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A sparse implementation of dynamic
competition in continuous neural fields

Jean-Charles Quinton and Bernard Girau

Abstract This paper introduces a sparse implementation of the Continuum Neural
Field Theory, promoting a trade-off in accuracy for higher computational efficiency
and alleviated constraints on the underlying model. The sparse version reproduces
the main properties of previous discrete 2D implementations, such as dynamic com-
petition leading to localized focus activity or robustness to noise and distracters,
with a much higher computational speed on standard computer architectures.

1 Introduction

Under adequate conditions, neural networks with lateral inhibition are able to main-
tain bubbles of activity in response to input excitation [12, 1, 10]. The lateral con-
nectivity pattern classically takes the form of a difference of Gaussians function
(DoG) with local excitation and large-scale inhibition. These developments fall un-
der the Continuum Neural Field Theory (CNFT) and general convergence results
have been reproduced extensively in experimental studies. Biologically inspired by
the two dimensional topology of the cortical sheet, analyzed in terms of cortical
maps and further decomposed in cortical columns [2], simulations were limited to
two dimensions and most of them use a discretized version of the continuous equa-
tions. Anyway, from a computational point of view, updating the activity of a regular
mesh of units with massive lateral connectivity has a polynomial algorithmic com-
plexity, making any attempt to simulate a high dimensional CNFT difficult.

The bubbles emerging from such networks, i.e. localized Gaussian-like patches
of activity, are able to focus on spatiotemporally coherent stimuli, despite the pres-
ence of noise or distracters [9]. Dynamic competition between units and their ex-
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citation by topologically organized inputs thus lead to the emergence of a robust
attentional property. This property is quite generic and should be beneficial to any
distributed system where decision or action is required.

1.1 A sparse implementation of the CNFT

For most experimental conditions, the focus map either rapidly converges to a global
close-to-zero activity or to a set of distant bubbles. These bubbles must indeed be
separated enough for the combined effect of their self-maintenance and input exci-
tation to counterbalance the large-scale inhibition. In light of these observations, its
seems reasonable to approximate the focus map by a sum of Gaussian fields, at least
after the few steps needed for convergence. The key point of the model presented in
this paper is to approximate any activity bubble by a Gaussian field, whose profile is
determined by the Mexican hat function and CNFT parameters. The mesh of units
used for each map in the standard discrete implementation is thus replaced by a set
of Gaussian parameters (see Fig. 1).

As units generally rely on synaptic connections to modulate their activity and
take fixed positions in topological neural networks, whether artificial or biological,
the location parameter of the Gaussian distributions may similarly be constrained to
take a finite set of values. This constraint is however not at all required by the so-
called sparse implementation presented in the paper, which is spatially continuous.
It could be anyway introduced to simulate the CNFT dynamics on Gas-nets models
where Gaussian like diffusion patterns propagate activity between distant units [5].
These remarks however suppose that the Gaussian fields actually map physical units,
whereas they may simply model the activity over the field, independently of the
substrate.
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Fig. 1 Focus map representations when two bubbles have emerged. (a) In the discrete version, as
a regular grid of units with activity (ai j) ∈ [0;1]n×n where n is the size of the grid. (b) In the sparse
version, as the sum of Gaussian fields gk defined by the parameters (xk, Ik)∈ ([−0.5;0.5]2× [0;1])k

where k is the number of fields.
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1.2 Expected benefits

The goal of a sparse implementation of the CNFT is twofold. First, alleviating the
constraints on the underlying network makes the CNFT compatible with any system
where topologically organized distributed processes compete for decision or action.
At the same time, a sparse implementation allows a dramatic speed up in the com-
putations. Fast simulation of the network dynamics may be useful to easily tune the
parameters of the model. Moreover, real-time processing of high dimensional net-
works is a requirement when manipulating sensorimotor systems. When controlling
robots for instance, time constraints are inherent to the interaction loop and must be
dealt with.

To further develop the potential benefits from manipulating compact represen-
tations, details of the perception-action loop must be stated. Both biological and
artificial systems interact with their environment through a large number of sensory
and motor dimensions. At least in artificial systems, many sensory inputs and motor
commands take a unique and precise value (joint angles for example). When using
cortical map representations, single values must be projected on discrete 2D maps,
the activity at each unit of each map regularly updated, before synthesizing the unit
activities on motor maps into a single command to be sent to effectors. Although this
might be totally irrelevant for biological systems, using compact representations of
the activity on the different maps not only avoids such conversions, but also allows
the manipulation of high dimensional spaces, without using self-organizing maps
to reduce the dimensionality [7] and by limiting the combinatorial explosion of nD
maps (with n > 2).

At a theoretical level, turning to an implementation with continuous inputs and
bubbles makes several aspects of the analysis closer to the case described in the
original CNFT equations [1]. A fixed spatial discretization is no longer required
and the processing resolution can freely adapt to the task performed by the simu-
lated system. Nevertheless, a fully continuous model apparently lacks the biological
plausibility of discrete cortical maps with interconnected localized units. However,
this might simply reflect a shift in focus from the underlying substrate to the map
activity dynamics. In this perspective, it would remain useful as a practical tool,
whatever its flaws or lack of accuracy for fine-grained models of cortical networks.

2 From discrete to sparse CNFT

In the following sections, we will adopt the notations introduced by Amari [1] and
Rougier et al. [9], whose discrete implementation will serve as a reference.
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2.1 Standard equations and discrete implementation

The focus neural field is represented by a manifold M in bijection with [−0.5,0.5]2

and the membrane potential at the position vector x and time t on this field by
u(x, t). Similar notations are used for the input stimulation s(x, t). The dynamics of
the membrane potential is described by the following single-layer field equation of
lateral inhibition type:

τ
∂u(x,t)

∂ t = −u(x, t)+
∫

x′∈M w(x,x′)u(x′, t)dx′
+s(x, t)+h

(1)

where h is the resting potential and w(x,x′) the lateral connection weight function
satisfying the following equation:

w(x,x′) = Ae
|x−x′ |2

a2 −Be
|x−x′ |2

b2 (2)

In order to perform numerical simulations of the CNFT dynamics, the continuous
equations have been discretized as follows:

τ
∂u(xi j ,t)

∂ t = −u(xi j, t)+ 1
n2 ∑(k,l)∈[0;n[2 w(xi j,xkl)u(xkl , t)

+s(xi j, t)+h
(3)

where xi j is the discrete position associated to the unit (i, j) and given by Eq. 4.

xi j =
(

i
n
−0.5,

j
n
−0.5

)
∀(i, j) ∈ [0;n[2 (4)

2.2 Sparse implementation

To exclusively manipulate Gaussians in a sparse implementation, all terms in Eq. 1
must be transformed accordingly. At this point, it may be argued that stimulations
s(x, t) will not necessarily take the form of normal distributions, especially when
considering noisy inputs or overlapping stimuli. However, any discrete signal can
be approximated by a sum of Gaussians, their number being positively correlated
with the precision required [4]. Although efficient algorithms to perform such a
decomposition are available [3], one goal of the current implementation is to make
it compatible with sparse inputs.

In artificial systems, these inputs might be associated with bottom-up signals
(coming from various measurement systems and modalities) as well as top-down
signals competing for decision or action. In biological systems, sensory features are
encoded by myriads of neurons, but population coding is often considered as it av-
erages the variability of single neuron spike trains, even when each of them already
takes inputs from large receptive fields [6]. Receptive fields have been found to be
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Fig. 2 Comparison of the discrete and sparse algorithms on a few iterations with increasingly more
distant Gaussian components (light gray). The discrete algorithm (dark gray) computes an output
activity for each unit (1000 units uniformly sampled in [0;1]). The sparse algorithm (black) com-
putes the reciprocal inhibition between Gaussian distributions, merges them when close enough
and outputs the sum of the resulting distributions. From left to right, the distance between the input
centers ∆c takes values in {0.05,0.1,0.2,0.4}. The limit between excitation/merging and inhibition
is 0.1 for both versions so that the maximal distortion appears for ∆c' 0.1.

approximately separable into a sum of amplitude modulated Gaussian components,
for instance in the visual system [8, 11].

The effect of the CNFT computation on distributions whose centers are suffi-
ciently separated relatively to the excitatory standard deviation a in Eq. 2 (∆c >> a),
is only inhibitory. Their interactions can then be well approximated by a point to
point interaction, only considering activity distribution centers (as centers of mass
are used in point mechanics). This can be proved using Taylor developments of the
competition function w between positions x and x′+ dx with dx� |x− x′|. The
same intuition is mathematically valid for ∆c = 0, the sum of aligned normal dis-
tributions being a Gaussian distribution. Nevertheless, this approximation does not
hold when ∆c takes intermediate values. To evaluate the distortions resulting from
such a rough approximation, numerical simulations have been performed. To get an
idea of the potential quantitative differences between the discrete and sparse imple-
mentations for a range of ∆c values, Fig. 2 compares the fields produced after a few
iterations.

From now on, the following notations are adopted. A generic field G will be
defined as the sum of k components gk. Determined by the set of parameters (xk, Ik),
gk denotes a Gaussian field of amplitude Ik centered on xk. Let gk(x) be the activity
propagated by the Gaussian component gk at the point x satisfying Eq. 5.

gk(x) = Ik ∗ e
|xk−x|2

σ2 (5)

with σ being equal to the excitatory standard deviation a of Eq. 2 for the focus
field components. In most cases, this produces the stereotypical profile of the focus
bubbles and is coherent with the choice of synthesizing each bubble by a single
Gaussian field. Finally, the potential at any point of the field can then be computed
as in Eq. 6. The choice of a field named G in this section is arbitrary and G could be
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Fig. 3 Algorithmic decom-
position of the sparse imple-
mentation. 1© A competi-
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substituted by any field introduced in the equations and paragraphs to come, such as
the stimulation field S or focus field U . Let St , U t and st

k, ut
k be their respective state

and components at time t.
g(x, t) = ∑

k
gt

k(x) (6)

To briefly introduce the algorithmic decomposition of Eq. 1 detailed in the fol-
lowing sections, we illustrate the expected dynamics of the model on Fig. 3. For each
temporal step of the simulation, a competition field C is computed by propagating
activity from the different components of the focus field U (see Sec. 2.3). The input,
focus and competition fields are then integrated in a single field where spatiotem-
porally coherent stimuli form clusters of excitatory components (see Sec. 2.4). Ac-
tivity resulting from the presence of noise or distracters (such as st

2 on the figure) is
not reinforced by focus components and counterbalanced by inhibitory competition
components (c3). Finally, close components are merged (ut+dt

1 ) and Gaussian with
negative activity eliminated (see Sec. 2.5). In standard conditions, this ensures that a
reduced set of distant bubbles will emerge, each represented by a single component.

2.3 Competition

The first step consists in computing an equivalent to the dynamic competition term
in Eq. 1. For each focus and stimulation component, an activity Ic

k is computed
by applying Eq. 7. For each ut

k and st
k considered, an inhibitory component ck of

parameters (xk, Ic
k ) is thus produced. All ck are combined in global inhibitory field

C (for competition).
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Fig. 4 Competition between
components. (a) The in-
hibitory activity Ic

k is com-
puted at xk for the input field
sk (supposing there is only
one Gaussian field component
ui on the focus). (b) The activ-
ity at xk is reduced. If Ic

k had
not been taken into account
(dashed line), sk would not
have been negligible when
computing ut+dt although far
away from the only active
bubble on the focus ut
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Ic
k =

1
n

n

∑
i=1

w(xk,xi)Ii (7)

where n is the number of components on the focus field. The lateral competition
weight function w has already been introduced in Eq. 2. Note that in the original
equations, the dynamic competition was evaluated at each point of the field. In a
sparse implementation, it is therefore required to account for the inhibition at any
place where there is a Gaussian distribution. The stimulation S being independent
of the internal computations performed, activity on the input field must also be in-
hibited (see Fig. 4). For example on Fig. 3, st

2 would not be inhibited if c3 was not
introduced and only the interactions between ut

1 and ut
2 were taken into account.

2.4 Integration

The focus field U t , inhibitory field C resulting from the lateral competition and input
field S must then be combined and integrated over time to reproduce the dynamics
of Eq. 1. This integrative step is described by the following equation:

U t+dt = U t ∪ dt
τ

[(
−U t ∪C∪St)+h

]
(8)

where the ∪ operator applied to fields actually corresponds to the union of the
component sets. When computing the potential at a given position by applying Eq. 6,
this is actually equivalent to adding the contributions of the different fields. The
scalar multiplication (by dt

τ
) and addition (of h) are directly applied to the intensity

of the Gaussian components. If we respectively denote by U ′ and U ′′ the fields
equivalent to −U t ∪C∪St and dt

τ
(U ′+h), their component parameters (xk, I′k) and

(xk, I′′k ) satisfy:

I′′k =
dt
τ

(I′k +h) (9)
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2.5 Merging

Although the potential at any point of the field can be updated and computed at the
end of the previous section, yet another step is required to account for the bubbles
reinforcement and to avoid a combinatorial explosion. The unions in Eq. 8 indeed
lead to an ever increasing number of components on the focus field. Even though in
practice and for efficiency purpose, computations are factored so that the number of
Gaussian fields centered on the same position remains minimal, stimulations are not
constrained and constantly inject new components into the focus field. If the num-
ber of input Gaussians at t is nt , an underestimation of the number of components
on the focus field at time T is ∑

T
t=0 nt , which is quite problematic when considering

the polynomial cost of computing the lateral competition. A merging algorithm is
therefore introduced.

Similar constraints appear in different research fields when manipulating large
Gaussian mixture models or HMM-based models with continuous densities [13].
The main difference being that the actual distribution of local stimulations is not
here accessible to the model. Due to the robustness of the CNFT dynamics and
efficiency constraint of the implementation, a simple Euclidian distance between
the distribution locations is used as the merging criterion. This distance threshold is
chosen to match the excitatory standard deviation a as to facilitate and reinforce the
emergence of stereotyped bubbles of activity.

Algorithm 1 Merging algorithm for the Gaussian components on the focus field
1. %Find close Gaussian pairs 8. %Iterate the merging on pairs
2. P← /0 9. while P 6= /0
3. for all (ui,u j) ∈U2 10. unew← merge(ui,u j)
4. if |xi−x j|< a 11. P← P\{ pairs with ui or u j}
5. P← P∪ (ui,u j) 12. U ←U ∪unew \{ui,u j}
6. end 13. for all ui ∈U
7. end 14. if |xi−xnew|< a

15. P← P∪ (ui,unew)
In practice P is kept sorted as to easily select 16. end
and always merge the closest components in 17. end
the algorithm when choosing (ui,u j) 18. end

With the standard equations 1 and 3, bubbles track the moving stimuli on which
they are focused because the renewed inputs introduce an asymmetry in the dynamic
competition computations. The shifted bubble is in turn reinforced by the input,
although always lagging behind the stimulation. The same tracking characteristic
is here achieved by the merge function introduced in Algorithm 1 and defined by
Eq. 10.

xnew =
Ii

Ii + I j
xi +

I j

Ii + I j
x j
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Inew = Ii + I j− Ii× I j×
|xi−x j|2

α2 (10)

where α is a constant higher than a. When components are perfectly aligned, as
it happens when computing the inhibitory field I− from the focus field U , the Gaus-
sian amplitudes are simply added during the merging operation, which is coherent
with the discrete unit based computations of Eq. 3. When a focus component and a
stimulation are close enough for the merging to occur, their intensities have respec-
tively been scaled by 1− dt

τ
and dt

τ
. This weighting allows the bubble to slightly

shift towards the new stimulus while reinforcing or at least maintaining its activity.
Taking α = +∞ cancels the last term and introduces additional discontinuities but
still allows the algorithm to perform correctly as long as a is chosen carefully. Com-
ponents of negative amplitude at the end of the merging phase are simply removed
from the field, thus limiting the focus potential to positive values.

Finally, when a single locus representing the entire focus field is needed, whether
for undertaking actions or statistical analysis purpose, the barycenter c of the re-
maining components (i.e. those which have not been merged and represent distant
bubbles of activity) can be rapidly computed by applying Eq. 11.

c = ∑k Ik×xk

∑k Ik
(11)

3 Results and performance

The analysis of the model dynamics and its performance are relative to the competi-
tion and attentional properties of the CNFT. The discrete implementation described
in [9] is used as a reference, and the same evaluation process is adopted. The au-
thors commit to the assumption that a single bubble should emerge on the focus
field and that it should robustly track the associated input stimulus despite noise and
distracters. The scenarios posed by Rougier and Vitay guarantee that for adequate
sets of parameters, there will be enough iterations for a single bubble to appear be-
fore noise and distracters are added. As a consequence, the performance is easily
ascertained by measuring the distance between the input stimuli and focus bubble
centers at any time.

3.1 Functional results

Although the discrete and sparse implementations share general principles and pa-
rameters, there are many qualitative differences in the algorithms, not to state the
most obvious difference in the type of stimulation provided to the system. Since the
two versions might not stand on equal footing, the goal here is mainly to illustrate
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how a Gaussian based implementation may reproduce the classical CNFT charac-
teristics.

A fair comparison at least requires using optimal sets of parameters, which might
greatly differ between implementations. To avoid complex hand-tuning, genetic al-
gorithms are applied to evolve a population of parameter vectors independently for
each version. The fitness function to minimize is based on the cumulative error on
a set of well chosen scenarios simulated in sequence. Indeed, depending on the task
on which the optimization process is applied, optimal parameters may differ. For
instance, the a value is highly correlated to the distance between the stimuli to focus
on: a large value may improve the results only when unambiguous distant stimuli
are presented. The parameters are thus optimized as to produce the best results for
all three following scenarios:

A) 2 bell-shaped distant stimuli s1 and s2 are introduced at time t = 0. Their inten-
sity are governed by I1 = 0.4 and I2(t) = 0.5+0.5cos(π× (t/5)).

B) 1 bell-shaped stimulus of standard deviation 0.1 and intensity 1.0 follow a cir-
cular trajectory of radius 0.2 around the point (0,0) at 10 deg/s from t = 0. From
t = 1, 5 distracters are added and take new random positions on the field every
1 s.

C) 1 bell-shaped stimulus (same as above). At t = 1, Gaussian noise of amplitude
0.5 is added.

In the discrete version, noise is easily added by changing the stimulation inten-
sity by a random amount for each xi j. This is not possible in the sparse version as
each Gaussian component already corresponds to a correlated activity over the en-
tire field. Adding a large number of random components would not do the trick as
it would be quite equivalent to adding distracters. However, once a bubble is stabi-
lized as it is guaranteed by the experiments reproduced, units outside the bubble are
largely inhibited and the associated inputs have no effect on further computations.
Noise introduces asymmetries under the bubble and destabilize it, which is roughly

 0

discretesparse 0.14 

(a) error

t

 0  10 20
0

0.02

CBA

(b) error
discrete
sparse

Fig. 5 Functional results. (a) Normalized error dynamics for scenario A. Although the shifts in
attention associated with a high error occur at slightly different times, the same kind of hysteresis
appears for the sparse (dashed) and discrete (plain) versions relatively to s2 intensity (cosine func-
tion). (b) Although the error is lower for the discrete version, both implementations remain below
2% for the scenarios A to C.
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reproduced here by randomly shifting the intensity of stimulations and translating
their center. Results for scenarios A to C are shown and commented on Fig. 5.

3.2 Computational speed up

The following paragraphs do not take into account the cost of decomposing a dis-
crete input into a sum of Gaussian distributions and are thus mainly relevant for
artificial systems where inputs are compatible, as argued in Sec. 1.2 and 2.2. A
simple algorithmic complexity analysis helps understanding the computational ben-
efits from the sparse implementation. Let n2 be the size of the maps. Using infinite
asymptotics, all terms are dominated by the convolution computed for the lateral
competition, so that T (n) = O(n4) using Landau notation1. When using a singular
value decomposition (SVD) on the lateral connection kernel, the 2D convolution
can be decomposed in two orthogonal 1D convolution and the complexity drops
to T (n) = O(n3). The initial cost of computing the SVD can be neglected as long
as the kernel remains constant throughout the entire simulation. When modeling
higher dimensional maps of size nm with m > 2 and considering the non optimized
version, the complexity becomes T (n) = O((nm)2) and projecting the data on the
low dimensional space is required.

For the sparse implementation again, most computations can be neglected rela-
tively to the inhibition and merging operations. The complexity of the lateral inhibi-
tion is in the worst case Tc(nu) = O(nu

2) if we let nu be the number of components
on the focus field, supposed far greater than the number of input components. The
complexity of the merging operation depends on the actual distribution of the com-
ponents, and can therefore hardly be mathematically approximated. In practice, and
as soon as a group of components get reinforced by the inputs, the lateral compe-
tition rapidly inhibits a large number of components and their number drastically
decreases. In such a case, infinite asymptotics is no more valid but the computa-
tional cost of updating the fields anyhow drops far below the cost of the discrete
version, that only depends on the size of the map. This is not surprising as making
localized bubbles of activity emerge is the sole goal of the lateral competition, and
was one reason for developing a sparse implementation. Experimental performance
results are reproduced on Table 1 for different implementations and scenarios.

4 Conclusion

In this paper, we introduced a sparse version of the CNFT able to reproduce its main
properties and speed up the computations with a relative independence to the num-
ber of dimensions manipulated. The strong assumptions and rough approximations
introduced in the process must however be taken into account when applying it to in-

1 Although n does not usually take very high values, a map of size 50×50 is common and already
justifies the effect of n on performance.
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Table 1 Comparison of mean computation time (in µs) to update the model for one timestep, ex-
clusive of the input generation. Although there is a bigger variance with the sparse implementation
since the computations depend on the number and distribution of components, the time needed
remains over 50 times lower than for the SVD optimization of the discrete version of the model.

Scenario Discrete version Discrete (SVD) Sparse version

A (alternation) 321131 37537 596
B (distracters) 321084 37724 953
C (noise) 321003 37491 632

puts not easily reduced to a sum of Gaussian components. Part of the problem might
then be deviated to the input filtering and decomposition algorithms, instead of being
treated directly by the CNFT. Perspectives include a fully distributed implementa-
tion for real-time high dimensional robotics applications, since the reduced num-
ber of components, their limited exchanges and low memory requirements make it
compatible with parallel hardware that provides fast paced computations but limited
resources.
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