
HAL Id: inria-00489501
https://hal.inria.fr/inria-00489501

Submitted on 5 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aspect-Oriented Software Development with Java
Aspect Components

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli,
Fabrice Legond-Aubry, Gérard Florin

To cite this version:
Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice Legond-Aubry, et
al.. Aspect-Oriented Software Development with Java Aspect Components. Mehmet Aksit, Siobhan
Clarke, Tzilla Elrad, Robert E Filman. Aspect-Oriented Software Development, Addison-Wesley,
pp.343-369, 2004, 0-321-21976-7. �inria-00489501�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50081114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00489501
https://hal.archives-ouvertes.fr


Aspet-Oriented Software Development with Java Aspet ComponentsRenaud Pawlak (1), Lionel Seinturier (2), Laurene Duhien (3)Laurent Martelli (4), Fabrie Legond-Aubry (2), Gérard Florin (1)(1) CNAM, Lab. CEDRIC, 292 rue Saint Martin, 75141 Paris edex 03, Frane(2) Univ. Paris 6, Lab. LIP6, 4 plae Jussieu, 75252 Paris edex 05(3) Univ. Lille 1, Lab. LIFL, Bâtiment M3, 59655 Villeneuve d'Asq, Frane(4) AOPSYS, 5 rue Brown Séquard, 75015 Paris, Frane31st Otober 2002AbstratIn the last four years, our researh projet dealt with separation of onerns for distributed programmingenvironments and appliations. This researh e�ort led to the implementation of the Java Aspet Components(JAC) framework for aspet-oriented programming (AOP) in Java. Among the many requirements for distri-bution, �exibility and adaptability play a stringent role. The high variability of exeuting onditions (in termsof resoures, servers availability, faults, ...) also brings the need for powerful programming paradigms. Thisled us to develop a dynami model of AOP whih, unlike statially ompiled approahes, allows to on-the-�ydeploy and undeploy aspets on top of running appliations. This model omes with an UML notation andan implementation. An IDE is provided with JAC to support all the development steps of an aspet orientedappliation, from its design, to its implementation, and to its deployment.1 IntrodutionIn order to handle the omplexity of software development, separation of onerns [Par72℄[Dij76℄ distinguishesbetween funtional and non funtional requirements that needs to be addressed in an appliation. It is assumedthat the e�ient handling of this issue is a key to software quality and reuse. Nevertheless, one should notiethat the frontier between funtional and non-funtional properties may be moving depending on the appliation�eld: features (e.g. time onstraints) may be part of the funtional requirements in some domains (e.g. real-timeontrol), and of non-funtional ones in other domains (e.g. word proessing). Objet-oriented programming (OOP)is a powerful tool to handle funtional deomposition. Still, non-funtional properties are spei� in the sense thatthey an not always be deomposed leanly from funtional ones: most of the time they an only be superposedto the original funtional deomposition. This leads to the ode tangling phenomenon where a onern is satteredinto many di�erent loations (i.e. piees of funtional ode), making its development, its maintenane, and its reusedi�ult. This phenomenon has been isolated in [KLM+97℄ and led to the development of a new programming stylealled aspet-oriented programming (AOP). Sine then, several tools and ompilers have been developed (amongthem AspetJ [KHH+01℄), and losely related tehniques have also been improved (among them Hyper/J [OT01℄and omposition �lters [BA01℄).This artile presents our programming environment alled Java Aspet Components [JAC℄. The two mainrequirements of this framework are to support dynamiity and distribution. Nevertheless, JAC is also a generalpurpose AOP environment. As this, it omes with a programming model, a design notation and an API. Previouspapers desribed the programming model [PSDF01a℄ of JAC, its aspet omposition mehanism [PSDF01b℄, the�rst elements of our UML notation [PDF+02℄, and the arhiteture for distribution [PDF+℄. This artile sums upthe main features of JAC and desribes in details our UML notation.Setion 2 introdues the programming model of JAC. The UML design notation is desribed in setion 3.Setion 4 reports on the arhiteture of JAC for distribution support. Implementation details and performane1



measurements are provided in setion 5. Setion 6 provides a omparison with other tools and losely relatedtehnologies. Finally, setion 7 onludes this artile.2 JAC framework & programming modelThe JAC framework is based on the notion of ontainers. Muh like in other omponent frameworks (e.g. EJB[Sun℄), a ontainer is a host for software entities. JAC ontainers host both business omponent, and non funtionalomponent (alled aspet omponent). As we will see later in setion 5, when working with entralized environment,the ontainer is simply a ustomized Java lass loader that performs byteode adaptations to glue the business andaspet omponents together. Whenever a distribution onern appear in the appliation, these ontainers beomeremotely aessible (either with RMI or CORBA).Programming modelJAC identi�es three di�erent roles involved in the development of an aspet-oriented appliation. Appliationprogrammer: this role is onerned with the ore business of the appliation. S/he implements the software entitiesoming from the funtional deomposition of the problem. Aspet programmer: this role is onerned with theimplementation of non funtional servies. Up to this stage, these servies are independent from the ones de�ned byappliation programmers. Software integrator: this role puts appliation and aspet ode together. Two importanttasks are under the responsibility of this role: pointut de�nitions and aspet omposition. For these three roles,the programming model of JAC provides the following software artifats:1. Base program: this is the set of Java objets that implements the ore funtionalities of appliations. Theseare regular Java objets. This set of objets is self su�ient and an be run on a JVM (hene, without anyaspet).2. Aspet omponents: suh a omponent implements a non funtional onern that will later on, be woven ona base program. An aspet omponent de�nes a rossut poliy (i.e. the methods of the base program whosesemantis is modi�ed by the non funtional onern) and some aspet methods (advies in AspetJ) thatde�ne the semantial modi�ations. Aspet methods may wrap (exeute before and/or after ode), replae orextend the semantis of a base method.3 Design notationThis setion desribes our UML pro�le to support the design of aspet with JAC. Stereotypes are proposed toqualify lasses implementing a non funtional onern (3) and to qualify pointut relations 3.2. An example usingthese two onept is given in setion 3.3. Setion 3.4 goes a step further and draws some similarities between AOPand the use-provide relationship.3.1 Aspet omponent lassesAspet Components are the entral point of our AO framework. They are the implementation units that de�neextra harateristis that rossut a set of base objets. The key harateristis of JAC is that the base objetsthat are involved in a rossut are not neessarily loated on a single ontainer. They are de�ned in lasses alledAspet Component lasses (AC-lasses for short).An AC-lass is tagged with the �aspet� stereotype. It ontains attributes and methods whose semantisdi�er from regular methods. AC-methods are meant to extend the semantis of regular lasses. The extensionis performed on well de�ned implementation points so that these points atually use aspet-servies in order tointegrate new onerns (e.g. a base lass an be made to use a Cahe interfae if the aspet implements someahing onern).Eah AC-method de�nes some ode and extents the semantis of some base methods aording to a modalityde�ned by a stereotype. The existing stereotypes for an AC-method m follow.2



� �before� m(...): the AC-method m is exeuted before a given point (to be spei�ed later, see setion 3.2)of the base program.� �after� m(...): the AC-method m is exeuted after a given point of the re�ned program.� �around� m(...): a part of the AC-method m is exeuted before and another part is exeuted after a givenpoint of the re�ned program (these two parts are de�ned within the implementation of m).� �replae� m(...): the AC-method m modi�es a given point of the extended program implementation byreplaing it by the implementation of m.� �role� m(...): the AC-method m an be invoked on the objets that are extended by the AC-lass; moreover,the AC-method m an aess the extended lass attributes and the aspet-lass attributes.For instane, �gure 1 shows the ahing AC-lass Cahing (with the �aspet� stereotype). As its name suggestsit, this AC-lass provides a ahing extension mehanism. The job of storing and retrieving values from the ahe isdelegated to the Cahe (regular) lass. The whenWrite method of the AC-lass Cahing is tagged with the�after�stereotype. It will be exeuted after any base method assoiated with whenWrite in the pointut de�nition (seebelow setion 3.2). The whenRead method is tagged with �around�. It will be exeuted before and after somebase methods.
+ <<after>> whenWrite()

<<aspect>>
Caching

Cache

+ getValue(): Object
+ setValue(Object)
+ invalidate()

+ <<around>> whenRead()Figure 1: De�nition of a ahing onern with an AC-lass.3.2 Pointuts de�nitionA pointut relation links an AC-method belonging to an AC-lass to a set of elements of a base program. Thegranularity of the involved elements is the method: pointuts in JAC an not go deeper than methods to modify thebase program semantis (e.g. we an not introspet methods bodies to extend some partiular ode instrutions).Several arguments justify this feature. Firstly, for performane reasons, reifying the whole ode struture has aost whih ould not be bearable for real-life appliations (�rst experiments with a fully re�etive ompiler suhas OpenJava [Tat99℄ taught us that). Seondly, extending the semantis of an appliation requires before that, tounderstand its original semantis (we an not extend something that is not learly stated). Most of the time thisoriginal semantis is de�ned through an API, e.g. through methods. So base methods are de�nitively the best plaeto perform some semantial extensions.Two levels of pointut de�nition exist with JAC: either the pointut is de�ned on a per-lass basis, or a per-instane basis.Class level pointutsThis level is very muh similar to the one found in AspetJ. All the instanes of the lasses involved in the pointutare extended by the aspet omponent. In this ase, a pointut relation is an oriented assoiation from an AC-lasstowards one or several lasses. The assoiation is stereotyped with �pointut�. The roles have speial semantis:they mention whih methods of the lient lass are extended and by whih AC-methods. The semantis of theelements mentioned in �gure 2 follows:� a pointut relation p must go from an AC-lass A to a lass C (if several lasses are involved in the pointut,several links are drawn between the AC-lass and the lasses),3



<<aspect>>
A

<<pointcut>> r2

c2p

tag

C
r1

c1Figure 2: The pointut assoiation: relating aspets to lasses.Keywords SemantisALL all the methodsSTATICS all the stati methodsCONSTRUCTORS all the onstrutorsMODIFIERS all the methods that modify the objet's state,i.e. that modify at least one of the �eldsACCESSORS all the methods that read the objet's stateGETTERS[(...)℄ the gettersSETTERS[(...)℄ the settersADDERS[(...)℄ the methods that add an objet to a olletionREMOVERS[(...)℄ the methods that remove an objet to a ol-letionFIELDGETTERS all the getters for primitive �eldsFIELDSETTERS all the setters for primitive �eldsREFGETTERS all the referene gettersREFSETTERS all the referene settersCOLGETTERS all the olletion gettersCOLSETTERS all the olletion settersTable 2: Keywords allowed in pointut expressions.
+ <<after>> whenWrite()

<<aspect>>
Caching

whenReadwhenWrite 0−10−1

1 1

Cache

+ getValue(): Object
+ setValue(Object)
+ invalidate()

<<pointcut>> <<pointcut>>

?GETTERS?SETTERS

Server

p1 p2

+ <<around>> whenRead()

Figure 3: The full ahing aspet.4



� ardinality 1 is the number of aspet instanes of A that an be in relation with one member of C (defaultis 0-1),� ardinality 2 is the number of members of C that an be in relation with one instane of A (default is * forall),� role r1 is the name of an AC-method de�ned in A that is applied at eah base program point denoted byrole r2,� role r2 de�nes a base program rossut i.e. a set of joinpoints. r2 is a logial expression (with AND, OR andNOT operators) where eah term is of the form quali�er methodExpression.� Two mains quali�ers are used: ? whih designated a method exeution point, and ! whih designated amethod invoation point.� methodExpression is either a fully-de�ned method prototype (e.g. get():int), or a partially-de�ned onewith GNU-like regular expressions (e.g. get.*(.*):int mathes all methods whose name starts with get,return an integer, and take any parameters), or an expression based on the keyword de�ned in table 2.For instane, GETTERS(a,b) mathes the getter methods for �elds a and b. Like in omponent frame-works suh as Java Beans, naming onventions are assumed on method names: getter/setter should bename get/set followed by the �eld name (starting in upper ase). Adders/removers should be namedadd/remove and take an objet as an unique parameter. Eah time a new lass is loaded in the JACframework, some introspetion and byteode analysis are performed. A meta-model of the lass is on-struted on the �y (in a dediated aspet alled RTTI for RunTime Type Information) with annotationsthat enable to ahieve the semantis de�ned in table 2. For instane, eah method byteode is parsedto determine whether some �elds are modi�ed or not. If so, the method is tagged as a MODIFIER inthe RTTI aspet. As the proess of analyzing the byteode of many lasses an be time onsuming,the lasses whih are never extended by an aspet (i.e. that are simply used by base objets or aspetomponents), an be exluded from this analysis phase.� as any UML model element, the pointut relation an be tagged (tag) to express extra semantis that anbe used when implementing the model towards a onrete platform; some semantis examples are shown infurther setions.Figure 3 shows two pointut relations that implement a ahing aspet by using the AC-lass de�ned in �gure 1.This aspet diagram must be read as follows.� After the exeution of any setter (a method that hanges the objet state) of a Server objet, the programmust exeute the whenWrite AC-method.� Around (i.e. before and after) the exeution of any getter (a method that reads the objet state) of a serverobjet, the program must exeute the whenRead AC-method.Instane level pointutsBesides the previously desribed mehanism, JAC also allows developers to de�ne pointuts on a per-instane basis.The idea here is to seletively extends the semantis of some instanes of a lass. The rationale is that in a highlydynami distributed environment, some server objets may need to ustomized (e.g. repliated), while others mayneed to stay unmodi�ed even if they belong to the same lass.One of the di�ulty is that, ontrary to lasses that are straightforwardly named, objets lak any diret namingsheme in Java. The solution taken in JAC is to let the framework attah an unique name to eah reated instane:the name is the onatenation of the lass name in lower ase and of an auto-inremented integer (e.g. server0designates the �rst reated instane of lass Server). The framework provides an API to retrieve objets basedon their name. This approah is a trade-o� between generality and simpliity: it is lear to us that this shemeis usable only if the number of reated instanes for eah lass stays small. This sheme also requires the aspetprogrammer to have a deep understanding of the instane reation proess going on in the base program.5



To let designers express a per-instane pointut, aspet omponent side roles in UML diagram (i.e. r1 in �gure 2)an be extended with an instane name or a regular expression on instane names. For instane ?SETTERS|server0designates the exeution points of the setter methods of instane server0, ?GETTERS|server[1-3℄ designates theexeution points of the getter methods of instanes server1, server2 and server3.When distribution omes into play, pointut de�nitions an also be �ltered based on ontainer names (a ontainername being a RMI or CORBA URL depending on the hosen ommuniation protool between JAC remote ontain-ers). The idea is to let designers express behaviors that will be dependent on the ontext into whih omponents aredeployed. For instane, one may want to install an authentiation aspet only on spei� ritial hosts, whereas therest of the appliation deployed on other hosts stays unmodi�ed, or one may need to install some logging aspet onlyon a given ontainer. To allow this, pointut expressions an be extended with ontainer names or regular expres-sions on ontainer names. Merged with the previous extension for instane names, this leads to a omplete shemewhere pointut expressions are of the form: quali�er methodExpression | instaneExpression | ontainerExpressionwith instaneExpression and ontainerExpression being optional. For instane ?ACCESSORS||rmi://myHost/s1designates the aessors exeution points of instanes loated on JAC ontainer rmi://myHost/s1.3.3 A �rst simple exampleThis setion illustrates the programming model of JAC based on the Cahing aspet of �gure 3. The details of theAPI and some tutorials an be found on the JAC web site [JAC℄.Figure 4 gives the ode of the Cahing aspet. An aspet omponent must extend the ja.ore.AspetComponentlass. Among other things this lass provides a pointut method that let programmers express a pointut. The pa-rameters are: the base lass this pointut designates, the quali�er methodExpression as a string, the lass ontainingthe AC-method, the AC-method involved in the pointut. Here two suh pointuts are de�ned. Additional pointutmethods are available when instaneExpression and ontainerExpression are to be assoiated to the pointut.import ja.ore.AspetComponent;import ja.ore.Wrapper;import ja.ore.Interation;publi lass Cahing extends AspetComponent {publi Cahing() {pointut("Server","?SETTERS",CahingWrapper.lass,"whenWrite");pointut("Server","?GETTERS",CahingWrapper.lass,"whenRead");}publi lass CahingWrapper extends Wrapper {private Cahe ahe = new Cahe();publi void whenWrite( Interation i ) {proeed();Objet value = i.arg[0℄;ahe.setValue(value);}publi Objet whenRead( Interation i ) {Objet value = ahe.getValue();if ( value == null )value = proeed();ahe.setValue(value);return value;} } }Figure 4: A simple aspet omponent implementing a ahing onern.6



AC-methods are de�ned in wrapper lasses (that extend the ja.ore.Wrapper lass). The following methodprototype is mandatory for all AC-methods: they aept only one parameter that is a ja.ore.Interation instane.They may return any parameters. The rationale behind this onstraint is that AC-methods are upalled by the JACframework whenever a all to the base method they extend is issued or exeuted (i.e. whenever the all mathes thepointut expression). An Interation objet i provides data about the urrent all: arguments of the all (in thearg array), a referene to the base objet (i.wrappee), and some methods to store and retrieve ontext parameters(for instane, parameters that an be added by an AC-method on the aller side, and that an later on retrieve onthe reeiver side by another AC-method).3.4 Extended design notation for distributionThe group paradigmIn the previous ahing example, the semantis modi�ation introdued by the ahing onern into the appliationis quite symmetri. Conretely, it means that all the objets that are modi�ed to implement ahes (the Serverobjets) an be seen as modi�ed by the same abstrat transformation rule. However, one may want to weave theCahing aspet to di�erent lasses. Thus, another designation mehanism is needed to express the fat that a setof well-de�ned objets implements the same onern.This need for a new kind of strutured elements brings us to fous on the group notion. If we look at the groupnotion very arefully, we an notie that it is tightly linked to aspets. Indeed, ontrary to a lass that abstratlyrepresents a set of instanes realizing the same funtional harateristis, a group is, in our de�nition, an abstratrepresentation of a set of instanes that do not neessary have homogeneous funtional types but that are logiallygrouped together beause they implement the same servie (server groups) or use the same one (lient groups).Figure 5 represents the appliation of the ahing aspet on a group of servers that implements the server partof a simple lient/server appliation. We use an instane diagram so that it beomes obvious that the group on thetop of the �gure is a non-uniform set of instanes (the three instanes a, b, and  belong to three di�erent lassesA, B and C ). As shown on this �gure, the appliation of the ahing aspet reates a new group that ontainsinstanes of a Cahe lass that provides the ahing funtionality. In other words, we an say that these Caheinstanes belong to a server group that provides a ahing funtionality for the lient group formed by the a, b, and servers.A group-based de�nition of aspetsIt appears that the introdution of the ahing onern within the original lient/server appliation is abstratly doneby the use of the servies the Cahe group interfae provides to the servers group. This an be easily representedin UML by using the �use� relation as represented in �gure 6. In the general ase, implementing a new onernmay require the use of several interfaes. In these ases, several lients an be related to several servers throughsome �use� relations.Finally, a simple but su�ient de�nition of an aspet within this ontext is the following.De�nition: an aspet is the implementation of one or many use-provide relationship(s) between one or manylient group(s) and one or many server groups.The model of �gure 6 learly brings up a use-provide relationship between a lient-group (the servers), and aserver group (the ahes) that de�nes the group level servies getValue(), setValue(Objet) and invalidate(). Thisrelationship implementation requires the appliation to modify the lient group member objets implementation tointrodue the ahing onern within the appliation. If this onern implementation is modularized (i.e. if the odethat implements the ahing onern introdution is loally de�ned), then the implementation tehnique followsthe AOP guidelines and we an all the obtained module an aspet.At the analysis level, to express the fat that a use-provide relationship is implemented in an aspet-orientedfashion, the appliation designer an add a tagged value �aspet:aspetName� to all the �use� relationshipsimplemented by the aspet alled aspetName (see �gure 6).Thus group-oriented modeling allows the designer to expliit in a omprehensive way what parts of the (dis-tributed) appliation are aspets and what parts are not. In fat, for eah modeled group level use-provide rela-tionship, aspet-oriented tehniques an be used to separate onerns within the �nal implementation.7



a:A a:Cache

a:A

a group

client:Client b:B

c:C

b:Cache

c:Cache

client:Client b:B

c:C

application of the caching aspect

Figure 5: Relating aspets to group.

b:B c:Ca:A

+ getValue(): Object

+ invalidate()
+ setValue(Object)

Server Cache
aspect: caching

<<use>>

Figure 6: The use relationship between a lient group (the base program) and a server group (the aspet program).8



Finally, eah time the designer enounters the pattern of one or several use-provide relationship between groups,s/he an ask her/himself if an aspet would be well suited in this ase. Despite the use of an aspet or not is mainlyrelated to the designer experiene and hoies, we an give some lues on when an aspet will be better suited thana lassial design.� The lient group is heterogenous: it means that the use of the server servies are spread all over the lient-group member lasses. This is by essene a rossuting onern and some extra design is neessary to leanlymodularize all the involved dependenies (for instane, we an use inheritane that implies bad ompositionwith other onerns or we an use some delegation related pattern whih leads to a more omplex designmodel). In this ase, the use of an aspet an greatly simplify the programmer's task and will ensure goodmaintenability and evolutivity of the �nal implementation, even if some onerns are added afterwards.� Several homogeneous lient groups use the same server group: this is exatly the same situation that abovesine several homogeneous groups an be modeled into one heterogenous group.� Several lient groups use several server groups but it seems that the �nal purpose of these use-provide relationsenters into one same onern for the �nal appliation: this is a more ontextual hoie that depends on theknowledge of the modeled domain.Figure sums up the notion introdued in this setion and proposes a UML meta model where additions introduedby JAC are drawn with bold lines.

orientation:int
startCardinality:String
startRole:String
endCardinality:String
endRole:String

RoledLink

Link

isAggregation:boolean

RelationLink

packagePath:String

TypeTypedElement

Instance

Member

Field

body:String

Method

Constructor

Parameter

InheritanceLink

name:String

description:String

ModelElement

start

end

endingLinks
*

PointcutLink

methodPCD:String
hostPCD:String
aspectRole:String

Aspect

Class superClass

*relationLinks

pointcutLinks

*

*
fields

methods

*

*

parameters*

aspectMethods
AspectMethod

classPCD:String
objectPCD:String

Group

Figure 7: The UML extension meta-model.4 JAC arhiteture for distribution4.1 Aspets deployment and distributionThis setion sums up the features of the arhiteture set up in JAC to handle distribution. This arhiteture isalled AODA (Aspet Oriented Distributed Arhiteture) and is desribed in more details in [PDF+℄.9



The AODA provides funtionalities to deploy base programs and aspet omponents.. The idea is to allow thenatural and onsistent ohabitation between distribution and aspets. To do this, the AODA provides ore featuresto support distributed aspets. Figure 8 shows how the AODA manages distributed aspets. The top of the �gureis a simple appliation omposed of a set of omponents. The middle of the �gure shows the same appliation,but extended by a sample aspet. Finally, the bottom part depits the appliation deployed by the AODA. Wean notie that eah ontainer ontains a loal instane of the original aspet, hene, the aspet is applied on eahontainer in the same way. The set of ontainers where the aspet is present is alled an aspet-spae so that it an�nally be regarded as a single but distributed aspet.
AnAspect

aspectMethod()

AnAspect

aspectMethod()

AnAspect

aspectMethod()

AnAspect

aspectMethod()

a pointcut relation
instance

the distribution aspect is woven

a distributed
pointcut relation
instance

a distributed
aspect−space

the aspect−extended
program

the original
program

an aspect instance is woven

container 1 container 3container 2Figure 8: AODA: distributed support of aspets.Our motivation for distributed aspets support is to allow the aspet programmer to express global and deen-tralized program properties. Indeed, it happens quite often that a non-funtional property rossuts a set of objetsthat are not loated on the same ontainer. For instane, when adding an authentiation onern, the apaitiesmay be heked on several server ontainers so that it is very useful to modularize all the authentiation de�nitionin one unique aspet de�nition that is seamlessly applied to the whole distributed appliation.
10



4.2 Distributed appliation exampleThis setion presents a simple example of a distributed appliation with JAC. Readers interested in reading moredetailed examples of distributed programming with JAC an refer to [Paw02℄ where, among other things, a repliatedload-balaned server is desribed.Let us take the simple example of a three node ring whih provides a simple funtionality to pass a token betweenmembers of a ring. The funtional base program is omposed of three objets that are the nodes of the ring; So the�rst step is to develop some base level lasses (this ode samples an also be found in the JAC version that an bedownloaded from [JAC℄).publi lass Ring {publi stati void main( String[℄ args ) {RingElement element0 = new RingElement();RingElement element1 = new RingElement();RingElement element2 = new RingElement();element0.setPrevious( element2 );element1.setPrevious( element0 );element2.setPrevious( element1 );element2.roundTrip( 9 );} }publi lass RingElement {publi RingElement previousElement;publi RingElement() {}publi RingElement( RingElement previousElement ) {this.previousElement = previousElement;}publi void setPrevious( RingElement previousElement ) {this.previousElement = previousElement;}publi void roundTrip( int step ) {if( step > 0 ) previousElement.roundTrip( step-1 );} }For now on, one an develop an aspet omponent that will deploy the three reated objets on JAC ontainers,or use the existing DeploymentAC aspet omponent provided with JAC. Eah aspet omponent woven to anappliation an be assoiated with a on�guration �le that gives, with a sript-like syntax, the steps needed toon�gure it. Eah step orresponds to alling a method of the aspet omponent. For instane, the following sriptinstruts the instane of DeploymentAC woven to the previous base program, to:1. remotely install (AC-method deploy) instanes ringelement0, ringelement1, ringelement2 on ontainers boundto, respetively, the RMI name rmi://host0/s0, rmi://host1/s1, rmi://host2/s2.2. reate a lient stub (AC-method reateAsynhronousStubsFor) for ringelement0 on s2, a lient stub for ringele-ment1 on s1, a lient stub for ringelement2 on s2. The stub delegates method alls to remote instanes. Bythis way, remote ommuniation details are hidden to ring element objets.deploy "ringelement0" "rmi://host0/s0"reateAsynhronousStubsFor "ringelement0" "rmi://host0/s0" "rmi://host2/s2"deploy "ringelement1" "rmi://host1/s1"reateAsynhronousStubsFor "ringelement1" "rmi://host1/s1" "rmi://host0/s0"deploy "ringelement2" "rmi://host2/s2"reateAsynhronousStubsFor "ringelement2" "rmi://host2/s2" "rmi://host1/s1"Figure 9 illustrates the topology generated by this on�guration sript for the deployment aspet.11



local reference

remote reference

ringelement0

ringelement1 ringelement2

The centralized version

s0

s1 s2aspect

actual object

deployment

The same application after the deployment aspect is woven

A

A

A

A asynchronous stubFigure 9: Deployment of the ring appliation.Adding a traing aspet to the ringLet us assume that we now want to see the round-trip progression on the di�erent ontainers (in other words, wherethe token is). Of ourse, we ould modify the RingElement.roundTrip method implementation to add a println allso that the round-tripping events are logged elsewhere. However, this tehnique has many drawbaks.1. It is not dynami: one the trae handling is there, you must remove it from the ode and ompile it again tofree the omponents from the trae management.2. It is not lean: the RingElement.roundTrip ode is less easy to read for an external eye sine it handles aonern that is not purely related to the ring ore funtionalities.3. It is less reusable: what happens if you reuse a ring program that has been provided by another programmerand that you do not have the soure ode? What happens if you want your ring reused? Do you furnish thetrae-free version or the traed one?4. It is not safe: the trae example is simple, but imagine that you introdue a bug or a regression just beauseyou want to add a new tehnial onern (for instane, you log the traes into a �le and, somewhere in all thelines you add into the initial program, you forget to ath the �disk full� or �permission denied� exeptions sothat the program stops beause of the traes you added). Final users may be upset by this. Using an aspetallows you to modularize the traing mehanism so that it is muh easier to ontrol and to ensure that yourmodi�ations do not ause any regression.5. It is not so simple in a distributed environment: if you want your traes entralized in one unique storage,you may need to install a traing server... onerns as simple as debugging or logging beome more omplexwhen the program is distributed.For all these reasons and many others, you may want to implement this traing feature within an aspet. Whenthe appliation beomes more and more omplex, you will take full advantage of this approah. Figure 10 showsthe traing aspet design. The following ode is the straightforward JAC implementation of this model.12



!roundTrip

<<pointcut>> <<pointcut>>

tokenArrivedtokenPassed

?roundTrip

<<aspect>>
Tracing

trace

Trace

RingElement

+ <<before>> tokenPassed() 
+ <<before>> tokenArrived() 

+ trace(String message) 

Figure 10: A simple traing aspet for the ring sample.publi lass TraingAC extends AspetComponent {Trae trae = new Trae();TraingAC() {pointut(�RingElement�, �!roundTrip(int):void�,TraingAC.TraingWrapper, �tokenPassed�);pointut(�RingElement�, �?roundTrip(int):void�,TraingAC.TraingWrapper, �tokenArrived�);}lass TraingWrapper extends Wrapper {publi Objet tokenPassed( Interation i ) {trae.trae(�The token has been passed by �+i.wrappee);return proeed();}publi Objet tokenArrived( Interation i ) {trae.trae(�The token has arrived in �+i.wrappee);return proeed();}}}As you an see on the �gure or within the JAC ode, there is no mention of distribution. This means that the aspetalso works if the ring is running in a entralized or in a distributed mode (and for any sort of distribution thatwe provide). By using AODA, we have ompletely separated the distribution onern from the traing one but wehave also made the aspets and their pointut semantis inherently distributed. This distributed semantis greatlyreinfores the AOP expressiveness by allowing the modularized de�nition of extensions that rossut distributedappliations. 13



The way the trae objet is atually distributed an be implemented within a deployment aspet (an aspet forthe traing aspet). For instane, if you want all the traes to be entralized on the s0 ontainer, then just on�gurea distribution aspet as the follows so that all the alls to the trae features are forwarded on s0.deploy "trae0" "s0"reateStubsFor "trae0" "s0" ".*"The �nal ring appliation arhiteture is given in �gure 11.
tracing aspect tracing aspect tracing aspect

s0 s1 s2

ringelement0 ringelement0ringelement1 ringelement1 ringelement2ringelement2

trace0 trace0 trace0

tokenPassed()

tokenArrived() tokenArrived()

tokenPassed() tokenPassed()

tokenArrived()

pointcut instance

S S

A A A

Figure 11: The ring example ompleted with the distribution and traing aspets.5 Implementation & performane issues for JAC5.1 Implementation of JACJAC is entirely written in Java. The aspet weaving is performed at lass load time using the byteode engineeringlibrary BCEL. This leaves us the ability to weave existing appliations whose soure ode is not available. In suha ase, software integrators need only to know the methods onerned by the pointut de�nitions. The urrentdistribution of JAC provides a set of prede�ned aspets for distribution (either with RMI or CORBA � SOAP toome in future releases), persistene (JDBC or �le system), GUI (Swing), authentiation, transation, onsisteny,load balaning, and broadasting. A GUI onsole is provided to on-the-�y weave or unweave aspets on top of arunning appliation. A CASE tool implementing the UML design notation de�ned in setion 2 is also available (see�gure 12 for a sreenshot).The joinpoints onsidered in JAC are method invoations and exeutions. Hooks are introdued towards wovenaspets whenever these events are generated. The idea is not new and has been proposed by many authors (e.g.[Chi95℄) to implement MOPs. It onsists in introduing a stub method for eah method of a base lass. Thesestub methods introdutions are done by translating the original lasses so that their instanes an support aspetweaving.We investigated several tehniques to perform this translation. One of these is to use ompile-time re�etionby using an open ompiler suh as OpenJava [Tat99℄. OpenJava is very powerful sine it allows all kind of odemanipulation at ompile-time (it takes Java ode and produes a translated Java ode). However, sine it rei�esthe whole syntax tree of the program it is quite slow and it is not very well suited to our simple problem (weunder-use OpenJava for suh a simple translation). Another solution for us is to perform the translation at the14



Figure 12: JAC CASE tool sreenshot.byteode level. Several byteode translators are available and most of them an work at lass load-time. The ideais to use a ustomized lass-loader that reads the lass �le and modi�es the stream ontents before atually de�ningand registering the new lass within the JVM. This solution is very well suited for us. First, our translation isvery simple and an be performed with very little overhead. Seond, we an translate the lasses oming from athird-party program or from external libraries with no need of the Java soure ode.We implemented the translation with two di�erent byteode translators. Javassist 1.0 [Chi00℄ is a re�etivehigh-level translator that hides the omplexity of the byteode format by instantiating a load-time meta model. Itis quite fast and easy to use. However, beause of its high-level API, Javassist introdues some restritions on thebyteode manipulations that an be done (for instane, onstrutors, statis, and method invoations annot beorretly translated). As a work-around, Javassist 2.0 proposes a low-level API in addition to the high-level one.BCEL [Dah99℄ is the most popular byteode translator. It proposes a very low-level byteode manipulationinterfae that makes it very powerful (all kind of translations an be performed). The translation we implementedwith BCEL is more omplex and slower than with Javassist but the byteode produed is of better quality.5.2 Performane measurementsThe ritial point of the JAC framework in terms of performanes is the dynami wrappers invoation mehanism.Sine this invoation relies on re�etion in order to ahieve dynami adding or removing of aspets, the performaneoverhead of JAC mainly omes from the re�etive alls overhead. Table 3 shows the performanes of empty methodalls on regular objets and on JAC wrappable objets. These tests are performed with a benh program that allsseveral method with di�erent prototypes and that is available in the JAC distribution [JAC℄. The benh programwas run under Linux with a Pentium III 600 MHz with 256KB of ahe and with the SUN's Java HotSpot ClientVM version 1.4.One an see that a all on a JAC wrappable objet is omparable to a re�etive all on a regular Java objet15



Type of alls Number of alls Total time (ms) Time per all Overhead(A) regular objet alls 6,000,000 55 �9.16 ns -(B) re�etive alls 60,000 47 �0.78 �s (A)x 85(C) JAC objets alls (0wrapper) 60,000 61 �1 �s (A)x 111(B)x 1.29JAC (1 wrapper) 60,000 85 �1.41 �s (C)+41%JAC (2 wrappers) 60,000 110 �1.83 �s (C)+83%JAC (3 wrappers) 60,000 130 �2.16 �s (C)+116%Table 3: Comparative performane measurements for Java and JAC.(with an overhead of 29%). Eah time a wrapper is added, an overhead of about 40% of the initial time is added(note that the benh adds empty wrappers that just all proeed in their implementations).Finally, the prie to pay for adaptability is quite high (as for re�etion) ompared to ompiled approahes suhas AspetJ. However, with real-word aspets and espeially when the appliation is distributed, this ost beomesnegligible ompared to the added ost of remote alls. For the moment, the JAC approah is thus more suited formiddle grained wrappable objets (only business objets are made wrappable in real-word appliations, tehnialomponents that need performanes are not aspetized) and for distributed and adaptable programming.6 Related tehnologies and tools for AOPThis setion ompares JAC with existing approahes for AOP or losely related tehnologies.The omposition �lter objet model (CFOM) [BA01℄ is an extension to the onventional objet model whereinput and output �lters an be de�ned to handle sending and reeiving of messages. This model is implemented forseveral languages, inluding Smalltalk, C++ and Java. The latter implementation is an extension to the regularJava syntax where keywords are added to delare, for instane, �lters attahed to lasses. The goals of this modeland ours are rather similar: to handle separation of onerns at a meta level. Nevertheless, JAC does not requireany language extension.AspetJ [KHH+01℄ is a powerful language that provides support for the implementation of rossutting onernsthrough pointuts (olletions of priniple points in the exeution of a program), and advies (method-like struturesattahed to pointuts). Preedene rules are de�ned when more than one advie apply at a join point. In manyfeatures (e.g. pointuts de�nition) AspetJ has a rih and vast semantis. Nevertheless, we argue that in many asesthat we have studied, simple shemes suh as the wrapping tehnique proposed by JAC are su�ient to implementa broad range of solutions dealing with separation of onerns.Aspetual omponents [LLM99℄ and their diret predeessors adaptative plug and play omponents [ML98,MSL00℄ de�ne patterns of interation, alled partiipant graphs (PG), that implement aspets for appliations.PGs ontain partiipants roles (e.g. publishers and subsribers in a publish/subsribe interation model) that, (1)expet features about the lasses upon whih they will be mapped, (2) may reimplement features, and (3) providesome loal features. PGs are then mapped onto lass graphs with entities alled onnetors, that de�ne the wayaspets and lasses are omposed. Aspetual omponents an be omposed by onneting part of the expetedinterfae of one omponent to part of the provided interfae of another. Nevertheless, it seems that by doing so,the de�nition of the omposition rossuts the de�nition of the aspets, loosing by this way the expeted bene�tsof AOP.Subjet oriented programming [HO93℄[OKH+95℄ (SOP) and its diret suessor the Hyper/J tool [TOHS99℄,provide the ability to handle di�erent subjetive perspetives, alled subjets, on the problem to model. Subjetsan be omposed using orrespondene rules (speifying the orrespondenes between lasses, methods, �elds ofdi�erent subjets), ombination rules (giving the way two subjets an be glued together, and orrespondene-and-ombination rules that mix both approahes. Prototype implementations of SOP for C++ and Smalltalk exist, anda more reent version for Java alled Hyper/J is available. This latter tool implements the notion of hyperspae[OT01℄ that permits the expliit identi�ation of any onerns of importane.16



An approah relatively lose to the spirit of JAC is the Mozart projet [Van99℄. Mozart is an open distributedprogramming system on the Oz language and uses objet/omponent-orientation, delarative, logi, and onstraintprogramming to support the separation of the funtional and of the distribution onerns. It provides a goodseparation of onerns degree with a support for multiple paradigms. Despite its omplete nature, the ore Mozartdoes not take the full advantage of new AO programming onepts suh as aspet-lasses or pointuts. In ouropinion, it is therefore more di�ult to apprehend and less �exible sine the provided onerns are built-in (buton�gurable) within the system.Superimpositions [SK02℄ are also an approah for separation of onerns in distributed environments. It is atheoretial work that furnishes a language that an be applied to AOP. We are urrently working on using some ofthe fundamental onepts of superimpositions in our aspets.Finally, several projets suh as Lasagne [TVJ+01℄, JMangler [KCA01℄, or PROSE [PGA02℄ provide dynamiweaving/unweaving of aspets that makes them lose from the JAC implementation. However, none of them fullyhandle the automati distribution of the aspets when the appliation is distributed.7 ConlusionJAC is a framework for aspet-oriented programming (AOP) in Java. It provides a general programming model anda number of artifats to let programmers develop aspet-oriented appliations in a regular Java syntax (i.e. withoutany syntatial language extensions). The main elements managed by the framework are aspet omponents (ACfor short). They are the piee of ode that apture a ross-utting onern. Like in others AOP approahes, theidea is to modularize this onern to ease its maintenane and its evolution. JAC provides ontainers to host ACand business (also alled base) omponents. In the urrent version of JAC (downloadable from our web site [JAC℄),these ontainers are remotely aessible either with RMI, or with CORBA. Further developments are underway forthe SOAP ommuniation protool.ACs de�ne two main elements: pointut relations and AC-methods. Pointut relations are the methods of thebase program whose semantis is meant to be extended by the AC. AC-methods are the bloks of ode that performthe extension. The originality of pointut relations with JAC is that they an be de�ned on a per-lass basis (allinstanes of some given lasses are equally extended), or on a per-instane basis (only given instanes of somelasses are extended). To ahieve this feature, a naming sheme is provided for eah base instane managed by theframework. A language for pointuts de�nition is provided that let developers �lter instanes based on their nameor on the name of the ontainer hosting them. The AC-methods provide ode that an be run before and/or after,or replae the methods designated by the pointut.An UML notation has been proposed in setion 3. The stereotypes provided enable designers to express allthe above mentioned elements onerning AC, pointut relations, and AC-method. Setion 3.4 investigated somemore advaned onepts where AOP is ompared to the use-provide relationship and to some notions of groups ofheterogeneous lasses. The notation is supported by a CASE tool.Referenes[BA01℄ L. Bergmans and M. Aksit. Software Arhitetures and Component Tehnology, hapter ConstrutingReusable Components with Multiple Conerns Using Composition Filters. Kluwer Aademi Publishers,2001.[Chi95℄ S. Chiba. A metaobjet protool for C++. In Proeedings of OOPSLA'95, volume 30 of SIGPLANNoties, pages 285�299. ACM Press, Otober 1995.[Chi00℄ S. Chiba. Load-time strutural re�etion in java. In Proeedings of the 14th European Conferene onObjet-Oriented Programming (ECOOP'00), volume 1850 of Leture Notes in Computer Siene, pages313�336. Springer, June 2000.[Dah99℄ M. Dahm. Byte ode engineering. In Proeedings of JIT'99, 1999.http://bel.soureforge.net.[Dij76℄ E.W. Dijkstra. A disipline of Programming. Prentie-Hall, Englewood Cli�s, 1976.17



[HO93℄ W. Harrison and H. Ossher. Subjet-oriented programming (A ritique of pure objets). In Proeedingsof OOPSLA'93, volume 28 of SIGPLAN Noties, pages 411�428. ACM Press, Otober 1993.[JAC℄ The JAC projet home page. http://ja.aopsys.om.[KCA01℄ G. Kniesel, P. Constanza, and M. Austermann. JMangler - a framework for load-time transformationof java lass �les. In Proeedings of the IEEE Workshop on Soure Code Analysis and Manipulation(SCAM'01). IEEE Computer Soiety Press, November 2001.[KHH+01℄ G. Kizales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of AspetJ.In Proeedings of the 15th European Conferene on Objet-Oriented Programming (ECOOP'01), volume2072 of Leture Notes in Computer Siene, pages 327�353. Springer, June 2001.[KLM+97℄ G. Kizales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin. Aspet-oriented programming. In Proeedings of the 11th European Conferene on Objet-Oriented Program-ming (ECOOP'97), volume 1241 of Leture Notes in Computer Siene, pages 220�242. Springer, June1997.[LLM99℄ K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspetual omponents. Tehnial ReportNU-CCS-99-01, Northeastern University's College of Computer Siene, April 1999.[ML98℄ M. Mezini and K. Lieberherr. Adaptative plug-and-play omponents for evolutionary software devel-opment. In Proeedings of OOPSLA'98, volume 33 of SIGPLAN Noties, pages 96�116. ACM Press,1998.[MSL00℄ M. Mezini, L. Seiter, and K. Lieberherr. Component integration with pluggable omposite adapters.In L. Bergmans and M. Aksit, editors, Software Arhitetures and Component Tehnology: The Stateof the Art in Researh and Pratie. Kluwer Aademi Publishers, 2000.[OKH+95℄ H. Ossher, K. Kaplan, W. Harrison, A. Matz, and V. Kruskal. Subjet-oriented omposition rules. InProeedings of OOPSLA'95, volume 30 of SIGPLAN Noties, pages 235�250. ACM Press, 1995.[OT01℄ H. Ossher and P. Tarr. Multi-dimensional separation of onerns and the hyperspae approah. InSoftware Arhitetures and Component Tehnology. Kluwer Aademi Publishers, 2001.[Par72℄ D. Parnas. On the riteria to be used in deomposing systems into modules. Communiations of theACM, 15(12):1053�1058, 1972.[Paw02℄ R. Pawlak. AOSD with JAC - hapter 8 from PhD. thesis. CNAM Paris, Deember 2002.[PDF+℄ R. Pawlak, L. Duhien, G. Florin, F. Legond-Aubry, L. Seinturier, and L. Martelli. JAC: An aspet-based distributed dynami framework. Submitted to British Computer Siene.[PDF+02℄ R. Pawlak, L. Duhien, G. Florin, F. Legond-Aubry, L. Seinturier, and L. Martelli. An UML notationfor aspet-oriented software design. In Workshop on Aspet-Oriented Modeling with UML at AOSD'02,April 2002.[PGA02℄ A. Popovii, T. Gross, and G. Alonso. Dynami weaving for aspet oriented programming. In Proeed-ings of the 1st International Conferene on Aspet-Oriented Software Development (AOSD'02), 2002.[PSDF01a℄ R. Pawlak, L. Seinturier, L. Duhien, and G. Florin. Dynami wrappers: Handling the ompositionissue with JAC. In Proeedings of TOOLS USA 2001. IEEE Computer Soiety Press, July 2001.[PSDF01b℄ R. Pawlak, L. Seinturier, L. Duhien, and G. Florin. JAC: A �exible solution for aspet-orientedprogramming in Java. In Proeedings of Re�etion'01, volume 2192 of Leture Notes in ComputerSiene, pages 1�24. Springer, September 2001.[SK02℄ M. Sihman and S. Katz. A alulus of superimpositions for distributed system. In Proeedings of theInternational Conferene on Aspet-Oriented Software Development (AOSD'02), pages 28�40, 2002.18



[Sun℄ Sun Mirosystems. Enterprise Java Beans.http://www.javasoft.om/produts/ejb.[Tat99℄ M. Tatsubori. An extension mehanism for the Java language. Master of Engineering Disser-tation, Graduate Shool of Engineering, University of Tsukuba, Ibaraki, Japan, February 1999.http://www.sg.is.titeh.a.jp/openjava/.[TOHS99℄ P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-dimensional separationof onerns. In Proeedings of the International Conferene on Software Engineering (ICSE'99), pages107�119, 1999.[TVJ+01℄ E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, Joergensen, and N. Bo. Dynami and seletiveombination of extensions in omponent-based appliations. In Proeedings of ICSE'01, 2001.[Van99℄ Peter Van Roy. On the separation of onerns in distributed programming: Appliation to distributionstruture and fault tolerane in Mozart. World Sienti�, Tohoku University, Sendai, Japan, July 1999.

19


