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Summary. Schwarz waveform relaxation methods have been studied for a wide
range of scalar linear partial differential equations (PDEs) of parabolic and hyper-
bolic type. They are based on a space-time decomposition of the computational
domain and the subdomain iteration uses an overlapping decomposition in space.
There are only few convergence studies for non-linear PDEs.

We analyze in this paper the convergence of Schwarz waveform relaxation applied
to systems of semi-linear reaction-diffusion equations. We show that the algorithm
converges linearly under certain conditions over long time intervals. We illustrate
our results, and further possible convergence behavior, with numerical experiments.

1 Introduction

Schwarz waveform relaxation methods are domain decomposition methods for
evolution problems, which were invented independently in [1, 6], and [7], where
the latter paper only appeared several years later in print. These methods use
a domain decomposition in space, and a subdomain iteration in space-time
to converge to the underlying time dependent solution, see Figure 1 for an
illustration. Schwarz waveform relaxation methods exhibit different conver-
gence behaviors, depending on the underlying PDE and the time interval of
the simulation: for the heat equation, convergence is linear over long times,
see [6], and superlinear over short times, see [7]. For the wave equation, con-
vergence is obtained in a finite number of steps for bounded time intervals,
see [4], where also an optimized variant is described, which was first proposed
in [3], both for hyperbolic and parabolic problems.

The analysis of Schwarz waveform relaxation methods for nonlinear prob-
lems is significantly more difficult: for scalar semilinear reaction diffusion prob-
lems, see [2], and for scalar convection dominated nonlinear conservation laws,
see [5]. The purpose of our paper is to present a first convergence analysis for
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systems of nonlinear PDEs, for the model problem of semilinear reaction dif-
fusion equations.

2 Systems of Semi-linear Reaction Diffusion Equations

To simplify the presentation, we show our results for a system of two equa-
tions in one spatial dimension, but the techniques used in the analysis can be
generalized to systems with more unknowns, and also to higher dimensions.
We consider on a bounded domain {2 C R the system of semi-linear reaction
diffusion equations

ou — Au+ f(u) =0 in 2x(0,7),
u(z,t) = g(z,t) on 02 x (0,7T), (1)
u(z,0) = up(z) in £,

where u = (u1, ug) represents the vector of two unknown concentrations to be
determined, and f(w) = (f1(u1,u2), fo(ui,u2)). A well posedness result for
such systems of semi-linear reaction diffusion equations can be found in [8],
see Corollary 3.3.5, page 56.

Our analysis of the Schwarz waveform relaxation algorithm is based on
comparison principles. Such principles have been studied in various contexts
for system (1), see for example [10], [11], and they often require quite elaborate
proofs for the generality employed. We state here precisely the results we need.

Lemma 1. Let u = (uj)1<j<2 € C*1(2 x [0,00))? be a function for which
each component satisfies the inequality

Oy — Auy + ain (x, t)ur + aze(z, thug >0 in 2 x (0, 00),
ui(z,t) >0 on 02 x (0,00), (2)
u;(z,0) >0 in £2.

If aij(x,t) <0 fori+# j and all (x,t) € £2 x (0,00), then u;(x,t) > 0 for all
(x,t) € 2 % (0,00).

The proof of this theorem by contradiction is a straightforward extension of
the result in the scalar case, see [2]. The strict inequalities in Lemma 1 can
however be relaxed, as we show next.

Lemma 2. Under the same assumptions as in Lemma 1, if

Opu; — Au; + a1 (z,t)ug + age(x, t)us >0 in 2 x (0,00),
wi(z,t) >0  on 912 x (0, 00), (3)
ui(x,0) >0 in £,

then w;(z,t) > 0 for all (x,t) € 2 x (0,00).
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) := e%tu;(z,t), where C

Proof. By performing the change of variables @;(x,t
(3) can be rewritten as

is a constant to be chosen, the first inequality of
Oru; — Aty — Cuy + a;101 + aztia > 0. (4)

Now let & = @ + . If we rewrite (4) in terms of @, and choose the constant
C such that C < a;1 + a2, we can apply Lemma 1, and taking the limit for
e — 0 shows that u;(z,t) > 0.

3 Schwarz Waveform Relaxation Algorithm
We consider the semi-linear reaction diffusion system (1) in the domain 2 =

(0,L). We decompose the domain into two overlapping subdomains {2; =
(0,8L) and 29 = (aL, L), o < (3, as shown in Figure 1. We denote by g1 (t) :=

21N 2

0 al BL L
.Ql 92

Fig. 1. Space-time domain decomposition.

g(0,t) and by g2(t) := g(L,t). The classical Schwarz waveform relaxation
algorithm constructs at each iteration n approximate solutions v™, w" on
subdomains §2;, ¢ = 1,2, by solving the equations

oot — Av" 4 f(om ) =0 in 21 x(0,7),
v"H(0,1) = g4 (t) n (0,7),
v (BL,t) = w"(BL,t) on (0,T),
" (2,0) = ug() in 2, .
Ow" T — Aw™ ! 4 f(w" ) =0 in 25 x (0,7), ®)
w"(aL,t) = v"(aL,t) on (0,7T),
W (L) =gyt on (0.7),
w1 (z2,0) = up(x) in $2.

In order to analyze the convergence of the Schwarz waveform relaxation algo-
rithm (5) to the solution w of (1), we denote the errors in subdomain 24 by
d" :=u —v"™ and in {2 by e€" := u — w". The error equations are
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od™ — Ad™ 4 f(u) — f™) =0 in £ x (0,7),
dn+1(ﬂL t) —e (ﬂL t) on (O,T), (6)
et — Aentl 4 f(u) — f(w "+1) = 0 in {25 x (0,7),
"+1(aL t) = (OZL,t) on (OaT)7

where the initial and boundary conditions on the exterior boundaries are zero,
since the error vanishes there. Using a Taylor expansion with remainder term
in Lagrange form, we obtain for i = 1,2

Oed Tt — AT 4 01 fi(€ip, u2)dy T + 32fi(v?+17§i 2)dy ™ =0in 2, x (0,T),
Qe — Aef T 4 00 fil€] 1 un)et T + Do fi(wi T €] L)ep T = 0/in 25 x (0,7,

a linear system with variable coefficients, depending on the Jacobian of the
non-linearity.

Our convergence analysis is based on upper solutions for the errors, which
are constant in time.

Theorem 1 (Linear Convergence Estimate). Assume that 01 f1 > 0 and
Oafa > 0, and that there exists a constant a satisfying 0 < a < (w/L)?, such
that —a < 01 fa < 0 and —a < O2f1 < 0. Then the errors in the Schwarz
waveform relazation algorithm (5) satisfy

sup [|d*" " (2, )| oo < C17*(|€*(BL, -)|oo, (7)
TE
< 1€ (@, ) oo < Cov*[|d°(aL, -)]| o, (8)
€l

where v in (0,1) is

_ (sin(y/aaL)\ (sin(y/a(l - 3)L)
- (mwaﬁm) (sinwa(l = a>L>) ’
and the constants C 2 are given by
B sin(y/ax) B sin(v/a(L — z))
A T L Al -l
Proof. Let M := max{||e}(BL,)||co, ||€5(BL,")||co} and define the function

d"t1 .= M sin(y/azx)/ sin(y/aBL), which is the unique solution of the steady
state problem

CAZT —adt =0, with d*TN(0) =0, d"F(BL) =M

In order to show that d"*! is a supersolution of the two errors dy™ and dytt,

we consider the differences dj ™! := d"*! — d?*! and djtt = d"H — dpt?,

which satisfy in 21 the system of equations

Oyt — AdYTH — ad™ = Oy fi(6ra, u2)di T = Do fr (07 €)= 0,
Opdy ™ — AdyT — ad™™ = 01 fa(bo, ua)dy T — Do fo (v Ean)ds T = 0.
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Adding and subtracting 0y f1(€1,1, u2)d™t! and Oy fi(v7Hh, & 2)d™ ! in the
first equation, and 0y fa(&a1,u2)d" ! and O f2(v]T, €2.9)d™ ! in the second
equation, we obtain
Opdy ™ — AdYT = =0y f1(En1,u2)dy T — Oa fr (v € 2)dy
+0 f1 (&1, u2)d™ T+ (a4 Do fr (V)T €1 2))d T,
Fpdytt — Adytt = — 01 fo(Ea1, un)di T — Do fo(ul Y €0 0)dp T
+(a+ 01 f2(E2,1,u2))d" T + Oa fo (v, &3 0)d" T
Under the assumptions of the theorem, and using the fact that dntl s strictly
positive in the interior of subdomain (27, we obtain the system of inequalities
Opditt — AP 4 01 fr(&r 1, u2)di T+ o i (] &1 0)dy T > 0,
Opdy ™t — Ad5™ + 01 (€21, u2)di T 4 By fa (0] H Ea)dy > 0.
Since 82f1(’0?+1, &1,2) <0 and 9 f2(€2,1, u2) < 0, we can now apply Lemma 2
to conclude that df ™' = d"*' —d}*" > 0 and di ' = d" ! —dit! > 0 in 0.
Using a similar argument for the sums, we obtain that also d"** + d?** >0

and d"*t! + d2*' > 0, which implies by the positivity of d"*! that their
modulus is bounded, and we have for i = 1,2

41, 0)] < @ = s (1 (5L, s 5O, e} Sr L

Using a similar argument on subdomain {2, we obtain for ¢ = 1,2

sin(v/a(L — )
sin(v/a(l —a)L)’
Since the bounds are uniform in ¢, we obtain over a double step

ld" (L, Yoo < VA" HaL,)loo,  ll€™ (AL, )lloo < Alle™ H(BL ) oc
and by induction (7) and (8). The fact that v < 1 has been shown already in

[2].

lef ! (@, )] < max {||d} (aL,-)lloc, [1d5 (aL, )l }

4 Numerical Results

We present numerical results for three different semilinear systems: the
Belousov-Zhabotinsky equations, the FitzHugh-Nagumo equations, and the
Lotka-Volterra system with migration. All numerical experiments are per-
formed in the domain 2 = (0,1) and on the time interval (0,T), with
T = 127. We discretize the equations with a standard three point finite dif-
ference method in space (with mesh size Az = 2—10), and a semi-implicit Euler
time-discretization scheme (with time step At = {5), where implicit integra-
tion is used for the diffusive term and explicit integration for the reaction
term. The space-time domain {2 is decomposed into two overlapping domains

(with overlap size 6 = 2Ax) and we use Dirichlet conditions at the interfaces.
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4.1 Belousov-Zhabotinsky Equations

The Belousov-Zhabotinsky equations model non-equilibrium thermodynam-
ics, resulting in the establishment of a nonlinear chemical oscillator, see [9],
page 322 for details. They are given by

Opuy — L0,u1 — ur(1 —ug —rug) =0, )
Oz — 5022V + bugug = 0.

The hypotheses of Theorem 1 are satisfied for this system after performing
the change of variables 4; = 1 — uq, s = w9, under the condition that the
components u; and us remain positive. This condition holds, provided that
the initial conditions satisfy u1 (z,0) = u1,0(x) > 0 and uz(x,0) = ugo(z) > 0.
Figure 2 shows the linear convergence predicted by the convergence bound of
Theorem 1.

errorin ut
error in u2

0 5 10 15 20 25 30 35
iterations

Fig. 2. Convergence history for the Belousov-Zhabotinsky equations

4.2 FitzHugh-Nagumo Equations
The system of reaction diffusion equations

Opur — $0ppur — f(u1) +ug =0,
Orun — §0x;cu2 —up +ug =0,

with f(u1) = uy —u$ is called the FitzHugh-Nagumo equations, and describes
how an action potential travels through a nerve. It is the prototype of an
excitable system (e.g., a neuron) or an activator-inhibitor system: close to the
ground state, one component stimulates the production of both components,
while the other one inhibits their growth, see [9], page 161 for details. This
system does not satisfy the hypotheses of Theorem 1, but nevertheless we
observe linear convergence, as shown in Figure 3.
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errorin ut
error in u2

107 F |

o \ |

10°L \ E

107 I I I I I
0 5 10 15 20 25 30
iterations

Fig. 3. Convergence history for the FitzHugh-Nagumo equations

4.3 Lotka-Volterra Equations
The Lotka-Volterra equations with migration term are

Our — = Oppur —ur (1 —ug) =0,
Orug — %am-w + uz(1 —uy) =0,

and they describe a biological predator-prey system, where both predator and
prey are migrating randomly. This system does not satisfy the hypotheses of
Theorem 1, and now we observe quite a different convergence behavior, as
shown in Figure 4.

~ error in ul

— — error in u2
10 \ |
VAN

\
10°E \ 3
10°F \ 3
10’7 Il Il Il Il

I I I I I
0 20 40 60 80 100 120 140 160 180 200
iterations

Fig. 4. Convergence history for the Lotka-Volterra equations with migration
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5 Conclusions

Schwarz waveform relaxation algorithms often exhibit superlinear conver-
gence, as observed in the last example, see for example [2]. A corresponding
convergence analysis requires however quite different techniques from the ones
we have presented here, and will appear in an upcoming paper.
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