
HAL Id: hal-00493426
https://hal.archives-ouvertes.fr/hal-00493426

Submitted on 18 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Combined Semantic and Motion Capture Database
for Real-Time Sign Language Synthesis

Charly Awad, Nicolas Courty, Kyle Duarte, Thibaut Le Naour, Sylvie Gibet

To cite this version:
Charly Awad, Nicolas Courty, Kyle Duarte, Thibaut Le Naour, Sylvie Gibet. A Combined Semantic
and Motion Capture Database for Real-Time Sign Language Synthesis. 9th Int. Conference on
Intelligent Virtual Agent (IVA 2009), Sep 2009, Amsterdam, Netherlands. pp.432-438. �hal-00493426�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50077692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00493426
https://hal.archives-ouvertes.fr

A Combined Semantic and Motion Capture

Database for Real-Time Sign Language Synthesis

Charly Awad1, Nicolas Courty1, Kyle Duarte1, Thibaut Le Naour1 and Sylvie
Gibet1,2

1 Université de Bretagne Sud, Laboratoire VALORIA, Bâtiment Yves Coppens,
F-56017 Vannes, FRANCE

2 IRISA, Campus de Beaulieu, F-35042 Rennes, FRANCE

Abstract. Over the past decade, many fields of discovery have begun
to use motion capture data, leading to an exponential growth in the size
of motion databases. Querying, indexing and retrieving motion capture
data has thus become a crucial problem for the accessibility and usability
of such databases. Our aim is to make this approach feasible for virtual
agents signing in French Sign Language, taking into account the semantic
information implicitly contained in sign language data. We propose a new
methodology for accessing our database, by simultaneously using both a
semantic and a captured-motion database, with different ways of index-
ing the two database parts. This approach is used to effectively retrieve
stored motions for the purposes of producing real-time sign language an-
imations. The complete process and its in-use efficiency are described,
from querying motion in the semantic database to computing transitory
segments between signs, and producing animations of a realistic virtual
character.

1 Introduction

Designing virtual humanoids that communicate in sign languages is a major
challenge within the virtual agent animation community. The linguistic elements
of sign languages (i.e., signs) differ sensibly from other non-linguistic gestures,
as they are by essence multimodal. Each modality of a single sign, those being
the gestures of two hands, and the signer’s facial expressions and gaze direction,
conveys meaningful information from the phonological level to the discourse
level. Moreover, signs exhibit a highly spatial and temporal variability that can
serve as syntactic modifiers of aspect, participants, etc.

In the past, data-driven computer animation methods have tried to handle
signs’ variability by using large databases of human motions to efficiently pro-
duce realistic real-time animations. These databases have been challenging to
construct, as they must consider both semantic and motion-captured informa-
tion as well as be flexible enough to adapt existing data to newly synthesized
scenarios. Given sign languages’ spatial and temporal morphemic and syntactic
structures, grammatically inflecting signs may significantly modify the geomet-
rical and timing aspects of the stored base motions. What’s more, by effecting

these geometrical or timing modifications, the sign does not necessarily preserve
significant sign phases, which may become deleted or collapsed. These consid-
erations highlight the conflict between two modeling perspectives: the semantic
perspective for linguistics purposes, and the signal perspective for animation
purposes.

In this article, we will propose a new database-driven animation technique
which takes advantage of both linguistic and signal modeling perspectives to
synthesize novel sign sequences. We describe the structure of our database as
containing both raw information in the form of motion files, and semantic infor-
mation in the form of segmented and annotated data. In our database queries,
we search both sets of information to arrive at signal selection and extraction
through semantic query refinement. The selected motion is then passed to the
animation engine to provide a real-time animation stream, taking into effect the
captured sign data, as well as coarticulation concerns during transition phases.

The rest of this paper is organized as follows: in section 2, we briefly discuss
related work, and then continue with the mainstay of this paper; in section 3, we
describe our methods for modeling and annotating our French Sign Language
(LSF) data; in section 4 we present our database architecture; section 5 describes
the animation process; experiments and results are presented in section 6 for a
subset of LSF sequences; and lastly we conclude and give future perspectives for
this type of work.

2 Related Work

Previous work related to virtual intelligent agents is largely concerned with mod-
eling communicative gestures and sign language signs, with high level specifica-
tion languages for communicating agents, and with the data-driven animation
of virtual characters.

Several gesture taxonomies have already been proposed in [1] and [2], some
of which rely on the identification of specific phases that appear in co-verbal ges-
tures and sign language signs [3]. Recent studies dedicated to expressive gesture
rely on the segmentation and annotation of gestures to characterize the spatial
structure of a sign sequence, and on transcribing and modeling gestures with the
goal of later re-synthesis [4].

Studies on sign languages formed early description/transcription systems,
such as those in [5] and [6]. More recently, at the intersection of linguistics
and computation, gestures have been described with methods ranging from for-
malized scripts to a dedicated gestural language. In the JACK framework, the
NPAR language has defined user commands for controlling virtual agents using
natural-like language [7]. Further, the BEAT system [8], as one of the first sys-
tems to describe the desired behaviors of virtual agents, uses textual input to
build linguistic features of gestures to be generated and then synchronized with
speech. Gibet et al. [9] propose a gesture synthesis system based on a quanti-
fied description of the space around the signer; using the HamNoSys [6] sign
language notation system as a base, the eSign project has further designed a

motion specification language called SigML [10]. Other XML-based description
languages have been developed to describe various multimodal behaviors, some
of these languages are dedicated to conversational agents behaviors, as for ex-
ample MURML [11], or describe style variations in gesturing and speech [12],
or expressive gestures [13]. More recently, a unified framework, containing sev-
eral abstraction levels has been defined and has led to the XML-based language
called BML [14], which interprets a planned multimodal behavior into a realized
behavior, and may integrate different planning and control systems.

Passing from the specification of gestures to their generation has given rise to
a few works. Largely, they desire to translate a gestural description, expressed in
any of the above-mentioned formalisms, into a sequence of gestural commands
that can be directly interpreted by a real-time animation engine. Most of these
works concern pure synthesis methods, for instance by computing postures from
specification of goals in the 3D-space, using inverse kinematics techniques, such
as in [9], [15], [16]. Another approach uses annotated videos of human behaviors
to synchronize speech and gestures and a statistical model to extract specific
gestural profiles; from a textual input, a generation process then produces a
gestural script which is interpreted by a motion simulation engine [17].

Alternatively, data-driven animation methods can be substituted for these
pure synthesis methods. Most of the previous work on pure synthesis methods
propose edition and composition techniques, with an emphasis of the re-use of
motion chunks and adaptation of captured motion for creating new sequences
of motion. Very few approaches deal with both motion-captured data and their
implicit semantic content, and nearly nothing concerns communicative gestures.

Arikan et al. use, in [18], a semi-automatic annotation algorithm divided
into two parts: the first part consisting of a manual annotation, and the second
using their Support Vector Machine. In [19], Chao et al. present a different
annotation approach for Tai Chi Chuan movements, which consists of building
a Motion Index Table composed of Motion Clips and defining a Basic Motion
Text as a set of sentences. Barbič et al. in [20] segment a motion sequence into
distinct behaviors (such as walking, running, etc.) based only on the information
available within this sequence. In [21], Morales stores motion captured data after
converting it to an XML format. Chung et al. apply the same concept in [22]
using a standard mark-up language, the Motion Capture Mark-up Language.

In this paper we propose a new database approach to generate a set of French
Sign Language signs. In order to optimize sign-component access, we index our
data set by signs’ semantic structures, as well as by the spatial and kinematic
features of the raw motion-captured data.

3 Sign Language Modeling

3.1 Spatio-temporal dimensions of sign languages

As sign languages are by nature spatial languages, forming sign strings requires a
signer to understand a set of highly spatial and temporal grammatical rules and

inflection processes unique to a sign language. We can separate plain signs that
do not use space semantically (like the American Sign Language sign HAVE
which does not make any notable use of space other than which is necessary
for any sign) from signs that incorporate depiction. This second group of signs
includes the strongly iconic signs known as depicting verbs (or classifiers), which
mimic spatial movements, as well as size-and-shape specifiers, which concern
static spatial descriptions.

Moreover, indicating signs like indicating verbs and deictic expressions re-
quire the signer to interface with targets in the signing space by effecting pointing-
like movements towards these targets. Indicating verbs include such signs as the
LSF sign INVITER, in which the hand moves from the area around the invited
party toward the entity who did the inviting [23]. Depending on the intended
subject and object, the initial and final placements of the hand vary greatly
within the signing space. Deixis, such as pronouns, locatives, and other indexi-
cal signs are often formed with a pointed index finger moving toward a specific
referent, though other hand configurations have been reported in sign languages,
such as American Sign Language [24].

3.2 Sign Segmentation

The signs of any sign language can be decomposed into the components of hand
configuration, placement, orientation, facial expression, gaze, and others [25]. For
the purposes of synthesis, we can consider each of these components to constitute
a separate track (or grouping of tracks) that control the movement of a part of
the body during a sign and its surrounding sign stream. Further, we can divide
these components by timing units that are present within the sign and between
signs. For the purposes of this paper, we consider the division between linguistic
timing segments, i.e., those that constitute a sign from a sign language, and non-
linguistic, transitional segments, i.e., those that occur between signs and offer
no grammaticalized semantic information; we identify the linguistic segments as
strokes, and the non-linguistic segments as transitions.

Naturally, when constructing sign strings from stored data, transitions must
be created dynamically, as they rely heavily on the phonology of both the preced-
ing and following sign for their path and timing values, among others. Though
these segments are non-linguistic and heavily dependent on their linguistic coun-
terparts, this is not to say that they hold a lesser significance in the sign stream.
To the contrary, transitions in sign languages are active parts of the discourse,
differing greatly from the easily hidden silence that spoken language discourse
uses as its transition. As sign language transitions are just as visible as the signs
they connect, they must importantly be fluid movements that allow the sign
stream to continue intelligibly.

Therein we find the difficulty of our present study - that only a very small part
of the transition between two captured signs, if any of it, can ever be used in later
synthesis sessions, since each sign will be taken out of its recorded context, and
the context-dependent transition will therefore be rendered useless. For example,
in the situation that we replace a single sign produced in front of the signer’s

chest with another sign produced near the signer’s head, the existing transition
towards the chest area of the signer cannot be used, and must be dynamically
replaced by a new transition that moves towards the head.

In desiring to separate the linguistic parts of our captured data from the non-
linguistic ones, we follow the phase representation of Kendon, and the model
of Kita, and define a phrase as a sequence of signs, each of which contains a
preparation, a stroke and a retraction. This can be represented as

Unity = Phrase{Phrase} (1)

Phrase = [Preparation]{Stroke}[Retraction] (2)

where {} is an operator of repetition, with zero or more than one occurrence,
and [] is an optional element.

3.3 Annotation Tools

The annotation process includes identifying building-block motion units follow-
ing the above phrase structure. Within these motion segments, it is possible to
describe the motion of the whole body as a single unit, or separate the motion
into multiple channels, each describing a specific part of the body (i.e., the upper
arm, wrist, hand, etc.), as has been done in both the linguistics [26] and com-
puter science realms [27]. In any case, the segmentation process divides pertinent
phases with time stamps, either manually or automatically.

In our work, we have manually annotated two LSF video files with corre-
sponding motion capture data. Following the above description of Kendon and
Kita’s analyses of motion parts, we have separated each from its respective prepa-
ration and retraction strokes within the data. In this case, our work was carried
out on an XML annotation system developed for the linguist, ELAN[28], though
an animation perspective-driven program, ANVIL[29], also works for this task.

4 Database Architecture

An overview of our system, shown in Figure 1, illustrates the main methodology
of the approach. In order to accelerate the motion retrieval process, we propose a
two-level indexation process of the data: the first one uses the semantic structure
of the data, and the second one is based on the different ways of accessing the
raw motion data for synthesis purposes. Once motion is retrieved and selected,
it goes into an animation process which is run in real time.

4.1 Indexation of the data

In this section, we detail the representation of motion data in the databases.
The use of two different databases (a raw database and a semantic database) is
justified by the fact that the two types of data (non-segmented raw data and
segmented semantic data) are handled differently.

Fig. 1. Overview of the architecture

Semantic Indexation After semantically annotating our video and motion-
capture files, their annotation values are stored in a semantic database in one
of two ways: to optimize document load time, annotation files can be stored
sequentially in the database without modifications, while storing each file as an
individual node in the database will render a faster query time. The selection of
storage methods is dependent on the goals of the test, but given the small size
of our semantic database, we chose the first method.

Raw Data Indexation Motions are traditionally stored on the hard drive with
various formats (.bvh, .fbx, .asf/amc, etc.), and interpreting these files amounts
to building an internal representation of the motion in CPU memory. In our
system, this internal representation is a collection of poses, with each pose be-
ing composed of a root position and an ordered vector of quaternions (joint
rotations). This representation is globally consistent, provided that all the poses
share a common hierarchical structure which is commonly named “bind pose”.
The time needed to read a motion file into this internal representation depends
on the complexity of the parser and the amount of geometrical computation (for
instance, cumulation of local transformations, switching from Euler angles to
quaternions, etc.). This time is usually far from being negligible, and prevents
dynamic loads for interactive applications. Traditional databases function with
a set of paired-value data: one key, preferably unique, is associated to the useful
data, i.e., the motion. The simplest way to then proceed is to associate the whole
motion file with a unique key which can be chosen as the name of the original
data file. The whole sequence would then be handled by the database manager,
and stored on the hard drive. This approach assumes that when retrieving the
motion, all the data will be reconstructed in the CPU memory. However, in the

context of a real-time animation controller, where small pieces of the motion
are dynamically combined to achieve a desired goal, this approach is no longer
efficient. In our system, such files are loaded and interpreted a single time, and
stored as a sequence of bits in our database, which is designed to handle several
access modes to the data. The following modes determine particular fragmenta-
tion approaches that are suited to particular types of queries:

– FullAccess - one single motion is associated with one unique key. The first
part of the value is the bind pose, followed by a sequence of poses formed by
a root position and one quaternion per joint.

– ByFrame:p - the whole sequence of frames is divided into packets of p frames;

one motion will produce
[

n
p

]

entries in the database if n is the total number

of frames in the motion.
– ByJoint - the whole motion is divided into m packets, each one corresponding

to a given joint of the bind pose. The first joint usually also contains the root
position, though this may change if several joints also have some translational
degrees of freedom.

– ByJointandFrame:p - the whole motion is decomposed into packets that ac-
count for the motion of one joint over a sequence of p frames. One motion

will produce m∗
[

n
p

]

entries in the database if n is the total number of frames

and m the number of joints in the motion.

Fragmenting motions in the database is interesting because only a small portion
of the motion, that containing the query results, is reconstructed in the memory.
However, this operation has a cost because it can multiply the number of en-
tries in the database, thus increasing the search time and the index size. In our
framework, we allow how data is stored in the database to be modified online,
effecting the best access mode for a given application. Hence, if the application is
likely to access only specific subparts of the skeleton (like the hand for instance)
over longer motions, the ByJoint access mode is optimal, and would be utilized.

Fig. 2. Different access modes to the database

4.2 Motion Retrieval from Semantic Query and Animation

The process of retrieving data from the database is divided into two parts. The
first part of the process consists of querying the semantic database, allowing us
to extract information contained in the segmented files. Retrieving data from the
semantic database is achieved by specifying one-condition or multiple-condition
queries, called PhaseQuery. The query results are expressed as sequences of
segments, which each segment a name as well as starting and ending time stamps.
A simple one-condition query often returns a large number of motion candidates,
whereas a multiple-condition query tends to return fewer candidates. In the
second part of the data-retrieval process, the query results are interpreted so
that each segment triggers access to the raw database, producing the segment’s
corresponding motion frames.

Concerning the time access to the whole database, we expect that there is
a compromise between the time-processing of the semantic data and the time-
processing of the raw data, with the complexity of the request being directly
linked to the number of potential results. For example, in our real-time motion
synthesis context, our goal is to concatenate signs that are each related to a
lexical unit. As the signs are composed of a sequence of segments as presented
above (Preparation, Stroke, Retraction) we attempt to preserve the meaningful
segments (Stroke) and to create the transitions between these strokes by inter-
polation.

During the selection process, isolated signs are retrieved from the whole
database by XML queries. The selection of the sign from among several can-
didates is expedited thanks to pre-processed information which is stored in the
database. Largely, the pre-processing extracts temporal and spatial information
from the transitory segments (i.e., Cartesian positions and directions at the
beginning and end of the different segments, as well as their duration and kine-
matics profiles), allowing us to consider the coarticulation effects of a natural
sign stream. In addition, statistical information about the mean values and dis-
tribution of these transitions is stored in the database for the purposes of timing
invariant aspects of the transition segments, such as their mean duration.

For each pair of selected signs, a concatenation algorithm utilizes the Retrac-

tion phase Ri of the first sign Signi and the Preparation phase Pj of the second
sign Signj . This algorithm (see below) extracts the first mi frames of the phase
Ri and the last mj frames of the phase Pj , so that the transition segment can be
interpolated between the p last frames of the first sign and the p first frames of
the second sign. The different parameters of the algorithm are chosen according
to the pre-processed information discussed above, i.e., statistical and local data
of the segments.

5 Experiments and Results

5.1 Data Acquisition and Analysis

The motion data with which we conducted this study consists of 44 minutes of
motion-captured LSF signs produced by a single deaf signer. Based on a unique

Algorithm 1 Concatenation Algorithm between Signi and Signj

1: (Pi, Si, Ri)← ProcessQuery(Signi)
2: (Pj , Sj , Rj)← ProcessQuery(Signj)
3: R′

i[F1 : Fmi
]← ExtractMotion(Ri, mi)

4: P ′

j [Fn−mj
: Fn]← ExtractMotion(Pj , mj)

5: FirstMotion← InsertMotion(Pi, Si)
6: TransitoryMotion← Interpolate(R′

i[Fmi−p+1 : mi], P
′

j [F1 : Fp])
7: SecondMotion← InsertMotion(Sj , Rj)

motion-capture configuration, two synchronized data streams were computed
from the raw captured data: a video stream as well as a three-dimensional ani-
mated skeleton stored in the BVH motion format. The video stream was used for
manual annotation of the signing sequences, while the three-dimensional BVH
data served as a base for numerical computation and comparison of the motions.

Fig. 3. Frames captures of the original and the first replacement scenario. Upper row:
the end of the sign LE-TEMPS-PREVU, the beginning and the end of the sign BRE-
TAGNE, and the beginning of the sign MATIN. Lower row: the end of the sign LE-
TEMPS-PREVU, the beginning and the end of the sign VANNES, and the beginning
of the sign MATIN.

Lexically, the sequences are mainly composed of a succession of linguistic
units, read LSF signs. These sequences depict weather forecast presentations
and a recitation of different cities in France. An example gloss sequence is give
below:

.../ATTENTION/AUJOURD’HUI/SIX JUILLET/LE-TEMPS-PREVU/
“BRETAGNE”/MATIN/NUAGES/APRES-MIDI/PLUIE/“DEMAIN”/
SOLEIL-BRILLER/CHAUD-SEC-FERA/NAGER/CE-SERA-LE-MOMENT/
“VENDREDI”/NUAGES/NUIT/EN-MER/“MATIN”/BROUILLARD/...

Two scenarios for processing were developed for the purposes of this study.
The first replaces the quoted words above with the city signs VANNES, MAR-

SEILLE, RENNES, and LE MANS, respectively. These replacements were cho-
sen especially to be challenging, as they require the right and left hands to
perform very different actions before and after the replaced signs. Our second
scenario switches weather predictions around within the original production, so
that the prediction for “today” becomes the prediction for “Friday” and vice
versa. Again, this manipulation requires that the two hands take different posi-
tions than in the original monologue, such as going from rest to action.

As part of our attempt to make novel transitions between recalled signs
appear fluid and natural, we performed a statistical analysis of the captured
transitions to develop standards for novel transition animation. We analyzed the
duration, displacement, and average velocity of the signer’s hands over adjacent
retraction and preparation segments, as well as over the combined transition.
Interestingly, the length of each transition (in frames or milliseconds) remained
rather constant across our data capture. The graphs below show the length of
each transition in our two data sequences, broken into the length of its respective
retraction and preparation segments.

0

250

500

750

1000

1250

1500

L
e
n
g

th
 (fra

m
e
s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Transition Number

R length (frames) P length (frames)

(a)

0

250

500

750

1000

1250

1500

1750

2000

L
e
n

g
th

 (fra
m

e
s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Transition Number

R length (frames) P length (frames)

(b)

Fig. 4. (a) Météo sequence transition lengths, (b) Villes sequence transition lengths.

In the background of each graph, the heavy black line indicates the mean
value of the length of the transition, and the gray band represents one standard
deviation on either side of the mean. Comparing the two graphs to each other,
we find similar standard deviations (224 for the Météo sequence versus 289 for
the Villes sequence) at differing means (735 for the Météo sequence versus 1064
for the Villes sequence). We can conjecture that the Villes sequence had longer
transitions because it was less like a natural sign sequence than the Météo se-
quence, which had a more realistic syntactic structure; the Villes sequence was
formed solely of town names produced in sequence. We have thus assumed that
the lengths of transitions in the course of natural conversations would follow
the structure of transitions found in our Météo data, having a mean length of

approximately 735 frames distributed naturally around a standard deviation of
224 frames.

5.2 Data Annotation

Annotating our video-captured data was performed with the help of the ELAN
annotation tool [28]. Using a nested tier structure, ELAN allows annotations
to be entered as independent of one another, or as dependent on annotations
in a parent tier. For our work, it was most important to ensure that named
signs were divided into three associated segments that had a combined duration
equivalent to that of their associated sign, and that were aligned exactly with
that sign. Thus, a parent-child tier relationship was chosen, with sign names
being represented on the parent tier, and Preparation, Stroke, and Retraction
phases represented for each sign on a child tier.

The screen shot below shows the ELAN interface during the annotation pro-
cess. At the top left, a video of an avatar recreation of the signer is used for
visual reference of the signs’ Preparation, Stroke, and Retraction segments. At
the top right, positional data for the hand on three axes (X, Y, and Z) is shown
synched with the video data and the annotations, which are entered on the tiers
along the bottom on the image. The highlighted portion of the annotation tier
and the positional data represents the Stroke phase of the sign VANNES.

Fig. 5. A screen shot of the ELAN annotation tool. This annotation file contains three
tiers of annotations (bottom) and references a video file for viewing captured signs (top
left), as well as motion data which is synchronized with the semantic data using an
ELAN sub-tool for later retrieval from the database.

5.3 Motion retrieval and Animation

We measured the computational time needed to retrieve and animate motions in
order to analyze the efficiency of the proposed architecture; specifically, we were
interested in the time required to query the semantic database, the time required
to retrieve motions from the raw database, the time required to concatenate the
retrieved motions, and the overall time of access. We tested our architecture
on the two scenarios explained in section 5.1 and computed the time needed to
animate these scenarios. The results are detailed in Table 1, which shows that
the time needed to retrieve motions from the semantic database and the raw
database is much smaller than the time needed to concatenate the retrieved mo-
tions. It is important to note that the concatenation process consists of aligning
two motions chunks (in position and orientation), concatenating these chunks,
and finally generating a new bigger chunk. Thus, the concatenation time is higher
than the retrieval time and depends directly on the number of chunks to be con-
catenated, as well as each’s size in frames; in our tests, Scenario1 required 8
concatenations and Scenario2 required 3.

Table 1. Querying the Databases

Semantic Number Motion Concatenation Total
Query(ms) of Frames Retrieval(ms) Time(ms) Time(ms)

Scenario 1 557 7050 1786 13856 20492
Scenario 2 144 6094 1418 5337 8733

The experiments were run on a Macbook Pro dual-core 2.4 GHz running
Mac OSX 10.5.6 and equipped with 4 GB of memory. As for the choice of the
databases, we tested two different APIs: Oracle Berkeley DB and Tokyo Cabi-
net3; both engines led to approximately similar results. In all our tests a hash
map was used as an index structure to recover the data.

6 Conclusion

The work described here stems from the problem confronted when generat-
ing sign language signs by retrieving motions in real-time from motion capture
databases. Our proposed new methodology, simultaneously using a semantic and
a raw-motion database, takes into account the way motion data is indexed in
these two databases.

We have proposed an overall architecture that combines different access
methods for the databases, from querying the semantic and raw databases, to
the animation process. Our XML description of the sign language utterances
relies on an annotation process performed on a video stream. Then, sign lan-
guage signs were synthesized by retrieving motions from semantic queries of the

3 http://tokyocabinet.sourceforge.net

databases. The retrieved motions were then concatenated at the intersection of
the transition segments, thus preserving the meaningful segments of the signs and
providing a co-articulation processing of the sequence of signs. The experimen-
tal results were quantitatively evaluated for replacement scenarios which require
that the transitions between signs be able to adapt to high spatial variations;
they show that our proposed architecture is suitable for real-time applications.
Moreover, we show that the efficiency of the synthesis can be increased if data
is pre-processed.

In future work, we intend to generalize this approach to larger databases
of French Sign Language signs and gestures containing both semantic and raw
data. We also want to investigate other indexing techniques, and to implement
different motion retrieval techniques. This will allow us to produce more complex
real-time animations within different contexts and story-telling scenarios, and to
evaluate these animations from a quantitative as well as from a qualitative point
of view.

References

1. A. Kendon, Tools, Language and Cognition, chapter Human gesture, pp. 43–62,
Cambridge University Press, 1993.

2. D. McNeill, Hand and Mind - What Gestures Reveal about Thought, The Uni-
versity of Chicago Press, Chicago, IL, 1992.

3. S. Kita, I. van Gijn, and H. van der Hulst, Movement Phase in Signs and
Co-Speech Gestures, and Their Transcriptions by Human Coders, in Proceedings
of the International Gesture Workshop on Gesture and Sign Language in Human-
Computer Interaction, pp. 23–35, London, UK, 1998, Springer-Verlag.

4. M. Kipp, M. Neff, K. H. Kipp, and I. Albrecht4, Toward natural gesture
synthesis: Evaluating gesture units in a data-driven approach, in Intelligent Virtual
Agents (IVA’07), pp. 15–28, 2007.

5. W. C. Stokoe, Semiotics and Human Sign Language, Walter de Gruyter Inc.,
1972.

6. S. Prillwitz, R. Leven, H. Zienert, T. Hanke, and J. Henning, Hamburg No-
tation System for Sign Languages - An Introductory Guide, University of Hamburg
Press, 1989.

7. N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J. Shi, and
W. Schuler, A parameterized action representation for virtual human agents,
in Embodied Conversational Agents, pp. 256–284, MIT Press, 2000.

8. J. Cassell, J. Sullivan, S. Prevost, and E. F. Churchill, Embodied Conver-
sational Agents, The MIT Press, 2000.

9. S. Gibet, T. Lebourque, and P. Marteau, Journal of Visual Languages and
Computing 12, 657 (2001).

10. R. Elliott, J. Glauert, V. Jennings, and J. Kennaway, An Overview of
the SiGML Notation and SiGML Signing Software System, in Workshop on the
Representation and Processing of Signed Languages, 4th Int’l Conf. on Language
Resources and Evaluation, 2004.

11. A. Kranstedt, S. Kopp, and I. Wachsmuth, MURML: A Multimodal Utterance
Representation Markup Language for Conversational Agents, in Proceedings of
the AAMAS02 Workshop on Embodied Conversational Agents - let’s specify and
evaluate them, Bologna, Italy, 2002.

12. H. Noot and Z. Ruttkay, Int. J. Hum.-Comput. Stud. 62, 211 (2005).
13. B. Hartmann, M. Mancini, and C. Pelachaud2, Lecture Notes in Computer

Science : Gesture in Human-Computer Interaction and Simulation 3881/2006,
188 (2006).

14. H. Vilhalmsson, N. Cantelmo, J. Cassell, N. Chafai, M. Kipp, S. Kopp,
M. Mancini, S. Marsella, A. Marshall, C. Pelachaud, Z. Ruttkay,
K. Thorisson, H. van Welbergen, and R. van der Werf, The Behavior
Markup Language: Recent Developments and Challenges, in IVA 2007, 2007.

15. D. Tolani, A. Goswami, and N. I. Badler, Graphical Models 62, 353 (2000).
16. S. Kopp and I. Wachsmuth, Journal Computer Animation and Virtual Worlds

15(1), 39 (2004).
17. M. Neff, M. Kipp, and I. Albrecht, ACM Transactions on Graphics 27(1),

article 5, 233 (2008).
18. O. Arikan, D. A. Forsyth, and J. F. O’brien, ACM Transactions on Graphics

22, 402 (2003).
19. S.-P. Chao, C.-Y. Chiu, S.-N. Yang, and T.-G. Lin, Comput. Animat. Virtual

Worlds 15, 259 (2004).
20. J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S.

Pollard, Segmenting motion capture data into distinct behaviors, in GI ’04: Pro-
ceedings of Graphics Interface 2004, pp. 185–94, Ontario, Canada, 2004, Canadian
Human-Computer Communications Society.

21. C. R. Morales, Development of an XML Web Based Motion Capture Data
Warehousing and Translation System for Collaborative Animation Projects, in
WSCG ’01: International Conference in Central Europe on Computer Graphics
and Visualization, pp. 168–173, 2001.

22. H.-S. Chung and Y. Lee, Computer Standards and Interfaces 26, 113 (2004).
23. La Langue des Signes, IVT.
24. V. Smith, Unpublished paper on deictic expressions in ASL, 2008.
25. S. K. Liddell and R. E. Johnson, Sign Language Studies 64, 195 (1989).
26. S. K. Liddell and R. E. Johnson, Sign Language Phonetics: Archiecture and

Description, Forthcoming, a.
27. A. Heloir and S. Gibet, A Qualitative and Quantitative Characterization of

Style in Sign Language Gestures, in Proc. of GW 2007, LNCS, 2007.
28. ELAN Linguistic Annotator, http://www.lat-mpi.eu/tools/elan/.
29. Anvil, the Video Annotation Research Tool, http://www.anvil-software.de/.

