al. [38] which defines the divergence implied by a convex function and
its conjugate, and presents the Voronoi diagram via techniques of information geometry [1]
(see also [35] and related short communications [23, 22]). Our study of Bregman Voronoi
diagrams generalizes and subsumes these preliminary studies using an easier concept of di-
vergence, namely the concept of Bregman divergences [11, 6] that does not rely explicitly on
convex conjugates. Bregman divergences encapsulate the squared Euclidean distance and
many widely used divergences, e.g. the Kullback–Leibler divergence. It should be noticed
however that other statistical metric distances (called Rao’s distances [2]) have been defined
and studied in the context of Riemannian geometry [1]. Sacrificing some generality, while
not very restrictive in practice, allows a much simpler treatment; in particular, our study of
Bregman divergences is elementary and does not rely on Riemannian geometry.

In this paper, we give a thorough treatment of Bregman Voronoi diagrams which elegantly
unifies the ordinary Euclidean Voronoi diagram and statistical Voronoi diagrams. Our con-
tributions are summarized as follows:
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• Since Bregman divergences are not symmetric, we define two types of Bregman Voronoi
diagrams. One is an affine diagram with convex polyhedral cells while the other one
is curved. The cells of those two diagrams are in 1-1 correspondence through the
Legendre transformation.

• We present a simple way to compute the Bregman Voronoi diagram of a set of points
by lifting the points into a higher dimensional space. This mapping leads also to
combinatorial bounds on the size of these diagrams. We also define weighted Bregman
Voronoi diagrams and show that the class of these diagrams is identical to the class of
affine (or power) diagrams. Special cases of weighted Bregman Voronoi diagrams are
the k-order and k-bag Bregman Voronoi diagrams.

• We define the Bregman Delaunay triangulation of a set of points. This structure cap-
tures some of the most important properties of the well-known Delaunay triangulation.
In particular, this triangulation is the geometric dual of the first-type Bregman Voronoi
diagram of its vertices.

The outline of the paper is as follows: In Section 2, we define Bregman divergences and
recall some of their basic properties. In Section 3, we study the geometry of Bregman spaces
and characterize bisectors, balls and geodesics. Section 4 is devoted to Bregman Voronoi
diagrams and Section 5 to Bregman triangulations. Finally, Section 6 concludes the paper
and mention further ongoing investigations.

Notations. In the whole paper, X denotes an open convex domain of R
d and F : X 7→ R

a strictly convex and differentiable function. F denotes the graph of F , i.e. the set of points
(x, z) ∈ X × R where z = F (x). We write x̂ for the point (x, F (x)) ∈ F . ∇F , ∇

2F and
(∇F )−1 denote respectively the gradient, the Hessian and the inverse gradient of F .

2 Bregman divergences

In this section, we recall the definition of Bregman1 divergences and some of their main
properties (§2.1). We show that the notion of Bregman divergence encapsulates the squared
Euclidean distance as well as several well-known information-theoretic divergences. We also
introduce the notion of dual divergences (§2.2). Further results can be found in [6, 11, 18].

1Lev M. Bregman historically pioneered this notion in the seminal work [11] on minimization of a convex
objective function under linear constraints. See http://www.math.bgu.ac.il/serv/segel/bregman.html.
The seminal paper is available online at http://www.lix.polytechnique.fr/Labo/Frank.Nielsen/
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Figure 2: Visualizing the Bregman divergence. DF (.||q) is the vertical distance between F
and the hyperplane tangent to F at q̂.

2.1 Definition and basic properties

Let X be an open convex subset of R
d, and let F be a strictly convex and differentiable real-

valued function defined on X . For any two points p = (p1, . . . , pd) and q = (q1, . . . , qd) of
X , the Bregman divergence DF (·||·) of p to q associated to F (which is called the generator
function of the divergence) is defined [11, 13] as

DF : X × X 7→ [0, +∞)

DF (p||q)
def
= F (p) − F (q) − 〈p − q, ∇F (q)〉, (1)

where ∇F = [ ∂F
∂x1

... ∂F
∂xd

]T denotes the gradient operator, and 〈p,q〉 the inner (or dot)

product:
∑d

i=1 piqi. Informally speaking, Bregman divergence DF is the tail of the Taylor
expansion of F and has a nice geometric interpretation. Indeed, let F : z = F (x) be the
graph of F and let Hq be the hyperplane tangent to F at point q̂ = (q, F (q)). Since Hq

is given by z = Hq(x) = F (q) + 〈∇F (q),x − q〉, we have DF (p||q) = F (p) − Hq(p) (see
Figure 2).

Lemma 1 The Bregman divergence DF (p||q) is geometrically measured as the vertical dis-
tance between p̂ and the hyperplane Hq tangent to F at point q̂.

Observe that, for most functions F , the associated Bregman divergence is not symmetric,
i.e. DF (p||q) 6= DF (q||p) (the symbol || is put to emphasize this point, as is standard in
information theory).

We now recall some well-known properties of Bregman divergences.

Property 1 (Non-negativity) The strict convexity of generator function F implies that,
for any p and q in X , DF (p||q) ≥ 0, with DF (p||q) = 0 if and only if p = q.
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Property 2 (Convexity) Function DF (p||q) is convex in its first argument p but not nec-
essarily in its second argument q.

Because positive linear combinations of strictly convex and differentiable functions are
strictly convex and differentiable functions, new generator functions (and corresponding
Bregman divergences) can also be built as positive linear combinations of elementary gener-
ator functions. The following property is important as it allows to handle mixed data sets
of heterogenous types in a unified framework.

Property 3 (Linearity) Bregman divergence is a linear operator, i.e., for any two strictly
convex and differentiable functions F1 and F2 defined on X and for any λ ≥ 0:

DF1+λF2
(p||q) = DF1

(p||q) + λDF2
(p||q).

Property 4 (Invariance under linear transforms) G(x) = F (x) + 〈a,x〉 + b, with
a ∈ R

d and b ∈ R, is a strictly convex and differentiable function on X , and DG(p||q) =
DF (p||q).

Examples of Bregman divergences are the squared Euclidean distance (obtained for F (x) =
‖x‖2) and the generalized quadratic pseudo distance function DF (p||q) = (p−q)TQ(p−q)
where Q is a positive definite symmetric matrix (obtained for F (x) = xTQx). When Q
is taken to be the inverse of the variance-covariance matrix of some data set, DF is the
Mahalanobis distance, extensively used in Computer Vision and Data Mining. More impor-
tantly, the notion of Bregman divergence encapsulates various information measures based
on entropic functions such as the Kullback–Leibler divergence based on the (unnormalized)
Shannon entropy, or the Itakura–Saito divergence based on Burg entropy (commonly used
in sound processing). Table 1 lists the main univariate Bregman divergences. Finally, we
would like to point out that Banerjee et al. [6] have shown that there is a bijection between
the regular exponential families in statistics [29] and a subset of the Bregman divergences
called regular Bregman divergences.

2.2 Legendre duality

We now turn to an essential notion of convex analysis: the Legendre transform. Legendre
transform allows one to associate to any Bregman divergence a dual Bregman divergence.

Let F be a strictly convex and differentiable real-valued function on X . The Legendre
transformation associates to F a convex conjugate function F ∗ : R

d 7→ R given by [37]:

F ∗(x′) = sup
x∈X

{〈x′,x〉 − F (x)}.
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Dom. X Function F Gradient Inv. grad. Divergence DF (p||q)
R Squared function Squared loss (norm)

x2 2x x
2 (p − q)2

R
+ Unnorm. Shannon entropy Kullback–Leibler div. (I-div.)

x log x − x log x expx p log p
q
− p + q

Exponential Exponential loss
R expx expx log x exp p − (p − q + 1) exp q

R
+∗ Burg entropy Itakura–Saito divergence

− log x − 1
x

− 1
x

p
q
− log p

q
− 1

[0, 1] Bit entropy Logistic loss

x log x + (1 − x) log(1 − x) log x
1−x

exp x
1+exp x

p log p
q

+ (1 − p) log 1−p
1−q

Dual bit entropy Dual logistic loss

R log(1 + expx) exp x
1+exp x

log x
1−x

log 1+exp p
1+exp q

− (p − q) exp q
1+exp q

[−1, 1] Hellinger-like Hellinger-like

−
√

1 − x2 x√
1−x2

x√
1+x2

1−pq√
1−q2

−
√

1 − p2

Table 1: Some common univariate Bregman divergences DF .

x′ is called the dual variable. The supremum is reached at the unique point where the
gradient of G(x) = 〈x′,x〉 − F (x) vanishes or, equivalently, when x′ = ∇F (x).

In the sequel, we will denote ∇F (x) by x′, omitting the F in the notation as it should
be clear from the context. Writing X ′ for the gradient space {∇F (x)|x ∈ X}, the convex
conjugate F ∗ of F is the real-valued function defined on X ′ ⊂ R

d

F ∗(x′) = 〈x,x′〉 − F (x). (2)

Figure 3 gives a geometric interpretation of the Legendre transformation. Consider the hyper-
plane Hx tangent to F at x̂. This hyperplane intersects the z axis at the point (0,−F ∗(x′)).
Indeed, the equation of Hx is z(y) = 〈x′,y − x〉 + F (x) = 〈x′,y〉 − F ∗(x′). Hence, the
z-intercept of Hx is equal to −F ∗(x′). Any hyperplane passing through another point of F
and parallel to Hx necessarily intersects the z-axis above −F ∗(x′).

Since F is a strictly convex and differentiable real-valued function on X , its gradient ∇F is
well defined as well as its inverse (∇F )−1, and ∇F ◦ (∇F )−1 = (∇F )−1 ◦∇F is the identity
map. Taking the derivative of Eq. 2, we get

〈∇F ∗(x′), dx′〉 = 〈x, dx′〉 + 〈x′, dx〉 − 〈∇F (x), dx〉 = 〈x, dx′〉 = 〈(∇F )−1(x′), dx′〉,

from which we deduce that ∇F ∗ = (∇F )−1.

The above discussion shows that DF ∗ is a Bregman divergence, which we call the Legendre
dual divergence of DF . We have :
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F (x)=〈x′,y〉 − F ∗(x′)

x
(0,−F ∗(x′))

y

F : z = F (y)

x̂

z

Figure 3: The z-intercept (0,−F ∗(x′)) of the tangent hyperplane Hx of F at x̂ defines the
value of the Legendre transform F ∗ for the dual coordinate x′ = ∇F (x).

Lemma 2 DF (p||q) = F (p) + F ∗(q′) − 〈p,q′〉 = DF ∗(q′||p′)

Proof: By Eq. 1, DF (p||q) = F (p) − F (q) − 〈p − q,q′〉, and, according to Eq. 2, we have
F (p) = 〈p′,p〉 − F ∗(p′) and F (q) = 〈q′,q〉 − F ∗(q′). Hence, DF (p||q) = 〈p′,p〉 − F ∗(p′)−
〈p,q′〉 + F ∗(q′) = DF ∗(q′||p′) since p = ∇F−1

∇F (p) = ∇F ∗(p′). �

Observe that, when DF is symmetric, DF ∗ is also symmetric.

The Legendre transform of the quadratic form F (x) = 1
2
xTQx, where Q is a symmetric

invertible matrix, is F ∗(x′) = 1
2
x′TQ−1x′. Observe that the corresponding divergences DF

and DF ∗ are both generalized quadratic distances.

To compute F ∗, we use the fact that ∇F ∗ = (∇F )−1 and obtain F ∗ as F ∗ =
∫

(∇F )−1.
For example, the Hellinger-like measure is obtained by setting F (x) = −

√
1 − x2 (see Ta-

ble 1). The inverse gradient is x√
1+x2

and the dual convex conjugate is
∫

xdx√
1+x2

=
√

1 + x2.
Integrating functions symbolically may be difficult or even not possible, and, in some cases,
it will be required to approximate numerically the inverse gradient (∇F )−1(x).

Let us consider the univariate generator functions defining the divergences of Table 1. Both
the squared function F (x) = 1

2
x2 and Burg entropy F (x) = − log x are self-dual, i.e. F = F ∗.

This is easily seen by noticing that the gradient and inverse gradient are identical.

For the exponential function F (x) = exp x, we have F ∗(y) = y log y − y (the unnormalized
Shannon entropy) and for the dual bit entropy F (x) = log(1 + expx), we have F ∗(y) =
y log y

1−y
+ log(1 − y), the bit entropy. Note that the bit entropy function is a particular

Bregman generator satisfying F (x) = F (1 − x).
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3 Elements of Bregman geometry

In this section, we discuss several basic geometric properties that will be useful when studying
Bregman Voronoi diagrams. Since Bregman divergences are not symmetric, we describe two
types of Bregman bisectors in §3.1. We subsequently characterize Bregman balls by using
a lifting transform that extends a construction well-known in the Euclidean case (§3.2).
Finally, we show an orthogonality property between bisectors and geodesics in §3.3.

3.1 Bregman bisectors

Since Bregman divergences are not symmetric, we can define two types of bisectors. The
Bregman bisector of the first type is defined as

BBF (p,q) = {x ∈ X | DF (x||p) = DF (x||q)}.

Similarly, we define the Bregman bisector of the second type as

BB′
F (p,q) = {x ∈ X | DF (p||x) = DF (q||x)}.

These bisectors are identical when the divergence is symmetric. However, in general, they
are distinct. As Lemma 3 below shows, the bisectors of the first type are hyperplanes while
the bisectors of the second type are potentially curved (but always linear in the gradient
space, hence the notation):

Lemma 3 The Bregman bisector of the first type BBF (p,q) is the hyperplane of equation:

BBF (p,q,x) = 0 where BBF (p,q,x) = 〈x,p′ − q′〉 + F (p) − 〈p,p′〉 − F (q) + 〈q,q′〉

The Bregman bisector of the second type BB′
F (p,q) is the hypersurface of equation

BB′
F (p,q,x) = 0 where BB′

F (p,q,x)〈x′,q − p〉 + F (p) − F (q) = 0

(a hyperplane in the gradient space X ′).

It should be noted that p and q lie necessarily on different sides of BBF (p,q) since
BBF (p,q,p) = DF (p||q) > 0 and BBF (p,q,q) = −DF (q||p) < 0.

From Lemma 2, we know that DF (x||y) = DF ∗(y′||x′) where F ∗ is the convex conjugate of
F . We therefore have

BBF (p,q) = (∇F )−1(BB′
F ∗(q′,p′)), BB′

F (p,q) = (∇F )−1(BBF ∗(q′,p′)). (3)

Figure 4 depicts several first-type and second-type bisectors for various pairs of primal/dual
Bregman divergences.
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p′

q′

p
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p′

q′

p

q
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(c)

(b)

(a)

Figure 4: Bregman bisectors: first-type linear bisector (solid line) and second-type curved
bisector (dotted line) are displayed for pairs of primal/dual Bregman divergences: (a) expo-
nential loss/Kullback–Leibler divergence, (b) logistic loss/dual logistic loss, and (c) self-dual
Itakura–Saito divergence. (The scalings in X and X ′ do not correspond in order to improve
readability.)
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3.2 Bregman spheres and the lifting map

We define the Bregman balls of, respectively, the first and the second types according whether
the center is taken as the first or the second argument of the Bregman divergence DF :

BF (c, r) = {x ∈ X | DF (x||c) ≤ r} and B′
F (c, r) = {x ∈ X | DF (c||x) ≤ r}

The Bregman balls of the first type are convex while this is not necessarily true for the balls
of the second type as shown in Fig. 5 for the Itakura–Saito divergence (defined in Table 1).
The associated bounding Bregman spheres2 (i.e., ∂BF (c, r) or ∂B′

F (c, r)) are obtained by
replacing the inequalities by equalities.

From Lemma 2, we deduce that

B′
F (c, r) = (∇F )−1(BF ∗(c′, r)). (4)

Let us now examine a few properties of Bregman spheres using a lifting transformation that
generalizes a similar construct for Euclidean spheres (see [10, 33]).

Let us embed the domain X in X̂ = X ×R ⊂ R
d+1 using an extra dimension denoted by the

Z-axis. For a point x ∈ X , recall that x̂ = (x, F (x)) denotes the point obtained by lifting x
onto the graph F of F (see Figure 2). In addition, write ProjX (x, z) = x for the projection
of a point of X̂ onto X .

Let p ∈ X and Hp be the hyperplane tangent to F at point p̂ of equation

z = Hp(x) = 〈x − p,p′〉 + F (p), (5)

and let H↑
p

denote the halfspace above Hp consisting of the points x = [x z]T ∈ X̂ such that
z > Hp(x). Let σ(c, r) denote either the first-type or second-type Bregman sphere centered
at c with radius r.

The lifted image σ̂ of a Bregman sphere σ is σ̂ = {(x, F (x)),x ∈ σ}. We associate to a
Bregman sphere σ = σ(c, r) of X the hyperplane

Hσ : z = 〈x − c, c′〉 + F (c) + r, (6)

parallel to Hc and at vertical distance r from Hc (see Figure 6). Observe that Hσ coincides
with Hc when r = 0, i.e. when sphere σ is reduced to a single point.

Lemma 4 σ̂ is the intersection of F with Hσ. Conversely, the intersection of any hyperplane
H with F projects onto X as a Bregman sphere. More precisely, if the equation of H is
z = 〈x, a〉 + b, the sphere of first type is centered at c = (∇F )−1(a) and its radius is
〈a, c〉 − F (c) + b.

2For convenience, we simply say spheres instead of hyperspheres when there is no ambiguity.
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(a) (b) (c)

(d)

Figure 5: Bregman balls for the Itakura–Saito divergence. The (convex) ball (a) of the first
type BF (c, r), (b) the ball of the second type B′

F (c, r) with the same center and radius,
(c) superposition of the two corresponding bounding spheres. (d) shows 3D Bregman balls
printed by a lithographic process (from left to right: Kullback–Leibler, Itakura–Saito and
logistic balls).
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(a) Squared Euclidean distance (b) Itakura–Saito divergence

Figure 6: Two Bregman circles σ and the associated 3D curves σ̂ obtained by lifting σ onto
F (The plot of the function F is shown in grey). The closed curves σ̂ are obtained as the
intersection of the hyperplane Hσ with the convex hypersurface F . 3D illustration with (a)
the squared Euclidean distance, and (b) the Itakura–Saito divergence.

Proof: The first part of the lemma is a direct consequence of the fact that DF (x||y) is
measured by the vertical distance from x̂ to Hy (see Lemma 1). For the second part, we
consider the hyperplane H‖ parallel to H and tangent to F . From Eq. 5, we deduce a = c′.
The equation of H‖ is thus z = 〈x − (∇F )−1(a), a〉 + F ((∇F )−1(a)). It follows that the
divergence from any point of σ to c, which is equal to the vertical distance between H and
H‖, is 〈(∇F )−1(a), a〉 − F ((∇F )−1(a)) + b = 〈a, c〉 − F (c) + b. �

We have only considered so far Bregman spheres of codimension 1 of R
d, i.e. hyperspheres.

More generally, we can define the Bregman spheres of codimension k+1 of R
d as the Bregman

(hyper)spheres of some affine space Z ⊂ R
d of codimension k. The next lemma shows that

Bregman spheres are stable under intersection.

Lemma 5 The intersection of k Bregman spheres σ1, . . . , σk of the same type is a Bregman
sphere σ of that type. If the σi pairwise intersect transversally, σ = ∩k

i=1σi is a Bregman
sphere of dimension k.

Proof: Consider first the case of Bregman spheres of the first type. The k hyperplanes Hσi
,

i = 1, . . . , k, intersect along an affine space H of codimension k of R
d+1. Write G for the

vertical projection of H onto R
d, and Gl = G × R for the vertical flat of codimension k − 1

that contains G (and H). Write further FG = F ∩ Gl. Observing that FG is the graph of
the restriction of F to G and that H is a hyperplane of Gl, we can apply Lemma 4 in Gl,
which proves the lemma for Bregman spheres of the first type.
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The case of Bregman spheres of the second type follows from the duality of Eq. 4. �

Union and intersection of Bregman balls

Theorem 1 Both the union and the intersection of n Bregman balls have combinatorial
complexity Θ(n⌈ d

2
⌉) and can be computed in optimal time Θ(n log n + n⌈ d

2
⌉).

Proof: Consider the case of a finite union U of balls and assume, without loss of generality,
that the balls are in general position. To each ball, we can associate its bounding Bregman
sphere σi which, by Lemma 4, is the projection by ProjX of the intersection of F with a
hyperplane Hσi

. The points of F that are below Hσi
projects onto points that are inside

the Bregman ball bounded by σi. Hence, the union of balls U is the projection by ProjX of
the complement of F ∩ H↑ where H↑ = ∩n

i=1H
↑
σi

. H↑ is a convex polytope defined as the
intersection of n half-spaces in R

d+1. The theorem follows from McMullen’s theorem that
bounds the number of faces of a polytope [27], and known optimal algorithms for computing
convex hull/half-space intersection algorithm [17, 15]. Indeed, the number of vertices of U
is at most twice the number of edges of H↑ by convexity, and each vertex is incident to
a bounded number of faces of U by the general position assumption. The result for the
balls of the second type is deduced from the result for the balls of the first type and the
duality of Eq. 4. The case of an intersection of balls is very similar (just replace H↑

σi
by the

complementary halfspace H↓
σi

).

�

Note that output-sensitive algorithms may also be obtained following the guidelines in [14].

VC-dimension of Bregman spheres.

Theorem 2 The VC-dimension of the class of all Bregman balls BF of R
d (for any given

strictly convex and differentiable function F ) is d + 1.

Proof: The result is known for Euclidean balls. Lemma 4 allows to extend the proof in [26]
(lemma 10.3.1) in a straightforward way to Bregman balls of the first type. The case of
Bregman spheres of the second type follows from the duality of Eq. 4. �

Range spaces of finite VC-dimensions have found numerous applications in Combinatorial
and Computational Geometry. We refer to Chazelle’s book for an introduction to the subject
and references wherein [16]. In particular, Brönnimann and Goodrich [12] have proposed an
almost optimal solution to the disk cover algorithm, i.e. to find a minimum number of disks
in a given family that cover a given set of points. Theorem 2 allows one to extend this result
to arbitrary Bregman ball cover (see also [21]).
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Circumscribing Bregman spheres. There exists, in general, a unique Bregman sphere
passing through d + 1 points of R

d. This is easily shown using the lifting map since, in
general, there exists a unique hyperplane of R

d+1 passing through d + 1 points. The claim
then follows from Lemma 4.

Deciding whether a point x falls inside, on or outside a Bregman sphere σ ∈ R
d passing

through d + 1 points of p0, ...,pd will be crucial for computing Bregman Voronoi diagrams
and associated triangulations. The lifting map immediately implies that such a decision task
reduces to determining the orientation of the simplex (p̂0, ..., p̂d, x̂) of R

d+1, which in turn
reduces to evaluating the sign of the determinant of the (d + 2) × (d + 2) matrix (see [28])

InSphere(x;p0, ...,pd) =

∣

∣

∣

∣

∣

∣

1 ... 1 1
p0 ... pd x

F (p0) ... F (pd) F (x)

∣

∣

∣

∣

∣

∣

If one assumes that the determinant

∣

∣

∣

∣

1 ... 1
p0 ... pd

∣

∣

∣

∣

is positive, InSphere(x;p0, ...,pd) is

negative, null or positive depending on whether x lies inside, on, or outside σ respectively.

3.3 Projection and orthogonality

We start with an easy property of Bregman divergences.

Property 5 (Three-point property) For any triple p,q and r of points of X , we have:
DF (p||q) + DF (q||r) = DF (p||r) + 〈p − q, r′ − q′〉.

The following lemma characterizes the Bregman projection of a point onto a closed convex
set W ⊆ X .

Lemma 6 (Bregman projection) For any p in X , there exists a unique point x ∈ W that
minimizes DF (x||p). We call this point the Bregman projection of p onto W and denote it
pW (i.e., pW = arg minx∈W DF (x||p)).

Proof: Assume for a contradiction that there exists two points x and y of W that minimize
the divergence to p, and let DF (x||p) = DF (y||p) = l. Since W is convex, (x + y)/2 ∈
W and, since DF is strictly convex in its first argument (see Property 2 of Section 2.1),
DF ((x + y)/2||p) < DF (x||p)/2 + DF (y||p)/2 = l, yielding a contradiction. �

We recall the following property already mentioned in [6] (see Fig. 7).

Property 6 (Bregman Pythagoras inequality) Let pW denote the Bregman projection
of point p to a convex subset W ⊆ X . For any w ∈ W, we have DF (w||p) ≥ DF (w||pW) +
DF (pW ||p), with equality for and only for affine sets W.

15



W
w

pW

p

Figure 7: The projection pW of point p to a convex subset W ⊆ X and Bregman Pythagoras
inequality.

Proof: By the Three-point property, we have

DF (w||pW) + DF (pW ||p) = DF (w||p) + 〈w − pW ,p′ − p′
W〉.

From pW = arg minx∈W DF (x||p), we deduce that the inner product in the equality above
is non positive, and zero if W is an affine set. �

We now introduce the notion of Bregman orthogonality. We say that the (ordered) triplet
(p,q, r) is Bregman orthogonal iff DF (p||q) + DF (q||r) = DF (p||r) or equivalently (by the
three-point property), iff 〈p − q, r′ − q′〉 = 0. Observe the analogy with Pythagoras’ theorem
in Euclidean space. It should be noted though that Bregman orthogonality depends on the
order of the three points.

Notice that orthogonality is preserved (with reverse order) in the gradient space. Indeed,
since 〈p − q, r′ − q′〉 = 〈r′ − q′,p − q〉, (p,q, r) is Bregman orthogonal iff (r′,q′,p′) is Breg-
man orthogonal.

More generally, we say that I ⊆ X is Bregman orthogonal to J ⊆ X (I ∩ J 6= ∅) iff for any
p ∈ I and r ∈ J , there exists a q ∈ I ∩ J such that (p,q, r) is Bregman orthogonal.

Let ΓF (p,q) be the image by (∇F )−1 of the line segment p′q′, i.e.

ΓF (p,q) = {x ∈ X : x′ = (1 − λ)p′ + λq′, λ ∈ [0, 1]}.
We call ΓF (p,q) the geodesic arc joining p to q. By analogy, we rename the line segment
pq as

Λ(p,q) = {x ∈ X : x = (1 − λ)p + λq, λ ∈ [0, 1]}

In the Euclidean case (F (x) = 1
2
‖x‖2), ΓF (p,q) = Λ(p,q) is orthogonal to the bisector

BBF (p,q). For general Bregman divergences, we have similar properties as shown next.

Lemma 7 The Bregman bisector BBF (p,q) is Bregman orthogonal to ΓF (p,q) while Λ(p,q)
is Bregman orthogonal to BBF ∗(p,q).

Proof: Since p and q lie on different sides of BBF (p,q), ΓF (p,q) must intersect BBF (p,q).
Fix any distinct x ∈ ΓF (p,q) and y ∈ BBF (p,q), and let t ∈ ΓF (p,q) ∩ BBF (p,q). To
prove the first part of the lemma, we need to show that 〈y − t,x′ − t′〉 = 0.
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Figure 8: Bregman bisectors BBF (p,q) (thin dashed line segments) and BBF ∗(p,q) (bold
solid arcs), and their relationships with respect to Λ(p,q) (thin solid line segments) and
ΓF (p,q) (bold dashed arcs), for the Itakura–Saito divergence (left) and Kullback–Leibler-
divergence (right).

Since t and x both belong to ΓF (p,q), we have t′ − x′ = λ(p′ − q′), for some λ ∈ R,
and, since y and t belong to BBF (p,q), we deduce from the equation of BBF (p,q) that
〈y − t,p′ − q′〉 = 0. We conclude that 〈y − t,x′ − t′〉 = 0, which proves that BBF (p,q) is
indeed Bregman orthogonal to ΓF (p,q).

The second part of the lemma is easily proved by using the fact that orthogonality is preserved
in the gradient space as noted above. �

Figure 8 shows Bregman bisectors and their relationships with respect to Λ(p,q) and
ΓF (p,q).

4 Bregman Voronoi diagrams

Let S = {p1, ...,pn} be a finite point set in X ⊂ R
d. To each point pi is attached a d-variate

continuous function Di defined over X . We define the lower envelope of the functions as the
graph of min1≤i≤n Di and their minimization diagram as the subdivision of X into cells such
that, in each cell, arg mini Di is fixed.

The Euclidean Voronoi diagram is the minimization diagram for Di(x) = ‖x − pi‖2. In
this section, we introduce Bregman Voronoi diagrams as minimization diagrams of Bregman
divergences (see Figure 10).
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We define two types of Bregman Voronoi diagrams in §4.1. We establish a correspondence
between Bregman Voronoi diagrams, polytopes and power diagrams in §4.2. This corre-
spondence leads to tight combinatorial bounds and efficient algorithms. Finally, in §4.3, we
generalize Bregman Voronoi diagrams to k-order and k-bag diagrams.

Let S ′ = {∇F (pi), i = 1, . . . , n} denote the gradient point set associated to S.

4.1 Two types of diagrams

Because Bregman divergences are not necessarily symmetric, we associate to each site pi

two types of distance functions, namely Di(x) = DF (x||pi) and D′
i(x) = DF (pi||x). The

minimization diagram of the Di, i = 1, . . . , n, is called the first-type Bregman Voronoi
diagram of S, which we denote by vorF (S). The d-dimensional cells of this diagram are in
1-1 correspondence with the sites pi and the d-dimensional cell of pi is defined as

vorF (pi)
def
= {x ∈ X | DF (x||pi) ≤ DF (x||pj) ∀pj ∈ S.}

Since the Bregman bisectors of the first-type are hyperplanes, the cells of any diagram of the
first-type are convex polyhedra. Therefore, first-type Bregman Voronoi diagrams are affine
diagrams [4, 5].

Similarly, the minimization diagram of the D′
i, i = 1, . . . , n, is called the second-type Bregman

Voronoi diagram of S, which we denote by vor′F (S). A cell in vor′F (S) is associated to each
site pi and is defined as above with permuted divergence arguments:

vor′F (pi)
def
= {x ∈ X | DF (pi||x) ≤ DF (pj||x) ∀pj ∈ S.}

In contrast with the diagrams of the first-type, the diagrams of the second type have, in
general, curved faces.

Figure 9 illustrates these Bregman Voronoi diagrams for the Kullback–Leibler and the
Itakura–Saito divergences. Note that the ordinary Euclidean Voronoi diagram is a Breg-
man Voronoi diagram since vor(S) = vorF (S) = vor′F (S) for F (x) = 1

2
‖x‖2.

From the Legendre duality between divergences, we deduce correspondences between the
diagrams of the first and the second types. As usual, F ∗ is the convex conjugate of F .

Lemma 8 vor′F (S) = (∇F )−1(vorF ∗(S ′)) and vorF (S) = (∇F )−1(vor′F ∗(S ′)).

Proof: By Lemma 2, we have DF (x||y) = DF ∗(y′||x′), which gives vorF (pi) = {x ∈
X | DF ∗(p′

i||x′) ≤ DF ∗(p′
j||x′) ∀p′

j ∈ S ′} = (∇F )−1(vor′F ∗(p′
i)). This proves the second

part of the lemma. The proof of the first part follows the same path. �

Hence, constructing the second-type curved diagram vor′F (S) reduces to constructing an
affine diagram in the gradient space X ′ (and mapping the cells by ∇F−1).
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(a) (b)

Figure 9: Three types of Bregman Voronoi diagrams for (a) the Kullback–Leibler and (b)
the Itakura–Saito divergences: the affine first-type Bregman Voronoi diagram, the associated
curved second-type Bregman Voronoi diagram and, in between, the symmetrized Bregman
Voronoi diagram associated to the distance functions D′′

i (x) = 1
2
(Di(x) + D′

i(x)) (green).

4.2 Bregman Voronoi diagrams, polytopes and power diagrams

Let Hpi
, i = 1, . . . , n, denote the hyperplanes of X̂ defined in §3.2. For any x ∈ X , we

deduce from Lemma 1

DF (x||pi) ≤ DF (x||pj) ⇐⇒ Hpi
(x) ≥ Hpj

(x).

The first-type Bregman Voronoi diagram of S is therefore the maximization diagram of the n
affine functions Hpi

(x) whose graphs are the hyperplanes Hpi
(see Figure 10). Equivalently,

the first-type Bregman Voronoi diagram vorF (S) is obtained by projecting with ProjX the
faces of the (d + 1)-dimensional convex polyhedron H = ∩iH

↑
pi

of X̂ onto X .

Since the intersection of n halfspaces of R
d has complexity Θ(n⌊ d

2
⌋) and can be computed in

optimal-time Θ(n log n + n⌊ d
2
⌋) for any fixed dimension d [27, 15] and thanks to Lemma 8,

we then deduce the following theorem.

Theorem 3 The Bregman Voronoi diagrams of the first and the second types of a set of n d-
dimensional points have complexity Θ(n⌈ d

2
⌉) and can be computed in optimal time Θ(n log n+

n⌈ d
2
⌉).

Since Bregman Voronoi diagrams of the first type are affine diagrams, Bregman Voronoi
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Squared Euclidean distance

(a) (b)
Kullback–Leibler divergence (also known as relative entropy)

(c) (d)

Figure 10: Voronoi diagrams as minimization diagrams. The first row shows minimization
diagrams for the Euclidean distance and the second row shows minimization diagrams for the
Kullback–Leibler divergence. In the first column, the functions are the non-linear functions
Di(x) and, in the second column, the functions are the linear functions Hpi

(x), both leading
to the same minimization diagrams. Isolines are superimposed to the Voronoi diagrams.
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diagrams are power diagrams [3, 10] in disguise. The following theorem makes precise the
correspondence between Bregman Voronoi diagrams and power diagrams (see Figure 11).

Theorem 4 The first-type Bregman Voronoi diagram of n sites is identical to the power
diagram of the n Euclidean spheres of equations

〈x − p′
i,x − p′

i〉 = 〈p′
i,p

′
i〉 + 2(F (pi) − 〈pi,p

′
i〉), i = 1, . . . , n.

Proof: We easily have

DF (x||pi) ≤ DF (x||pj)

⇐⇒ −F (pi) − 〈x − pi,p
′
i〉 ≤ −F (pj) − 〈x − pj,p

′
j〉

⇐⇒ 〈x,x〉 − 2〈x,p′
i〉 − 2F (pi) + 2〈pi,p

′
i〉 ≤ 〈x,x〉 − 2〈x,p′

j〉 − 2F (pj) + 2〈pj,p
′
j〉

⇐⇒ 〈x − p′
i,x − p′

i〉 − r2
i ≤ 〈x − p′

j,x − p′
j〉 − r2

j ,

where r2
i = 〈p′

i,p
′
i〉 + 2(F (pi) − 〈pi,p

′
i〉) and r2

j = 〈p′
j,p

′
j〉 + 2(F (pj) − 〈pj,p

′
j〉). The last

inequality means that the power of x with respect to the Euclidean (possibly imaginary)
sphere B(p′

i, ri) is no more than the power of x with respect to the Euclidean (possibly
imaginary) sphere B(p′

j, rj). �

For F (x) = 1
2
‖x‖2, vorF (S) is the Euclidean Voronoi diagram of S. Accordingly, the theorem

says that the centers of the spheres are the pi and r2
i = 0 since p′

i = pi. Figure 11 displays
affine Bregman Voronoi diagrams3 and their equivalent power diagrams for the squared
Euclidean, Kullback–Leibler and exponential divergences.

Since power diagrams are well defined over R
d, this equivalence relationship provides a

natural way to extend the scope of definition of Bregman Voronoi diagrams from X ⊂ R
d

to the full space R
d. (The same observation holds for hyperbolic Voronoi diagrams [31] that

are affine diagrams in disguise)

It is also to be observed that not all power diagrams are Bregman Voronoi diagrams. Indeed,
in power diagrams, some spheres may have empty cells while each site has necessarily a non
empty cell in a Bregman Voronoi diagram (See Figure 11 and Section 4.3 for a further
discussion on this point).

4.3 Generalized Bregman divergences and their Voronoi diagrams

Weighted Bregman Voronoi diagrams

Let us associate to each site pi a weight wi ∈ R. We define the weighted divergence between

two weighted points as WDF (pi||pj)
def
= DF (pi||pj) − wi + wj. We can define bisectors

3See JavaTM applet at http://www.csl.sony.co.jp/person/nielsen/BVDapplet/
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Affine Bregman Voronoi diagram Equivalent power diagram

(a) Squared Euclidean distance (F (x) = ||x||2)

(b) Kullback–Leibler divergence (F (x) =
∑

i xi log xi)

Figure 11: Affine Bregman Voronoi diagrams (left column) can be computed as power dia-
grams (right column). Illustrations for the squared Euclidean distance (a), Kullback–Leibler
divergence (b).
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and weighted Bregman Voronoi diagrams in very much the same way as for non weighted
divergences. The Bregman Voronoi region associated to the weighted point (pi, wi) is defined
as

vorF (pi, wi) = {x ∈ X | DF (x||pi) − wi ≤ DF (x||pj) − wj ∀pj ∈ S}.
Observe that the bisectors of the first-type diagrams are still hyperplanes and that the
diagram can be obtained as the projection of a convex polyhedron or as the power diagram
of a finite set of spheres. The only difference with respect to the construction of Section 4.2
is the fact that now the hyperplanes Hpi

are no longer tangent to F since they are shifted
by a z-displacement of length wi. Hence Theorem 3 extends to weighted Bregman Voronoi
diagrams.

k-order Bregman Voronoi diagrams

We define the k-order Bregman Voronoi diagram of a finite point set S in X as follows. Let
T be a subset of k sites of ⊂ S. The cell of T in the k-order Bregman Voronoi diagram of
S is defined as

vorF (T )
def
= {x ∈ X | DF (x||pi) ≤ DF (x||pj) ∀pi ∈ T and pj ∈ S \ T .}

The k-order Bregman Voronoi diagram of S of the first-type is then defined as the cell
complex whose d-cells are the cells of all the subsets of k points of S.

We can define in a similar way the k-order Bregman Voronoi diagram of S of the second-type.

Similarly to the case of higher-order Euclidean Voronoi diagrams, we have:

Theorem 5 The k-order Bregman Voronoi diagram of n d-dimensional points is a weighted
Bregman Voronoi diagram.

Proof: Let S1,S2, . . . denote the subsets of k points of S and write

Di(x) =
1

k

∑

pj∈Si

DF (x||pj)

= F (x) − 1

k

∑

pj∈Si

F (pj) −
1

k

∑

pj∈Si

〈x − pj,p
′
j〉

= F (x) − F (ci) − 〈x − ci, c
′
i〉 − wi

= WDF (x||ci)

where ci = (∇F )−1
(

1
k

∑

pj∈Si
p′

j

)

and the weight associated to ci is wi = −F (ci)+〈ci, c
′
i〉+

1
k

∑

pj∈Si

(

F (pj) − 〈pj,p
′
j〉

)

= − 1
k

∑

pj∈Si
F ∗(p′

j) + F ∗(c′i).

23



Hence, Si is the set of the k nearest neighbors of x iff Di(x) ≤ Dj(x) for all j or, equivalently,
iff x belongs to the cell of ci in the weighted Bregman Voronoi diagram of the ci.

Constructing the k-order Bregman Voronoi diagram of S therefore reduces to constructing
the power diagram of the weighted sites (ci, wi). �

k-bag Bregman Voronoi diagrams

Let F1, ..., Fk be k strictly convex and differentiable functions, and α = [α1 ... αk]
T ∈ R

k
+

a vector of positive weights. Consider the d-variate function Fα =
∑k

l=1 αlFl. By virtue of
the positive additivity property rule of Bregman generator functions (Property 3), DFα

is a
Bregman divergence.

Now consider a set S = {p1, ...,pn} of n points of R
d. To each site pi, we associate a weight

vector αi = [α
(1)
i ... α

(k)
i ]T inducing a Bregman divergence DFαi

(x||pi) anchored at that site.
Let us consider the first-type of k-bag Bregman Voronoi diagram (k-bag BVD for short).
The first-type bisector KF (pi,pj) of two weighted points (pi, αi) and (pj, αj) is the locus
of points x at equidivergence to pi and pj. That is, KF (pi,pj) = {x ∈ X | DFαi

(x||pi) =
DFαj

(x||pj)}. The equation of the bisector is simply obtained using the definition of Bregman

divergences (Eq. 1) as

Fαi
(x) − Fαi

(pi) − 〈x − pi, ∇Fαi
(pi)〉 = Fαj

(x) − Fαj
(pj) − 〈x − pj, ∇Fαi

(pj)〉.

This yields the equation of the first-type bisector KF (pi,pj)

k
∑

l=1

(α
(l)
i − α

(l)
j )Fl(x) + 〈x, ∇Fαj

(pj) − ∇Fαi
(pi)〉 + c = 0, (7)

where c is a constant depending on the weighted sites (pi, αi) and (pj, αj). Note that the
equation of the first-type k-bag BVD bisector is linear if and only if αi = αj (i.e., the case
of standard BVDs).

Let us consider the linearization lifting x 7→ x̂ = [x F1(x) ... Fk(x)]T that maps a point
x ∈ R

d to a point x̂ in R
d+k. Then Eq. 7 becomes linear, namely 〈x̂, a〉 + c = 0 with

a =

[

∇Fαj
(pj) − ∇Fαi

(pi)
αi − αj

]

∈ R
d+k.

That is, first-type bisectors of a k-bag BVD are associated to hyperplanes of R
d+k. It follows

that the k-bag Voronoi diagram is obtained by

• Computing the power diagram of a set of n spheres of R
d+k,

• Computing the restriction of this diagram to the convex d-dimensional submanifold
{x̂ = [x F1(x) ... Fk(x)]T | x ∈ R

d},

24



Figure 12: Ordinary Voronoi diagram (thin blue) and geometric dual Delaunay triangulation
(bold green).

• Projecting this restricted diagram onto R
d.

The complexity of a k-bag Voronoi diagram is thus at most O(n⌊ d+k
2

⌋).

Theorem 6 The k-bag Voronoi diagram (for k > 1) on a bag of d-variate Bregman diver-

gences of a set of n points of R
d has combinatorial complexity O(n⌊ k+d

2
⌋) and can be computed

within the same time bound.

k-bag divergences and their Voronoi diagrams have been used implicitly in recent works on
Bregman hard k-means clustering [32]. k-bag Bregman Voronoi diagrams are also related to
the anisotropic Voronoi diagrams of Labelle and Shewchuk [25] where to each point x ∈ X is
associated a metric tensor Mx which tells how lengths and angles should be measured from
the local perspective of x.

5 Bregman triangulations

Consider the Euclidean Voronoi diagram vor(S) of a finite set S of points of R
d (called sites).

Let f be a face of vor(S) that is the intersection of k d-cells of vor(S). We associate to f a
dual face f ∗, namely the convex hull of the sites associated to the subset of cells. If no subset
of d + 2 sites lie on a same sphere, the set of dual faces (of dimensions 0 to d) constitutes a
triangulation embedded in R

d whose vertices are the sites. This triangulation is called the
Delaunay triangulation of S, noted del(S). The correspondence defined above between the
faces of vor(S) and those of del(S) is a bijection that satisfies: f ⊂ g ⇒ g∗ ⊂ f ∗. We say
that del(S) is the geometric dual of vor(S). See Figure 12.
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A similar construct is known also for power diagrams. Consider the power diagram of a finite
set of spheres of R

d. In the same way as for Euclidean Voronoi diagrams, we can associate
a triangulation dual to the power diagram of the spheres. This triangulation is called the
regular triangulation of the spheres. The vertices of this triangulation are the centers of the
spheres whose cell is non empty.

We introduce Bregman Delaunay triangulations and show that they capture some important
properties of Delaunay triangulations.

5.1 Bregman Delaunay triangulations

Let Ŝ be the lifted image of S and let T be the lower convex hull of Ŝ, i.e. the collection
of facets of the convex hull of Ŝ whose supporting hyperplanes are below Ŝ. We assume in
this section that S is in general position if there is no subset of d + 2 points lying on a same
Bregman sphere. Equivalently (see Lemma 4), S is in general position if no subset of d + 2
points p̂i lie on the same hyperplane.

Under the general position assumption, each vertex of H = ∩iH
↑
pi

is the intersection of
exactly d+1 hyperplanes and the faces of T are all simplices. Moreover the vertical projection
ProjX (T ) of T is a triangulation delF (S) of S embedded in X ⊆ R

d since the restriction of
ProjX to T is bijective. Moreover, since F is convex, delF (S) covers the convex hull of S, and
the set of vertices of T consists of all the p̂i. Consequently, the set of vertices of delF (S) is S.
We call delF (S) the Bregman Delaunay triangulation of S (see Fig. 13). When F (x) = ||x||2,
delF (S) is the Delaunay triangulation dual to the Euclidean Voronoi diagram. We will see
(Theorem 11 below) that this duality property holds for general Bregman divergences.

We say that a Bregman sphere σ is empty if the open ball bounded by σ does not contain
any point of S. The following theorem extends a similar well-known property for Delaunay
triangulations whose proof (see, for example [10]) can be extended in a straightforward way
to Bregman triangulations using the lifting map introduced in Section 3.2.

Theorem 7 The first-type Bregman sphere circumscribing any simplex of delF (S) is empty.
If S is in general position, delF (S) is the only triangulation of S with this property.

Several other properties of Delaunay triangulations extend to Bregman triangulations. We
list some of them.

Theorem 8 (Empty ball) Let S = {p1, . . . ,pn} be a set of n points in X in general
position. If ν denotes a subset of at most d + 1 indices in {1, . . . , n}, the convex hull of the
points pi, i ∈ ν, is a simplex of the Bregman triangulation of S iff there exists an empty
Bregman sphere σ passing through the pi, i ∈ ν.

The next property exhibits a local characterization of Bregman triangulations. Let T (S) be
a triangulation of S. We say that a pair of adjacent facets f1 = (f,p1) and f2 = (f,p2)
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(a) (b)

Figure 13: Bregman Delaunay triangulation as the projection of the convex polyhedron T .
(a) The 3D convex polyhedron T of X̂ is shown in thick lines (wrt. the potential function F
displayed in grey) and empty spheres are rasterized using thin lines. (b) The corresponding
regular triangulation of X .

of T (S) is regular iff p1 does not belong to the open Bregman ball circumscribing f2 and
p2 does not belong to the open Bregman ball circumscribing f1 (the two statements are
equivalent as is easily verified using the lifting map).

Theorem 9 (Locality) Any triangulation of a given set of points S (in general position)
whose pairs of facets are all regular is the Bregman triangulation of S.

Let S be a given finite set of points, delF (S) its Bregman triangulation, and T (S) the set
of all triangulations of S. We define the min-containment Bregman radius of a d-simplex τ
as the radius, noted rmc(τ), of the smallest Bregman ball containing τ . We further define
the maximal min-containment Bregman radius of a triangulation T ∈ T (S) as rmc(T ) =
maxτ∈T rmc(τ). The following result is an extension of a result due to Rajan for Delaunay
triangulations [36].

Theorem 10 (Max-min-containment) For a given finite set of points S, rmc(delF (S)) =
minT∈T (S) rmc(T ).

The proof mimics Rajan’s proof [36] for the case of Delaunay triangulations.

We will now show that delF (S) is the geometric dual of vorF (S). To this aim, we first intro-
duce another (curved) triangulation of S that we call the Bregman geodesic triangulation of
S.
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(a) Ordinary Delaunay (b) Exponential loss (c) Hellinger-like divergence

Figure 14: An ordinary Delaunay triangulation (a) and two Bregman geodesic triangulations
for the exponential loss (b) and for the Hellinger-like divergence (c). The Bregman balls
circumscribing the simplices are shown in light grey.

We have seen in Section 4.2 that the Bregman Voronoi diagram of a set of points S is the
power diagram of a set of spheres B′ centered at the points of S ′ (Theorem 4). Write regF (B′)
for the regular triangulation dual to this power diagram. This triangulation4 is embedded
in X ′ and has the points of S ′ as its vertices. The image of this triangulation by ∇−1F is a
curved triangulation, noted del′F (S), whose vertices are the points of S. The edges of del′F (S)
are curved arcs joining two sites. Since these arcs are geodesic arcs (see Section 3.3), we call
del′F (S) the Bregman geodesic triangulation of S (see Figure 14).

Theorem 11 (Duality) The Bregman Delaunay triangulation delF (S) is the geometric
dual of the 1st-type Bregman Voronoi diagram of S.

Proof: We have, noting
∗↔ for the dual mapping, and using Theorem 4

vorF (S) = pow(B′)
∗↔ reg(B′) = ∇F (del′F (S)). (8)

It follows that del′F (S) is a (curved) triangulation dual to vorF (S).

We now show that del′F (S) is isomorphic to delF (S). Indeed, the two triangulations are
embedded in R

d, have the same vertices, and their d-simplices are in 1-1 correspondence. The
last claim comes from the fact that the d-simplices of del′F (S) are in 1-1 correspondence with
the vertices of vorF (S) by (8), and that the d-simplices of delF (S) are in 1-1 correspondence
with the centers of their circumscribing Bregman spheres, which are precisely the vertices of
vorF (S). �

4Applet at http://www.csl.sony.co.jp/person/nielsen/BVDapplet/
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6 Conclusion

We have defined the notion of Bregman Voronoi diagrams and showed how these geometric
structures are a natural extension of ordinary Voronoi diagrams. Bregman Voronoi diagrams
share with their Euclidean analogs surprisingly similar combinatorial and geometric proper-
ties. In particular, we have shown how to define and build Bregman Voronoi diagrams using
power diagrams and Legendre duality.

We hope that our results will make Voronoi diagrams and their relatives applicable in new
application areas. In particular, Bregman Voronoi diagrams based on various entropic diver-
gences are expected to find applications in information retrieval (IR), data mining, knowledge
discovery in databases, image processing (e.g., see [22]). The study of Bregman Voronoi di-
agrams raises the question of revisiting computational geometry problems in this new light.
This may also allow one to tackle uncertainty (’noise’) in computational geometry for fun-
damental problems such as surface reconstruction or pattern matching. Bregman Voronoi
diagrams can be extended using representational functions [30]. This allows one to compute
other information-theoretic Voronoi diagrams for well-known divergences in information ge-
ometry: namely the α-divergences and the β-divergences.

A limitation of Voronoi diagrams and, in particular, of Bregman Voronoi diagrams is their
combinatorial complexity that depends exponentially on the dimension (McMullen’s upper
bound theorem [27]). Since many applications are in high dimensional spaces, one may
consider instead related but easier to compute data structures such as the witness complex [8,
19].
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