
HAL Id: inria-00489501
https://hal.inria.fr/inria-00489501

Submitted on 5 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aspect-Oriented Software Development with Java
Aspect Components

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli,
Fabrice Legond-Aubry, Gérard Florin

To cite this version:
Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice Legond-Aubry, et
al.. Aspect-Oriented Software Development with Java Aspect Components. Mehmet Aksit, Siobhan
Clarke, Tzilla Elrad, Robert E Filman. Aspect-Oriented Software Development, Addison-Wesley,
pp.343-369, 2004, 0-321-21976-7. �inria-00489501�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50081114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00489501
https://hal.archives-ouvertes.fr

Aspe
t-Oriented Software Development with Java Aspe
t ComponentsRenaud Pawlak (1), Lionel Seinturier (2), Lauren
e Du
hien (3)Laurent Martelli (4), Fabri
e Legond-Aubry (2), Gérard Florin (1)(1) CNAM, Lab. CEDRIC, 292 rue Saint Martin, 75141 Paris
edex 03, Fran
e(2) Univ. Paris 6, Lab. LIP6, 4 pla
e Jussieu, 75252 Paris
edex 05(3) Univ. Lille 1, Lab. LIFL, Bâtiment M3, 59655 Villeneuve d'As
q, Fran
e(4) AOPSYS, 5 rue Brown Séquard, 75015 Paris, Fran
e31st O
tober 2002Abstra
tIn the last four years, our resear
h proje
t dealt with separation of
on
erns for distributed programmingenvironments and appli
ations. This resear
h e�ort led to the implementation of the Java Aspe
t Components(JAC) framework for aspe
t-oriented programming (AOP) in Java. Among the many requirements for distri-bution, �exibility and adaptability play a stringent role. The high variability of exe
uting
onditions (in termsof resour
es, servers availability, faults, ...) also brings the need for powerful programming paradigms. Thisled us to develop a dynami
 model of AOP whi
h, unlike stati
ally
ompiled approa
hes, allows to on-the-�ydeploy and undeploy aspe
ts on top of running appli
ations. This model
omes with an UML notation andan implementation. An IDE is provided with JAC to support all the development steps of an aspe
t orientedappli
ation, from its design, to its implementation, and to its deployment.1 Introdu
tionIn order to handle the
omplexity of software development, separation of
on
erns [Par72℄[Dij76℄ distinguishesbetween fun
tional and non fun
tional requirements that needs to be addressed in an appli
ation. It is assumedthat the e�
ient handling of this issue is a key to software quality and reuse. Nevertheless, one should noti
ethat the frontier between fun
tional and non-fun
tional properties may be moving depending on the appli
ation�eld: features (e.g. time
onstraints) may be part of the fun
tional requirements in some domains (e.g. real-time
ontrol), and of non-fun
tional ones in other domains (e.g. word pro
essing). Obje
t-oriented programming (OOP)is a powerful tool to handle fun
tional de
omposition. Still, non-fun
tional properties are spe
i�
 in the sense thatthey
an not always be de
omposed
leanly from fun
tional ones: most of the time they
an only be superposedto the original fun
tional de
omposition. This leads to the
ode tangling phenomenon where a
on
ern is s
atteredinto many di�erent lo
ations (i.e. pie
es of fun
tional
ode), making its development, its maintenan
e, and its reusedi�
ult. This phenomenon has been isolated in [KLM+97℄ and led to the development of a new programming style
alled aspe
t-oriented programming (AOP). Sin
e then, several tools and
ompilers have been developed (amongthem Aspe
tJ [KHH+01℄), and
losely related te
hniques have also been improved (among them Hyper/J [OT01℄and
omposition �lters [BA01℄).This arti
le presents our programming environment
alled Java Aspe
t Components [JAC℄. The two mainrequirements of this framework are to support dynami
ity and distribution. Nevertheless, JAC is also a generalpurpose AOP environment. As this, it
omes with a programming model, a design notation and an API. Previouspapers des
ribed the programming model [PSDF01a℄ of JAC, its aspe
t
omposition me
hanism [PSDF01b℄, the�rst elements of our UML notation [PDF+02℄, and the ar
hite
ture for distribution [PDF+℄. This arti
le sums upthe main features of JAC and des
ribes in details our UML notation.Se
tion 2 introdu
es the programming model of JAC. The UML design notation is des
ribed in se
tion 3.Se
tion 4 reports on the ar
hite
ture of JAC for distribution support. Implementation details and performan
e1

measurements are provided in se
tion 5. Se
tion 6 provides a
omparison with other tools and
losely relatedte
hnologies. Finally, se
tion 7
on
ludes this arti
le.2 JAC framework & programming modelThe JAC framework is based on the notion of
ontainers. Mu
h like in other
omponent frameworks (e.g. EJB[Sun℄), a
ontainer is a host for software entities. JAC
ontainers host both business
omponent, and non fun
tional
omponent (
alled aspe
t
omponent). As we will see later in se
tion 5, when working with
entralized environment,the
ontainer is simply a
ustomized Java
lass loader that performs byte
ode adaptations to glue the business andaspe
t
omponents together. Whenever a distribution
on
ern appear in the appli
ation, these
ontainers be
omeremotely a

essible (either with RMI or CORBA).Programming modelJAC identi�es three di�erent roles involved in the development of an aspe
t-oriented appli
ation. Appli
ationprogrammer: this role is
on
erned with the
ore business of the appli
ation. S/he implements the software entities
oming from the fun
tional de
omposition of the problem. Aspe
t programmer: this role is
on
erned with theimplementation of non fun
tional servi
es. Up to this stage, these servi
es are independent from the ones de�ned byappli
ation programmers. Software integrator: this role puts appli
ation and aspe
t
ode together. Two importanttasks are under the responsibility of this role: point
ut de�nitions and aspe
t
omposition. For these three roles,the programming model of JAC provides the following software artifa
ts:1. Base program: this is the set of Java obje
ts that implements the
ore fun
tionalities of appli
ations. Theseare regular Java obje
ts. This set of obje
ts is self su�
ient and
an be run on a JVM (hen
e, without anyaspe
t).2. Aspe
t
omponents: su
h a
omponent implements a non fun
tional
on
ern that will later on, be woven ona base program. An aspe
t
omponent de�nes a
ross
ut poli
y (i.e. the methods of the base program whosesemanti
s is modi�ed by the non fun
tional
on
ern) and some aspe
t methods (advi
es in Aspe
tJ) thatde�ne the semanti
al modi�
ations. Aspe
t methods may wrap (exe
ute before and/or after
ode), repla
e orextend the semanti
s of a base method.3 Design notationThis se
tion des
ribes our UML pro�le to support the design of aspe
t with JAC. Stereotypes are proposed toqualify
lasses implementing a non fun
tional
on
ern (3) and to qualify point
ut relations 3.2. An example usingthese two
on
ept is given in se
tion 3.3. Se
tion 3.4 goes a step further and draws some similarities between AOPand the use-provide relationship.3.1 Aspe
t
omponent
lassesAspe
t Components are the
entral point of our AO framework. They are the implementation units that de�neextra
hara
teristi
s that
ross
ut a set of base obje
ts. The key
hara
teristi
s of JAC is that the base obje
tsthat are involved in a
ross
ut are not ne
essarily lo
ated on a single
ontainer. They are de�ned in
lasses
alledAspe
t Component
lasses (AC-
lasses for short).An AC-
lass is tagged with the �aspe
t� stereotype. It
ontains attributes and methods whose semanti
sdi�er from regular methods. AC-methods are meant to extend the semanti
s of regular
lasses. The extensionis performed on well de�ned implementation points so that these points a
tually use aspe
t-servi
es in order tointegrate new
on
erns (e.g. a base
lass
an be made to use a Ca
he interfa
e if the aspe
t implements some
a
hing
on
ern).Ea
h AC-method de�nes some
ode and extents the semanti
s of some base methods a

ording to a modalityde�ned by a stereotype. The existing stereotypes for an AC-method m follow.2

� �before� m(...): the AC-method m is exe
uted before a given point (to be spe
i�ed later, see se
tion 3.2)of the base program.� �after� m(...): the AC-method m is exe
uted after a given point of the re�ned program.� �around� m(...): a part of the AC-method m is exe
uted before and another part is exe
uted after a givenpoint of the re�ned program (these two parts are de�ned within the implementation of m).� �repla
e� m(...): the AC-method m modi�es a given point of the extended program implementation byrepla
ing it by the implementation of m.� �role� m(...): the AC-method m
an be invoked on the obje
ts that are extended by the AC-
lass; moreover,the AC-method m
an a

ess the extended
lass attributes and the aspe
t-
lass attributes.For instan
e, �gure 1 shows the
a
hing AC-
lass Ca
hing (with the �aspe
t� stereotype). As its name suggestsit, this AC-
lass provides a
a
hing extension me
hanism. The job of storing and retrieving values from the
a
he isdelegated to the Ca
he (regular)
lass. The whenWrite method of the AC-
lass Ca
hing is tagged with the�after�stereotype. It will be exe
uted after any base method asso
iated with whenWrite in the point
ut de�nition (seebelow se
tion 3.2). The whenRead method is tagged with �around�. It will be exe
uted before and after somebase methods.
+ <<after>> whenWrite()

<<aspect>>
Caching

Cache

+ getValue(): Object
+ setValue(Object)
+ invalidate()

+ <<around>> whenRead()Figure 1: De�nition of a
a
hing
on
ern with an AC-
lass.3.2 Point
uts de�nitionA point
ut relation links an AC-method belonging to an AC-
lass to a set of elements of a base program. Thegranularity of the involved elements is the method: point
uts in JAC
an not go deeper than methods to modify thebase program semanti
s (e.g. we
an not introspe
t methods bodies to extend some parti
ular
ode instru
tions).Several arguments justify this feature. Firstly, for performan
e reasons, reifying the whole
ode stru
ture has a
ost whi
h
ould not be bearable for real-life appli
ations (�rst experiments with a fully re�e
tive
ompiler su
has OpenJava [Tat99℄ taught us that). Se
ondly, extending the semanti
s of an appli
ation requires before that, tounderstand its original semanti
s (we
an not extend something that is not
learly stated). Most of the time thisoriginal semanti
s is de�ned through an API, e.g. through methods. So base methods are de�nitively the best pla
eto perform some semanti
al extensions.Two levels of point
ut de�nition exist with JAC: either the point
ut is de�ned on a per-
lass basis, or a per-instan
e basis.Class level point
utsThis level is very mu
h similar to the one found in Aspe
tJ. All the instan
es of the
lasses involved in the point
utare extended by the aspe
t
omponent. In this
ase, a point
ut relation is an oriented asso
iation from an AC-
lasstowards one or several
lasses. The asso
iation is stereotyped with �point
ut�. The roles have spe
ial semanti
s:they mention whi
h methods of the
lient
lass are extended and by whi
h AC-methods. The semanti
s of theelements mentioned in �gure 2 follows:� a point
ut relation p must go from an AC-
lass A to a
lass C (if several
lasses are involved in the point
ut,several links are drawn between the AC-
lass and the
lasses),3

<<aspect>>
A

<<pointcut>> r2

c2p

tag

C
r1

c1Figure 2: The point
ut asso
iation: relating aspe
ts to
lasses.Keywords Semanti
sALL all the methodsSTATICS all the stati
 methodsCONSTRUCTORS all the
onstru
torsMODIFIERS all the methods that modify the obje
t's state,i.e. that modify at least one of the �eldsACCESSORS all the methods that read the obje
t's stateGETTERS[(...)℄ the gettersSETTERS[(...)℄ the settersADDERS[(...)℄ the methods that add an obje
t to a
olle
tionREMOVERS[(...)℄ the methods that remove an obje
t to a
ol-le
tionFIELDGETTERS all the getters for primitive �eldsFIELDSETTERS all the setters for primitive �eldsREFGETTERS all the referen
e gettersREFSETTERS all the referen
e settersCOLGETTERS all the
olle
tion gettersCOLSETTERS all the
olle
tion settersTable 2: Keywords allowed in point
ut expressions.
+ <<after>> whenWrite()

<<aspect>>
Caching

whenReadwhenWrite 0−10−1

1 1

Cache

+ getValue(): Object
+ setValue(Object)
+ invalidate()

<<pointcut>> <<pointcut>>

?GETTERS?SETTERS

Server

p1 p2

+ <<around>> whenRead()

Figure 3: The full
a
hing aspe
t.4

�
ardinality
1 is the number of aspe
t instan
es of A that
an be in relation with one member of C (defaultis 0-1),�
ardinality
2 is the number of members of C that
an be in relation with one instan
e of A (default is * forall),� role r1 is the name of an AC-method de�ned in A that is applied at ea
h base program point denoted byrole r2,� role r2 de�nes a base program
ross
ut i.e. a set of joinpoints. r2 is a logi
al expression (with AND, OR andNOT operators) where ea
h term is of the form quali�er methodExpression.� Two mains quali�ers are used: ? whi
h designated a method exe
ution point, and ! whi
h designated amethod invo
ation point.� methodExpression is either a fully-de�ned method prototype (e.g. get():int), or a partially-de�ned onewith GNU-like regular expressions (e.g. get.*(.*):int mat
hes all methods whose name starts with get,return an integer, and take any parameters), or an expression based on the keyword de�ned in table 2.For instan
e, GETTERS(a,b) mat
hes the getter methods for �elds a and b. Like in
omponent frame-works su
h as Java Beans, naming
onventions are assumed on method names: getter/setter should bename get/set followed by the �eld name (starting in upper
ase). Adders/removers should be namedadd/remove and take an obje
t as an unique parameter. Ea
h time a new
lass is loaded in the JACframework, some introspe
tion and byte
ode analysis are performed. A meta-model of the
lass is
on-stru
ted on the �y (in a dedi
ated aspe
t
alled RTTI for RunTime Type Information) with annotationsthat enable to a
hieve the semanti
s de�ned in table 2. For instan
e, ea
h method byte
ode is parsedto determine whether some �elds are modi�ed or not. If so, the method is tagged as a MODIFIER inthe RTTI aspe
t. As the pro
ess of analyzing the byte
ode of many
lasses
an be time
onsuming,the
lasses whi
h are never extended by an aspe
t (i.e. that are simply used by base obje
ts or aspe
t
omponents),
an be ex
luded from this analysis phase.� as any UML model element, the point
ut relation
an be tagged (tag) to express extra semanti
s that
anbe used when implementing the model towards a
on
rete platform; some semanti
s examples are shown infurther se
tions.Figure 3 shows two point
ut relations that implement a
a
hing aspe
t by using the AC-
lass de�ned in �gure 1.This aspe
t diagram must be read as follows.� After the exe
ution of any setter (a method that
hanges the obje
t state) of a Server obje
t, the programmust exe
ute the whenWrite AC-method.� Around (i.e. before and after) the exe
ution of any getter (a method that reads the obje
t state) of a serverobje
t, the program must exe
ute the whenRead AC-method.Instan
e level point
utsBesides the previously des
ribed me
hanism, JAC also allows developers to de�ne point
uts on a per-instan
e basis.The idea here is to sele
tively extends the semanti
s of some instan
es of a
lass. The rationale is that in a highlydynami
 distributed environment, some server obje
ts may need to
ustomized (e.g. repli
ated), while others mayneed to stay unmodi�ed even if they belong to the same
lass.One of the di�
ulty is that,
ontrary to
lasses that are straightforwardly named, obje
ts la
k any dire
t namings
heme in Java. The solution taken in JAC is to let the framework atta
h an unique name to ea
h
reated instan
e:the name is the
on
atenation of the
lass name in lower
ase and of an auto-in
remented integer (e.g. server0designates the �rst
reated instan
e of
lass Server). The framework provides an API to retrieve obje
ts basedon their name. This approa
h is a trade-o� between generality and simpli
ity: it is
lear to us that this s
hemeis usable only if the number of
reated instan
es for ea
h
lass stays small. This s
heme also requires the aspe
tprogrammer to have a deep understanding of the instan
e
reation pro
ess going on in the base program.5

To let designers express a per-instan
e point
ut, aspe
t
omponent side roles in UML diagram (i.e. r1 in �gure 2)
an be extended with an instan
e name or a regular expression on instan
e names. For instan
e ?SETTERS|server0designates the exe
ution points of the setter methods of instan
e server0, ?GETTERS|server[1-3℄ designates theexe
ution points of the getter methods of instan
es server1, server2 and server3.When distribution
omes into play, point
ut de�nitions
an also be �ltered based on
ontainer names (a
ontainername being a RMI or CORBA URL depending on the
hosen
ommuni
ation proto
ol between JAC remote
ontain-ers). The idea is to let designers express behaviors that will be dependent on the
ontext into whi
h
omponents aredeployed. For instan
e, one may want to install an authenti
ation aspe
t only on spe
i�

riti
al hosts, whereas therest of the appli
ation deployed on other hosts stays unmodi�ed, or one may need to install some logging aspe
t onlyon a given
ontainer. To allow this, point
ut expressions
an be extended with
ontainer names or regular expres-sions on
ontainer names. Merged with the previous extension for instan
e names, this leads to a
omplete s
hemewhere point
ut expressions are of the form: quali�er methodExpression | instan
eExpression |
ontainerExpressionwith instan
eExpression and
ontainerExpression being optional. For instan
e ?ACCESSORS||rmi://myHost/s1designates the a

essors exe
ution points of instan
es lo
ated on JAC
ontainer rmi://myHost/s1.3.3 A �rst simple exampleThis se
tion illustrates the programming model of JAC based on the Ca
hing aspe
t of �gure 3. The details of theAPI and some tutorials
an be found on the JAC web site [JAC℄.Figure 4 gives the
ode of the Ca
hing aspe
t. An aspe
t
omponent must extend the ja
.
ore.Aspe
tComponent
lass. Among other things this
lass provides a point
ut method that let programmers express a point
ut. The pa-rameters are: the base
lass this point
ut designates, the quali�er methodExpression as a string, the
lass
ontainingthe AC-method, the AC-method involved in the point
ut. Here two su
h point
uts are de�ned. Additional point
utmethods are available when instan
eExpression and
ontainerExpression are to be asso
iated to the point
ut.import ja
.
ore.Aspe
tComponent;import ja
.
ore.Wrapper;import ja
.
ore.Intera
tion;publi

lass Ca
hing extends Aspe
tComponent {publi
 Ca
hing() {point
ut("Server","?SETTERS",Ca
hingWrapper.
lass,"whenWrite");point
ut("Server","?GETTERS",Ca
hingWrapper.
lass,"whenRead");}publi

lass Ca
hingWrapper extends Wrapper {private Ca
he
a
he = new Ca
he();publi
 void whenWrite(Intera
tion i) {pro
eed();Obje
t value = i.arg[0℄;
a
he.setValue(value);}publi
 Obje
t whenRead(Intera
tion i) {Obje
t value =
a
he.getValue();if (value == null)value = pro
eed();
a
he.setValue(value);return value;} } }Figure 4: A simple aspe
t
omponent implementing a
a
hing
on
ern.6

AC-methods are de�ned in wrapper
lasses (that extend the ja
.
ore.Wrapper
lass). The following methodprototype is mandatory for all AC-methods: they a

ept only one parameter that is a ja
.
ore.Intera
tion instan
e.They may return any parameters. The rationale behind this
onstraint is that AC-methods are up
alled by the JACframework whenever a
all to the base method they extend is issued or exe
uted (i.e. whenever the
all mat
hes thepoint
ut expression). An Intera
tion obje
t i provides data about the
urrent
all: arguments of the
all (in thearg array), a referen
e to the base obje
t (i.wrappee), and some methods to store and retrieve
ontext parameters(for instan
e, parameters that
an be added by an AC-method on the
aller side, and that
an later on retrieve onthe re
eiver side by another AC-method).3.4 Extended design notation for distributionThe group paradigmIn the previous
a
hing example, the semanti
s modi�
ation introdu
ed by the
a
hing
on
ern into the appli
ationis quite symmetri
. Con
retely, it means that all the obje
ts that are modi�ed to implement
a
hes (the Serverobje
ts)
an be seen as modi�ed by the same abstra
t transformation rule. However, one may want to weave theCa
hing aspe
t to di�erent
lasses. Thus, another designation me
hanism is needed to express the fa
t that a setof well-de�ned obje
ts implements the same
on
ern.This need for a new kind of stru
tured elements brings us to fo
us on the group notion. If we look at the groupnotion very
arefully, we
an noti
e that it is tightly linked to aspe
ts. Indeed,
ontrary to a
lass that abstra
tlyrepresents a set of instan
es realizing the same fun
tional
hara
teristi
s, a group is, in our de�nition, an abstra
trepresentation of a set of instan
es that do not ne
essary have homogeneous fun
tional types but that are logi
allygrouped together be
ause they implement the same servi
e (server groups) or use the same one (
lient groups).Figure 5 represents the appli
ation of the
a
hing aspe
t on a group of servers that implements the server partof a simple
lient/server appli
ation. We use an instan
e diagram so that it be
omes obvious that the group on thetop of the �gure is a non-uniform set of instan
es (the three instan
es a, b, and
 belong to three di�erent
lassesA, B and C). As shown on this �gure, the appli
ation of the
a
hing aspe
t
reates a new group that
ontainsinstan
es of a Ca
he
lass that provides the
a
hing fun
tionality. In other words, we
an say that these Ca
heinstan
es belong to a server group that provides a
a
hing fun
tionality for the
lient group formed by the a, b, and
 servers.A group-based de�nition of aspe
tsIt appears that the introdu
tion of the
a
hing
on
ern within the original
lient/server appli
ation is abstra
tly doneby the use of the servi
es the Ca
he group interfa
e provides to the servers group. This
an be easily representedin UML by using the �use� relation as represented in �gure 6. In the general
ase, implementing a new
on
ernmay require the use of several interfa
es. In these
ases, several
lients
an be related to several servers throughsome �use� relations.Finally, a simple but su�
ient de�nition of an aspe
t within this
ontext is the following.De�nition: an aspe
t is the implementation of one or many use-provide relationship(s) between one or many
lient group(s) and one or many server groups.The model of �gure 6
learly brings up a use-provide relationship between a
lient-group (the servers), and aserver group (the
a
hes) that de�nes the group level servi
es getValue(), setValue(Obje
t) and invalidate(). Thisrelationship implementation requires the appli
ation to modify the
lient group member obje
ts implementation tointrodu
e the
a
hing
on
ern within the appli
ation. If this
on
ern implementation is modularized (i.e. if the
odethat implements the
a
hing
on
ern introdu
tion is lo
ally de�ned), then the implementation te
hnique followsthe AOP guidelines and we
an
all the obtained module an aspe
t.At the analysis level, to express the fa
t that a use-provide relationship is implemented in an aspe
t-orientedfashion, the appli
ation designer
an add a tagged value �aspe
t:aspe
tName� to all the �use� relationshipsimplemented by the aspe
t
alled aspe
tName (see �gure 6).Thus group-oriented modeling allows the designer to expli
it in a
omprehensive way what parts of the (dis-tributed) appli
ation are aspe
ts and what parts are not. In fa
t, for ea
h modeled group level use-provide rela-tionship, aspe
t-oriented te
hniques
an be used to separate
on
erns within the �nal implementation.7

a:A a:Cache

a:A

a group

client:Client b:B

c:C

b:Cache

c:Cache

client:Client b:B

c:C

application of the caching aspect

Figure 5: Relating aspe
ts to group.

b:B c:Ca:A

+ getValue(): Object

+ invalidate()
+ setValue(Object)

Server Cache
aspect: caching

<<use>>

Figure 6: The use relationship between a
lient group (the base program) and a server group (the aspe
t program).8

Finally, ea
h time the designer en
ounters the pattern of one or several use-provide relationship between groups,s/he
an ask her/himself if an aspe
t would be well suited in this
ase. Despite the use of an aspe
t or not is mainlyrelated to the designer experien
e and
hoi
es, we
an give some
lues on when an aspe
t will be better suited thana
lassi
al design.� The
lient group is heterogenous: it means that the use of the server servi
es are spread all over the
lient-group member
lasses. This is by essen
e a
ross
uting
on
ern and some extra design is ne
essary to
leanlymodularize all the involved dependen
ies (for instan
e, we
an use inheritan
e that implies bad
ompositionwith other
on
erns or we
an use some delegation related pattern whi
h leads to a more
omplex designmodel). In this
ase, the use of an aspe
t
an greatly simplify the programmer's task and will ensure goodmaintenability and evolutivity of the �nal implementation, even if some
on
erns are added afterwards.� Several homogeneous
lient groups use the same server group: this is exa
tly the same situation that abovesin
e several homogeneous groups
an be modeled into one heterogenous group.� Several
lient groups use several server groups but it seems that the �nal purpose of these use-provide relationsenters into one same
on
ern for the �nal appli
ation: this is a more
ontextual
hoi
e that depends on theknowledge of the modeled domain.Figure sums up the notion introdu
ed in this se
tion and proposes a UML meta model where additions introdu
edby JAC are drawn with bold lines.

orientation:int
startCardinality:String
startRole:String
endCardinality:String
endRole:String

RoledLink

Link

isAggregation:boolean

RelationLink

packagePath:String

TypeTypedElement

Instance

Member

Field

body:String

Method

Constructor

Parameter

InheritanceLink

name:String

description:String

ModelElement

start

end

endingLinks
*

PointcutLink

methodPCD:String
hostPCD:String
aspectRole:String

Aspect

Class superClass

*relationLinks

pointcutLinks

*

*
fields

methods

*

*

parameters*

aspectMethods
AspectMethod

classPCD:String
objectPCD:String

Group

Figure 7: The UML extension meta-model.4 JAC ar
hite
ture for distribution4.1 Aspe
ts deployment and distributionThis se
tion sums up the features of the ar
hite
ture set up in JAC to handle distribution. This ar
hite
ture is
alled AODA (Aspe
t Oriented Distributed Ar
hite
ture) and is des
ribed in more details in [PDF+℄.9

The AODA provides fun
tionalities to deploy base programs and aspe
t
omponents.. The idea is to allow thenatural and
onsistent
ohabitation between distribution and aspe
ts. To do this, the AODA provides
ore featuresto support distributed aspe
ts. Figure 8 shows how the AODA manages distributed aspe
ts. The top of the �gureis a simple appli
ation
omposed of a set of
omponents. The middle of the �gure shows the same appli
ation,but extended by a sample aspe
t. Finally, the bottom part depi
ts the appli
ation deployed by the AODA. We
an noti
e that ea
h
ontainer
ontains a lo
al instan
e of the original aspe
t, hen
e, the aspe
t is applied on ea
h
ontainer in the same way. The set of
ontainers where the aspe
t is present is
alled an aspe
t-spa
e so that it
an�nally be regarded as a single but distributed aspe
t.
AnAspect

aspectMethod()

AnAspect

aspectMethod()

AnAspect

aspectMethod()

AnAspect

aspectMethod()

a pointcut relation
instance

the distribution aspect is woven

a distributed
pointcut relation
instance

a distributed
aspect−space

the aspect−extended
program

the original
program

an aspect instance is woven

container 1 container 3container 2Figure 8: AODA: distributed support of aspe
ts.Our motivation for distributed aspe
ts support is to allow the aspe
t programmer to express global and de
en-tralized program properties. Indeed, it happens quite often that a non-fun
tional property
ross
uts a set of obje
tsthat are not lo
ated on the same
ontainer. For instan
e, when adding an authenti
ation
on
ern, the
apa
itiesmay be
he
ked on several server
ontainers so that it is very useful to modularize all the authenti
ation de�nitionin one unique aspe
t de�nition that is seamlessly applied to the whole distributed appli
ation.
10

4.2 Distributed appli
ation exampleThis se
tion presents a simple example of a distributed appli
ation with JAC. Readers interested in reading moredetailed examples of distributed programming with JAC
an refer to [Paw02℄ where, among other things, a repli
atedload-balan
ed server is des
ribed.Let us take the simple example of a three node ring whi
h provides a simple fun
tionality to pass a token betweenmembers of a ring. The fun
tional base program is
omposed of three obje
ts that are the nodes of the ring; So the�rst step is to develop some base level
lasses (this
ode samples
an also be found in the JAC version that
an bedownloaded from [JAC℄).publi

lass Ring {publi
 stati
 void main(String[℄ args) {RingElement element0 = new RingElement();RingElement element1 = new RingElement();RingElement element2 = new RingElement();element0.setPrevious(element2);element1.setPrevious(element0);element2.setPrevious(element1);element2.roundTrip(9);} }publi

lass RingElement {publi
 RingElement previousElement;publi
 RingElement() {}publi
 RingElement(RingElement previousElement) {this.previousElement = previousElement;}publi
 void setPrevious(RingElement previousElement) {this.previousElement = previousElement;}publi
 void roundTrip(int step) {if(step > 0) previousElement.roundTrip(step-1);} }For now on, one
an develop an aspe
t
omponent that will deploy the three
reated obje
ts on JAC
ontainers,or use the existing DeploymentAC aspe
t
omponent provided with JAC. Ea
h aspe
t
omponent woven to anappli
ation
an be asso
iated with a
on�guration �le that gives, with a s
ript-like syntax, the steps needed to
on�gure it. Ea
h step
orresponds to
alling a method of the aspe
t
omponent. For instan
e, the following s
riptinstru
ts the instan
e of DeploymentAC woven to the previous base program, to:1. remotely install (AC-method deploy) instan
es ringelement0, ringelement1, ringelement2 on
ontainers boundto, respe
tively, the RMI name rmi://host0/s0, rmi://host1/s1, rmi://host2/s2.2.
reate a
lient stub (AC-method
reateAsyn
hronousStubsFor) for ringelement0 on s2, a
lient stub for ringele-ment1 on s1, a
lient stub for ringelement2 on s2. The stub delegates method
alls to remote instan
es. Bythis way, remote
ommuni
ation details are hidden to ring element obje
ts.deploy "ringelement0" "rmi://host0/s0"
reateAsyn
hronousStubsFor "ringelement0" "rmi://host0/s0" "rmi://host2/s2"deploy "ringelement1" "rmi://host1/s1"
reateAsyn
hronousStubsFor "ringelement1" "rmi://host1/s1" "rmi://host0/s0"deploy "ringelement2" "rmi://host2/s2"
reateAsyn
hronousStubsFor "ringelement2" "rmi://host2/s2" "rmi://host1/s1"Figure 9 illustrates the topology generated by this
on�guration s
ript for the deployment aspe
t.11

local reference

remote reference

ringelement0

ringelement1 ringelement2

The centralized version

s0

s1 s2aspect

actual object

deployment

The same application after the deployment aspect is woven

A

A

A

A asynchronous stubFigure 9: Deployment of the ring appli
ation.Adding a tra
ing aspe
t to the ringLet us assume that we now want to see the round-trip progression on the di�erent
ontainers (in other words, wherethe token is). Of
ourse, we
ould modify the RingElement.roundTrip method implementation to add a println
allso that the round-tripping events are logged elsewhere. However, this te
hnique has many drawba
ks.1. It is not dynami
: on
e the tra
e handling is there, you must remove it from the
ode and
ompile it again tofree the
omponents from the tra
e management.2. It is not
lean: the RingElement.roundTrip
ode is less easy to read for an external eye sin
e it handles a
on
ern that is not purely related to the ring
ore fun
tionalities.3. It is less reusable: what happens if you reuse a ring program that has been provided by another programmerand that you do not have the sour
e
ode? What happens if you want your ring reused? Do you furnish thetra
e-free version or the tra
ed one?4. It is not safe: the tra
e example is simple, but imagine that you introdu
e a bug or a regression just be
auseyou want to add a new te
hni
al
on
ern (for instan
e, you log the tra
es into a �le and, somewhere in all thelines you add into the initial program, you forget to
at
h the �disk full� or �permission denied� ex
eptions sothat the program stops be
ause of the tra
es you added). Final users may be upset by this. Using an aspe
tallows you to modularize the tra
ing me
hanism so that it is mu
h easier to
ontrol and to ensure that yourmodi�
ations do not
ause any regression.5. It is not so simple in a distributed environment: if you want your tra
es
entralized in one unique storage,you may need to install a tra
ing server...
on
erns as simple as debugging or logging be
ome more
omplexwhen the program is distributed.For all these reasons and many others, you may want to implement this tra
ing feature within an aspe
t. Whenthe appli
ation be
omes more and more
omplex, you will take full advantage of this approa
h. Figure 10 showsthe tra
ing aspe
t design. The following
ode is the straightforward JAC implementation of this model.12

!roundTrip

<<pointcut>> <<pointcut>>

tokenArrivedtokenPassed

?roundTrip

<<aspect>>
Tracing

trace

Trace

RingElement

+ <<before>> tokenPassed()
+ <<before>> tokenArrived()

+ trace(String message)

Figure 10: A simple tra
ing aspe
t for the ring sample.publi

lass Tra
ingAC extends Aspe
tComponent {Tra
e tra
e = new Tra
e();Tra
ingAC() {point
ut(�RingElement�, �!roundTrip(int):void�,Tra
ingAC.Tra
ingWrapper, �tokenPassed�);point
ut(�RingElement�, �?roundTrip(int):void�,Tra
ingAC.Tra
ingWrapper, �tokenArrived�);}
lass Tra
ingWrapper extends Wrapper {publi
 Obje
t tokenPassed(Intera
tion i) {tra
e.tra
e(�The token has been passed by �+i.wrappee);return pro
eed();}publi
 Obje
t tokenArrived(Intera
tion i) {tra
e.tra
e(�The token has arrived in �+i.wrappee);return pro
eed();}}}As you
an see on the �gure or within the JAC
ode, there is no mention of distribution. This means that the aspe
talso works if the ring is running in a
entralized or in a distributed mode (and for any sort of distribution thatwe provide). By using AODA, we have
ompletely separated the distribution
on
ern from the tra
ing one but wehave also made the aspe
ts and their point
ut semanti
s inherently distributed. This distributed semanti
s greatlyreinfor
es the AOP expressiveness by allowing the modularized de�nition of extensions that
ross
ut distributedappli
ations. 13

The way the tra
e obje
t is a
tually distributed
an be implemented within a deployment aspe
t (an aspe
t forthe tra
ing aspe
t). For instan
e, if you want all the tra
es to be
entralized on the s0
ontainer, then just
on�gurea distribution aspe
t as the follows so that all the
alls to the tra
e features are forwarded on s0.deploy "tra
e0" "s0"
reateStubsFor "tra
e0" "s0" ".*"The �nal ring appli
ation ar
hite
ture is given in �gure 11.
tracing aspect tracing aspect tracing aspect

s0 s1 s2

ringelement0 ringelement0ringelement1 ringelement1 ringelement2ringelement2

trace0 trace0 trace0

tokenPassed()

tokenArrived() tokenArrived()

tokenPassed() tokenPassed()

tokenArrived()

pointcut instance

S S

A A A

Figure 11: The ring example
ompleted with the distribution and tra
ing aspe
ts.5 Implementation & performan
e issues for JAC5.1 Implementation of JACJAC is entirely written in Java. The aspe
t weaving is performed at
lass load time using the byte
ode engineeringlibrary BCEL. This leaves us the ability to weave existing appli
ations whose sour
e
ode is not available. In su
ha
ase, software integrators need only to know the methods
on
erned by the point
ut de�nitions. The
urrentdistribution of JAC provides a set of prede�ned aspe
ts for distribution (either with RMI or CORBA � SOAP to
ome in future releases), persisten
e (JDBC or �le system), GUI (Swing), authenti
ation, transa
tion,
onsisten
y,load balan
ing, and broad
asting. A GUI
onsole is provided to on-the-�y weave or unweave aspe
ts on top of arunning appli
ation. A CASE tool implementing the UML design notation de�ned in se
tion 2 is also available (see�gure 12 for a s
reenshot).The joinpoints
onsidered in JAC are method invo
ations and exe
utions. Hooks are introdu
ed towards wovenaspe
ts whenever these events are generated. The idea is not new and has been proposed by many authors (e.g.[Chi95℄) to implement MOPs. It
onsists in introdu
ing a stub method for ea
h method of a base
lass. Thesestub methods introdu
tions are done by translating the original
lasses so that their instan
es
an support aspe
tweaving.We investigated several te
hniques to perform this translation. One of these is to use
ompile-time re�e
tionby using an open
ompiler su
h as OpenJava [Tat99℄. OpenJava is very powerful sin
e it allows all kind of
odemanipulation at
ompile-time (it takes Java
ode and produ
es a translated Java
ode). However, sin
e it rei�esthe whole syntax tree of the program it is quite slow and it is not very well suited to our simple problem (weunder-use OpenJava for su
h a simple translation). Another solution for us is to perform the translation at the14

Figure 12: JAC CASE tool s
reenshot.byte
ode level. Several byte
ode translators are available and most of them
an work at
lass load-time. The ideais to use a
ustomized
lass-loader that reads the
lass �le and modi�es the stream
ontents before a
tually de�ningand registering the new
lass within the JVM. This solution is very well suited for us. First, our translation isvery simple and
an be performed with very little overhead. Se
ond, we
an translate the
lasses
oming from athird-party program or from external libraries with no need of the Java sour
e
ode.We implemented the translation with two di�erent byte
ode translators. Javassist 1.0 [Chi00℄ is a re�e
tivehigh-level translator that hides the
omplexity of the byte
ode format by instantiating a load-time meta model. Itis quite fast and easy to use. However, be
ause of its high-level API, Javassist introdu
es some restri
tions on thebyte
ode manipulations that
an be done (for instan
e,
onstru
tors, stati
s, and method invo
ations
annot be
orre
tly translated). As a work-around, Javassist 2.0 proposes a low-level API in addition to the high-level one.BCEL [Dah99℄ is the most popular byte
ode translator. It proposes a very low-level byte
ode manipulationinterfa
e that makes it very powerful (all kind of translations
an be performed). The translation we implementedwith BCEL is more
omplex and slower than with Javassist but the byte
ode produ
ed is of better quality.5.2 Performan
e measurementsThe
riti
al point of the JAC framework in terms of performan
es is the dynami
 wrappers invo
ation me
hanism.Sin
e this invo
ation relies on re�e
tion in order to a
hieve dynami
 adding or removing of aspe
ts, the performan
eoverhead of JAC mainly
omes from the re�e
tive
alls overhead. Table 3 shows the performan
es of empty method
alls on regular obje
ts and on JAC wrappable obje
ts. These tests are performed with a ben
h program that
allsseveral method with di�erent prototypes and that is available in the JAC distribution [JAC℄. The ben
h programwas run under Linux with a Pentium III 600 MHz with 256KB of
a
he and with the SUN's Java HotSpot ClientVM version 1.4.One
an see that a
all on a JAC wrappable obje
t is
omparable to a re�e
tive
all on a regular Java obje
t15

Type of
alls Number of
alls Total time (ms) Time per
all Overhead(A) regular obje
t
alls 6,000,000 55 �9.16 ns -(B) re�e
tive
alls 60,000 47 �0.78 �s (A)x 85(C) JAC obje
ts
alls (0wrapper) 60,000 61 �1 �s (A)x 111(B)x 1.29JAC (1 wrapper) 60,000 85 �1.41 �s (C)+41%JAC (2 wrappers) 60,000 110 �1.83 �s (C)+83%JAC (3 wrappers) 60,000 130 �2.16 �s (C)+116%Table 3: Comparative performan
e measurements for Java and JAC.(with an overhead of 29%). Ea
h time a wrapper is added, an overhead of about 40% of the initial time is added(note that the ben
h adds empty wrappers that just
all pro
eed in their implementations).Finally, the pri
e to pay for adaptability is quite high (as for re�e
tion)
ompared to
ompiled approa
hes su
has Aspe
tJ. However, with real-word aspe
ts and espe
ially when the appli
ation is distributed, this
ost be
omesnegligible
ompared to the added
ost of remote
alls. For the moment, the JAC approa
h is thus more suited formiddle grained wrappable obje
ts (only business obje
ts are made wrappable in real-word appli
ations, te
hni
al
omponents that need performan
es are not aspe
tized) and for distributed and adaptable programming.6 Related te
hnologies and tools for AOPThis se
tion
ompares JAC with existing approa
hes for AOP or
losely related te
hnologies.The
omposition �lter obje
t model (CFOM) [BA01℄ is an extension to the
onventional obje
t model whereinput and output �lters
an be de�ned to handle sending and re
eiving of messages. This model is implemented forseveral languages, in
luding Smalltalk, C++ and Java. The latter implementation is an extension to the regularJava syntax where keywords are added to de
lare, for instan
e, �lters atta
hed to
lasses. The goals of this modeland ours are rather similar: to handle separation of
on
erns at a meta level. Nevertheless, JAC does not requireany language extension.Aspe
tJ [KHH+01℄ is a powerful language that provides support for the implementation of
ross
utting
on
ernsthrough point
uts (
olle
tions of prin
iple points in the exe
ution of a program), and advi
es (method-like stru
turesatta
hed to point
uts). Pre
eden
e rules are de�ned when more than one advi
e apply at a join point. In manyfeatures (e.g. point
uts de�nition) Aspe
tJ has a ri
h and vast semanti
s. Nevertheless, we argue that in many
asesthat we have studied, simple s
hemes su
h as the wrapping te
hnique proposed by JAC are su�
ient to implementa broad range of solutions dealing with separation of
on
erns.Aspe
tual
omponents [LLM99℄ and their dire
t prede
essors adaptative plug and play
omponents [ML98,MSL00℄ de�ne patterns of intera
tion,
alled parti
ipant graphs (PG), that implement aspe
ts for appli
ations.PGs
ontain parti
ipants roles (e.g. publishers and subs
ribers in a publish/subs
ribe intera
tion model) that, (1)expe
t features about the
lasses upon whi
h they will be mapped, (2) may reimplement features, and (3) providesome lo
al features. PGs are then mapped onto
lass graphs with entities
alled
onne
tors, that de�ne the wayaspe
ts and
lasses are
omposed. Aspe
tual
omponents
an be
omposed by
onne
ting part of the expe
tedinterfa
e of one
omponent to part of the provided interfa
e of another. Nevertheless, it seems that by doing so,the de�nition of the
omposition
ross
uts the de�nition of the aspe
ts, loosing by this way the expe
ted bene�tsof AOP.Subje
t oriented programming [HO93℄[OKH+95℄ (SOP) and its dire
t su

essor the Hyper/J tool [TOHS99℄,provide the ability to handle di�erent subje
tive perspe
tives,
alled subje
ts, on the problem to model. Subje
ts
an be
omposed using
orresponden
e rules (spe
ifying the
orresponden
es between
lasses, methods, �elds ofdi�erent subje
ts),
ombination rules (giving the way two subje
ts
an be glued together, and
orresponden
e-and-
ombination rules that mix both approa
hes. Prototype implementations of SOP for C++ and Smalltalk exist, anda more re
ent version for Java
alled Hyper/J is available. This latter tool implements the notion of hyperspa
e[OT01℄ that permits the expli
it identi�
ation of any
on
erns of importan
e.16

An approa
h relatively
lose to the spirit of JAC is the Mozart proje
t [Van99℄. Mozart is an open distributedprogramming system on the Oz language and uses obje
t/
omponent-orientation, de
larative, logi
, and
onstraintprogramming to support the separation of the fun
tional and of the distribution
on
erns. It provides a goodseparation of
on
erns degree with a support for multiple paradigms. Despite its
omplete nature, the
ore Mozartdoes not take the full advantage of new AO programming
on
epts su
h as aspe
t-
lasses or point
uts. In ouropinion, it is therefore more di�
ult to apprehend and less �exible sin
e the provided
on
erns are built-in (but
on�gurable) within the system.Superimpositions [SK02℄ are also an approa
h for separation of
on
erns in distributed environments. It is atheoreti
al work that furnishes a language that
an be applied to AOP. We are
urrently working on using some ofthe fundamental
on
epts of superimpositions in our aspe
ts.Finally, several proje
ts su
h as Lasagne [TVJ+01℄, JMangler [KCA01℄, or PROSE [PGA02℄ provide dynami
weaving/unweaving of aspe
ts that makes them
lose from the JAC implementation. However, none of them fullyhandle the automati
 distribution of the aspe
ts when the appli
ation is distributed.7 Con
lusionJAC is a framework for aspe
t-oriented programming (AOP) in Java. It provides a general programming model anda number of artifa
ts to let programmers develop aspe
t-oriented appli
ations in a regular Java syntax (i.e. withoutany synta
ti
al language extensions). The main elements managed by the framework are aspe
t
omponents (ACfor short). They are the pie
e of
ode that
apture a
ross-
utting
on
ern. Like in others AOP approa
hes, theidea is to modularize this
on
ern to ease its maintenan
e and its evolution. JAC provides
ontainers to host ACand business (also
alled base)
omponents. In the
urrent version of JAC (downloadable from our web site [JAC℄),these
ontainers are remotely a

essible either with RMI, or with CORBA. Further developments are underway forthe SOAP
ommuni
ation proto
ol.ACs de�ne two main elements: point
ut relations and AC-methods. Point
ut relations are the methods of thebase program whose semanti
s is meant to be extended by the AC. AC-methods are the blo
ks of
ode that performthe extension. The originality of point
ut relations with JAC is that they
an be de�ned on a per-
lass basis (allinstan
es of some given
lasses are equally extended), or on a per-instan
e basis (only given instan
es of some
lasses are extended). To a
hieve this feature, a naming s
heme is provided for ea
h base instan
e managed by theframework. A language for point
uts de�nition is provided that let developers �lter instan
es based on their nameor on the name of the
ontainer hosting them. The AC-methods provide
ode that
an be run before and/or after,or repla
e the methods designated by the point
ut.An UML notation has been proposed in se
tion 3. The stereotypes provided enable designers to express allthe above mentioned elements
on
erning AC, point
ut relations, and AC-method. Se
tion 3.4 investigated somemore advan
ed
on
epts where AOP is
ompared to the use-provide relationship and to some notions of groups ofheterogeneous
lasses. The notation is supported by a CASE tool.Referen
es[BA01℄ L. Bergmans and M. Aksit. Software Ar
hite
tures and Component Te
hnology,
hapter Constru
tingReusable Components with Multiple Con
erns Using Composition Filters. Kluwer A
ademi
 Publishers,2001.[Chi95℄ S. Chiba. A metaobje
t proto
ol for C++. In Pro
eedings of OOPSLA'95, volume 30 of SIGPLANNoti
es, pages 285�299. ACM Press, O
tober 1995.[Chi00℄ S. Chiba. Load-time stru
tural re�e
tion in java. In Pro
eedings of the 14th European Conferen
e onObje
t-Oriented Programming (ECOOP'00), volume 1850 of Le
ture Notes in Computer S
ien
e, pages313�336. Springer, June 2000.[Dah99℄ M. Dahm. Byte
ode engineering. In Pro
eedings of JIT'99, 1999.http://b
el.sour
eforge.net.[Dij76℄ E.W. Dijkstra. A dis
ipline of Programming. Prenti
e-Hall, Englewood Cli�s, 1976.17

[HO93℄ W. Harrison and H. Ossher. Subje
t-oriented programming (A
ritique of pure obje
ts). In Pro
eedingsof OOPSLA'93, volume 28 of SIGPLAN Noti
es, pages 411�428. ACM Press, O
tober 1993.[JAC℄ The JAC proje
t home page. http://ja
.aopsys.
om.[KCA01℄ G. Kniesel, P. Constanza, and M. Austermann. JMangler - a framework for load-time transformationof java
lass �les. In Pro
eedings of the IEEE Workshop on Sour
e Code Analysis and Manipulation(SCAM'01). IEEE Computer So
iety Press, November 2001.[KHH+01℄ G. Ki
zales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of Aspe
tJ.In Pro
eedings of the 15th European Conferen
e on Obje
t-Oriented Programming (ECOOP'01), volume2072 of Le
ture Notes in Computer S
ien
e, pages 327�353. Springer, June 2001.[KLM+97℄ G. Ki
zales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin. Aspe
t-oriented programming. In Pro
eedings of the 11th European Conferen
e on Obje
t-Oriented Program-ming (ECOOP'97), volume 1241 of Le
ture Notes in Computer S
ien
e, pages 220�242. Springer, June1997.[LLM99℄ K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspe
tual
omponents. Te
hni
al ReportNU-CCS-99-01, Northeastern University's College of Computer S
ien
e, April 1999.[ML98℄ M. Mezini and K. Lieberherr. Adaptative plug-and-play
omponents for evolutionary software devel-opment. In Pro
eedings of OOPSLA'98, volume 33 of SIGPLAN Noti
es, pages 96�116. ACM Press,1998.[MSL00℄ M. Mezini, L. Seiter, and K. Lieberherr. Component integration with pluggable
omposite adapters.In L. Bergmans and M. Aksit, editors, Software Ar
hite
tures and Component Te
hnology: The Stateof the Art in Resear
h and Pra
ti
e. Kluwer A
ademi
 Publishers, 2000.[OKH+95℄ H. Ossher, K. Kaplan, W. Harrison, A. Matz, and V. Kruskal. Subje
t-oriented
omposition rules. InPro
eedings of OOPSLA'95, volume 30 of SIGPLAN Noti
es, pages 235�250. ACM Press, 1995.[OT01℄ H. Ossher and P. Tarr. Multi-dimensional separation of
on
erns and the hyperspa
e approa
h. InSoftware Ar
hite
tures and Component Te
hnology. Kluwer A
ademi
 Publishers, 2001.[Par72℄ D. Parnas. On the
riteria to be used in de
omposing systems into modules. Communi
ations of theACM, 15(12):1053�1058, 1972.[Paw02℄ R. Pawlak. AOSD with JAC -
hapter 8 from PhD. thesis. CNAM Paris, De
ember 2002.[PDF+℄ R. Pawlak, L. Du
hien, G. Florin, F. Legond-Aubry, L. Seinturier, and L. Martelli. JAC: An aspe
t-based distributed dynami
 framework. Submitted to British Computer S
ien
e.[PDF+02℄ R. Pawlak, L. Du
hien, G. Florin, F. Legond-Aubry, L. Seinturier, and L. Martelli. An UML notationfor aspe
t-oriented software design. In Workshop on Aspe
t-Oriented Modeling with UML at AOSD'02,April 2002.[PGA02℄ A. Popovi
i, T. Gross, and G. Alonso. Dynami
 weaving for aspe
t oriented programming. In Pro
eed-ings of the 1st International Conferen
e on Aspe
t-Oriented Software Development (AOSD'02), 2002.[PSDF01a℄ R. Pawlak, L. Seinturier, L. Du
hien, and G. Florin. Dynami
 wrappers: Handling the
ompositionissue with JAC. In Pro
eedings of TOOLS USA 2001. IEEE Computer So
iety Press, July 2001.[PSDF01b℄ R. Pawlak, L. Seinturier, L. Du
hien, and G. Florin. JAC: A �exible solution for aspe
t-orientedprogramming in Java. In Pro
eedings of Re�e
tion'01, volume 2192 of Le
ture Notes in ComputerS
ien
e, pages 1�24. Springer, September 2001.[SK02℄ M. Sihman and S. Katz. A
al
ulus of superimpositions for distributed system. In Pro
eedings of theInternational Conferen
e on Aspe
t-Oriented Software Development (AOSD'02), pages 28�40, 2002.18

[Sun℄ Sun Mi
rosystems. Enterprise Java Beans.http://www.javasoft.
om/produ
ts/ejb.[Tat99℄ M. Tatsubori. An extension me
hanism for the Java language. Master of Engineering Disser-tation, Graduate S
hool of Engineering, University of Tsukuba, Ibaraki, Japan, February 1999.http://www.
sg.is.tite
h.a
.jp/openjava/.[TOHS99℄ P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-dimensional separationof
on
erns. In Pro
eedings of the International Conferen
e on Software Engineering (ICSE'99), pages107�119, 1999.[TVJ+01℄ E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, Joergensen, and N. Bo. Dynami
 and sele
tive
ombination of extensions in
omponent-based appli
ations. In Pro
eedings of ICSE'01, 2001.[Van99℄ Peter Van Roy. On the separation of
on
erns in distributed programming: Appli
ation to distributionstru
ture and fault toleran
e in Mozart. World S
ienti�
, Tohoku University, Sendai, Japan, July 1999.

19

