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ABSTRACT
Different strategies can be used for the generation of new
candidate solutions on the Differential Evolution algorithm.
However, the definition of which of them should be ap-
plied to the problem at hand is not trivial, besides be-
ing a sensitive choice with relation to the algorithm per-
formance. In this paper, we use the BBOB-2010 noiseless
benchmarking suite to further empirically validate the Prob-
ability Matching-based Adaptive Strategy Selection (PM-
AdapSS-DE) [4], a method proposed to automatically select
the mutation strategy to be applied, based on the relative
fitness improvements recently achieved by the application
of each of the available strategies on the current optimiza-
tion process. It is compared with what would be a time-
less (näıve) choice, the uniform strategy selection within the
same sub-set of strategies.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Adaptive Strategy
Selection, Differential Evolution.

1. INTRODUCTION
Differential Evolution (DE) is a simple yet powerful evo-

lutionary algorithm, that uses the weighted difference be-
tween two or more candidate solutions to generate a new
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one. Proposed by Storn and Price [13], the DE algorithm
was initially provided with a single mutation strategy for its
offspring generation. Ten other strategies were lately sug-
gested by the same authors [11], increasing the robustness
of the algorithm with relation to many different application
domains, such as data mining, pattern recognition, digital
filter design, neural network training, etc.

But, although bringing advantages, such flexibility creates
an extra difficulty to the user. Given an optimization prob-
lem, there are no definitive guidelines or rules-of-thumb to
assist the user into the definition of which strategy should
be used. Such critical choice is usually done following the
intuition, or by means of statistics over an expensive set of
experiments (off-line tuning).

The latter approach can be always used to find the best
strategy; however, besides being computationally and timely
expensive, it will very probably yield a sub-optimal choice.
Intuitively, a subsequent use of strategies with different char-
acteristics during the optimization process should achieve
better performance, as the search tends to migrate from a
global (early) exploration of the search space to a more fo-
cused, exploitation-like behavior.

This is the main motivation for the use of adaptive param-
eter control methods, that automatically selects the strategy
that should be applied for the generation of each offspring
while solving the problem, based on their recent performance
on the current optimization process, what is referred to as
Adaptive Strategy Selection.

In this paper, the BBOB-2010 noiseless benchmarking
suite is used to further empirically validate a technique re-
cently proposed to do so, the PM-AdapSS-DE [4]. For the
sake of self-containedness, the description of the proposed
adaptive method is resumed in Section 2, referring the reader
to the original paper [4] for more a complete and detailed
view. The rest of the paper is organized as follows. The
settings used for the empirical comparison are presented in
Section 3. The complete results are shown in Section 4, while
Section 5 presents the timing complexity of each algorithm.
Some final considerations conclude the paper in Section 6.

2. THE PM-ADAPSS-DE ALGORITHM
Inspired by some recent works in the Genetic Algorithms

community (see, e.g., [14, 1]), Adaptive Strategy Selection
aims at automatically selecting between the available (pos-
sibly ill-known) mutation strategies while solving the prob-



lem. Two components are needed to achieve such objective:
the Credit Assignment scheme defines how to assess the per-
formance of each strategy, measuring the impact of its appli-
cations on the progress of the current search/optimization
process; while the Strategy (or Operator) Selection mech-
anism sets how the strategies are chosen, based on their
known performance.

In the PM-AdapSS-DE algorithm, the relative fitness im-
provement ηi, proposed in [9], was adopted to assess the
performance of each strategy application, which can be for-
malized as follows:

ηi =
δ

cfi
· |pfi − cfi| (1)

where i = 1, · · · , NP , being NP the population size, δ the
fitness of the best-so-far solution in the population, and pfi

and cfi, the fitness of the target parent and of its offspring,
respectively. In case of no improvement (i.e., the offspring
is worse than or equal to its target parent), a null reward is
awarded. Finally, the credit assigned to each strategy is the
absolute average value (referred to as AvgAbs in the original
paper [4]) of the rewards received by them during a given
period (a generation in this case).

This credit is used by the Probability Matching (PM)
technique to update the known empirical quality of each
strategy. Its impact on the update of this estimate is weighted
by a user-defined parameter, the adaptation rate α ∈ ]0, 1]
[3]. The probability of selection of each strategy is then de-
fined proportionally to its known performance, possibly be-
ing lower bounded by another user-defined parameter, the
minimal probability pmin, which ensures that no strategy
gets lost during the process [14].

The coupling of such elements with the DE algorithm,
referred to as the PM-AdapSS-DE, is shown in Algorithm 1,
reproduced from [4]. The modified steps with respect to the
classical DE algorithm are marked with a left arrow “⇐”.
Summarizing, at each generation t, for each target parent i,
a strategy SIi is selected based on the probability of each
strategy. The offspring is generated with such strategy, and
its impact (the relative fitness improvement ηi) is calculated
and stored in the set SSIi . Consequently, at the end of each
generation, the assigned credit, quality, and probability of
each strategy are updated.

3. EXPERIMENTAL SETTINGS
Given that the objective of the present work is to vali-

date the ability of the proposed Adaptive Strategy Selection
approach, a sub-set of 4 strategies was arbitrarily chosen,
listed as follows.

1) “DE/rand/1”: vi = xr1 + F ·
`
xr2 − xr3

´

2) “DE/rand/2”: vi = xr1+F ·
`
xr2−xr3

´
+F ·

`
xr4−xr5

´

3) “DE/rand-to-best/2”: vi = xr1 + F ·
`
xbest − xr1

´
+

F ·
`
xr2 − xr3

´
+ F ·

`
xr4 − xr5

´

4) “DE/current-to-rand/1”:
vi = xi + F ·

`
xr1 − xi

´
+ F ·

`
xr2 − xr3

´

where xi represents the current individual, xbest is the best
individual in the current generation, r1, r2, r3, r4, r5 are in-
dividuals randomly chosen from the population, being r1 $=
r2 $= r3 $= r4 $= r5 $= i. F is the mutation scaling factor.

Algorithm 1 DE with probability matching-based adaptive
strategy selection: PM-AdapSS-DE
1: Set CR = 1.0, F = 0.5 and NP = 10 × D
2: Generate the initial population
3: Evaluate the fitness for each individual
4: Set the generation counter t = 1
5: Set K = 4, pmin = 0, and α = 0.6 ⇐
6: For each strategy a, set qa(t) = 0 and pa(t) = 1/K ⇐
7: while The halting criterion is not satisfied do
8: for i = 1 to NP do
9: Select the strategy SIi based on its probability ⇐
10: Select uniform randomly r1 $= r2 $= r3 $= r4 $= r5 $= i
11: jrand = rndint(1, D)
12: for j = 1 to D do
13: if rndrealj [0, 1) < CR or j == jrand then
14: if SIi == 1 then
15: ui,j is generated by “DE/rand/1” strategy
16: else if SIi == 2 then
17: ui,j is generated by “DE/rand/2” strategy
18: else if SIi == 3 then
19: ui,j is generated by “DE/rand-to-best/2” strat-

egy
20: else if SIi == 4 then
21: ui,j is generated by “DE/current-to-rand/1”
22: end if
23: else
24: ui,j = xi,j
25: end if
26: end for
27: end for
28: for i = 1 to NP do
29: Evaluate the offspring ui
30: if f(ui) is better than or equal to f(xi) then
31: Calculate ηi using Eqn. (1) ⇐
32: Replace xi with ui
33: else
34: Set ηi = 0 ⇐
35: end if
36: SSIi ← ηi ⇐
37: end for
38: Calculate the credit ra(t) for each strategy ⇐
39: Update the quality qa(t) for each strategy ⇐
40: Update the probability pa(t) for each strategy ⇐
41: t = t + 1
42: end while

The parameters of the PM technique were defined after
a preliminary tuning phase. For the adaptation rate, the
following values were tried: α ∈ {.1, .3, .6, .9}; while for the
minimal probability pmin ∈ {0, .05, .1, .2}. Each of the six-
teen configurations composed by the combination of such
parameter values was tried once on all the functions and
instances for dimensions 5 and 20 (a kind of representa-
tive set of all the analyzed dimensions, summing up to 720
instances), and the best configuration (pmin = 0; α = .6)
was found, according to the Friedman’s two-way Analysis of
Variances by Ranks statistical test.

The user-defined parameters of the DE algorithm, namely
the population size NP and the mutation scaling factor F
were defined, respectively, to 10 ∗ D, and 0.5, with D be-
ing the dimensionality of the problem. Differently from the
original paper [4], CR = 1.0 was used here, in order to have
a DE invariant with relation to rotation, and entirely depen-
dent on the mutation strategy application [7].

The technique used as baseline for comparison represents
what would be a possible (and costless) choice for a näıve
user, i.e., the uniform selection within the same sub-set of
strategies. In the original paper [4], the PM-AdapSS-DE is



also compared to a DE implementing each of the strategies
alone, and to yet another adaptive scheme, known as SaDE
[12] (with fixed CR and F in this case).

The experiments were performed following the BBOB guide-
lines [5], with the maximum number of evaluations being
fixed at 105 ∗D. The mentioned parameter values were used
on all the experiments, for all dimensions, thus crafting ef-
fort is equal to zero.

4. RESULTS
Results from experiments according to [5] on the bench-

mark functions given in [2, 6] are presented in Figures 1,
2 and 3 and in Table 1. The expected running time
(ERT), used in the figures and table, depends on a given
target function value, ft = fopt +∆f , and is computed over
all relevant trials as the number of function evaluations exe-
cuted during each trial while the best function value did not
reach ft, summed over all trials and divided by the number
of trials that actually reached ft [5, 10]. Statistical signif-
icance is tested with the rank-sum test for a given target
∆ft (10−8 in Figure 1) using, for each trial, either the num-
ber of needed function evaluations to reach ∆ft (inverted
and multiplied by −1), or, if the target was not reached, the
best ∆f -value achieved, measured only up to the smallest
number of overall function evaluations for any unsuccessful
trial under consideration.

5. CPU TIMING EXPERIMENTS
For the timing experiments, both algorithms were run on

f8 and restarted until at least 30 seconds (according to [5]).
The experiments have been conducted with an Intel Xeon
E5345 processor (2.33 GHz) running Linux 2.6.31.12. For
the PM-AdapSS-DE, the results were 1.6, 1.6, 1.6, 1.8, 2.1
and 2.9 ×10−6 seconds per function evaluation, for the di-
mensions 2, 3, 5, 10, 20, 40 respectively. For the baseline
technique, the Uniform-DE, the results were 3.3, 3.5 4.0,
5.5, 8.3 and 16 ×10−7 seconds per function evaluation, for
the dimensions 2, 3, 5, 10, 20, 40 respectively. The same
C++ implementation (gcc version 4.4.1) was used for both,
with the only difference being the portions of code that re-
fer to the strategy selection, thus the timing difference shows
exactly the price to be paid for using this adaptive scheme.

6. FINAL CONSIDERATIONS
This work presented a more extensive empirical valida-

tion of the PM-AdapSS-DE, recently proposed in [4]. This
method provides Adaptive Strategy Selection capabilities to
the DE algorithm, by means of the Probability Matching
strategy selection scheme, that selects the operators accord-
ing to the relative fitness improvements brought by their
recent applications.

The objective of this work was not to compete with the
state-of-the-art continuous optimizers, but rather to analyze
the advantages brought by the adaptive method when com-
pared to the näıve (uniform) choice. Although in the multi-
modal and weak-structure group of functions it was less
clear, improvements were achieved over the baseline method
in most of the functions, especially for the larger dimensions,
being statistically equivalent otherwise. A possible explana-
tion for the fewer successes concerning the smaller dimen-
sions might lie in the fact that those experiments were too
short to allow the adaptive scheme to learn and show its

skills. The ill-conditioned functions were the ones in which
the advantages of the adaptive scheme was better shown.

There is still a lot of space for further improvements, espe-
cially concerning the strategy selection mechanism. Other
schemes, such as the Adaptive Pursuit [14] and the Bandit-
based approaches [1] should be analyzed. Another path
that could also be explored lies in the automatic adapta-
tion of other DE parameters, the crossover rate CR and
the mutation scaling factor F , as proposed for the SaDE
[12] scheme. Besides, especially concerning the multi-modal
functions, the diversity could also be considered somehow
by the credit assignment scheme, as proposed in [8].
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Figure 1: ERT ratio of PM-AdapSS-DE divided by Uniform-DE versus log10(∆f) for f1–f24 in 2, 3, 5, 10,
20, 40-D. Ratios < 100 indicate an advantage of PM-AdapSS-DE, smaller values are always better. The line
gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of
f-evaluations for the same algorithm on this function. Symbols indicate the best achieved ∆f-value of one
algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of
the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for PM-AdapSS-
DE. The line ends when no algorithm reaches ∆f anymore. The number of successful trials is given, only if
it was in {1 . . . 9} for PM-AdapSS-DE (1st number) and non-zero for Uniform-DE (2nd number). Results are
significant with p = 0.05 for one star and p = 10−#! otherwise, with Bonferroni correction within each figure.
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Figure 2: Expected running time (ERT in log10 of number of function evaluations) of PM-AdapSS-DE versus
Uniform-DE for 46 target values ∆f ∈ [10−8, 10] in each dimension for functions f1–f24. Markers on the upper
or right egde indicate that the target value was never reached by PM-AdapSS-DE or Uniform-DE respectively.
Markers represent dimension: 2:+, 3:!, 5:$, 10:◦, 20:!, 40:".
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for target value ∆f = 10−8 of algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of
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5-D 20-D

∆f 1e+11e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 15/15

0: Uniform 8.6 42 80 160 240 310 15/15
1: AdapSS 4.8 39 74 140 220 290!2 15/15

f2 83 87 88 90 92 94 15/15
0: Uniform20 24 30 40 50 58 15/15
1: AdapSS19 24 28 38 47! 55!2 15/15

f3 720 1600 1600 1600 1700 1700 15/15
0: Uniform 3.5 12 130 130 130 130 11/15
1: AdapSS 4.9 33 170 360 620 620 5/15

f4 810 1600 1700 1800 1900 1900 15/15
0: Uniform 5.1 630 1.9e3 1.8e3 1.7e3 1.7e3 2/15
1: AdapSS 4.9 4.3e3 ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 10 15/15
0: Uniform20 34 35 35 35 35 15/15
1: AdapSS24 33 36 36 36 36 15/15

f6 110 210 280 580 1000 1300 15/15
0: Uniform 9 9.2 10 7.8 6.1 6.1 15/15
1: AdapSS 8.1 8.1 9 7.3 5.7 5.7!2 15/15

f7 24 320 1200 1600 1600 1600 15/15
0: Uniform14 2.7 1.2 1.4 1.4 1.6 15/15
1: AdapSS12 2.5 1.2 1.3 1.3 1.5 15/15

f8 73 270 340 390 410 420 15/15
0: Uniform15 10 14 17 18 20 15/15
1: AdapSS13 9.4 15 19 20 21 15/15

f9 35 130 210 300 340 370 15/15
0: Uniform30 23 21 21 22 22 15/15
1: AdapSS25 22 21 21 21 22 15/15

f10 350 500 570 630 830 880 15/15
0: Uniform 4.5 4.2 4.6 5.5 5.4 6.2 15/15
1: AdapSS 4.6 4 4.3 5.3 5.2 5.9 15/15

f11 140 200 760 1200 1500 1700 15/15
0: Uniform 6.2 6.6 2.4 2.4 2.6 2.8 15/15
1: AdapSS 6.3 6.5 2.3 2.3 2.4! 2.7!2 15/15

f12 110 270 370 460 1300 1500 15/15
0: Uniform28 21 21 22 10 11 15/15
1: AdapSS24 16 24 27 12 13 15/15

f13 130 190 250 1300 1800 2300 15/15
0: Uniform11 12 13 3.7 3.8 3.7 15/15
1: AdapSS 9.9! 11! 12! 3.4!3 3.5!3 3.4!3 15/15

f14 9.8 41 58 140 250 480 15/15
0: Uniform 2.3 10 16 15 13 9.3 15/15
1: AdapSS 1 9.4 17 15 12 8.9 15/15

f15 510 9300 1.9e4 2.0e4 2.1e4 2.1e4 14/15
0: Uniform 4.8 2.2 3 3 2.9 2.9 14/15
1: AdapSS 5.4 6.3 3.2 3.2 7.6 7.4 12/15

f16 120 610 2700 1.0e4 1.2e4 1.2e4 15/15
0: Uniform 4.3 44 20 17 16 15 12/15
1: AdapSS 3.9 120 55 20 28 27 11/15

f17 5.2 210 900 3700 6400 7900 15/15
0: Uniform 3.8 4.3 2.7 1.6 1.5 1.6 15/15
1: AdapSS 4.2 4 2.3! 1.4!2 1.3!3 1.4!3 15/15

f18 100 380 4000 9300 1.1e4 1.2e4 15/15
0: Uniform 4 4.3 0.81 0.73 0.95 1.1 15/15
1: AdapSS 4.3 4.1 0.76 0.67 0.89 1 15/15

f19 1 1 240 1.2e5 1.2e5 1.2e5 15/15
0: Uniform35 3.4e3 1.6e3 13 13 13 4/15
1: AdapSS37 2.0e3 2.1e3 19 19 29 1/15

f20 16 850 3.8e4 5.4e4 5.5e4 5.5e4 14/15
0: Uniform11 10 9.2 6.4 6.4 6.4 9/15
1: AdapSS11 14 9.4 6.6 6.6 6.6 8/15

f21 41 1200 1700 1700 1700 1800 14/15
0: Uniform 4.5 33 76 75 74 74 12/15
1: AdapSS 4 33 200 200 200 190 9/15

f22 71 390 940 1000 1000 1100 14/15
0: Uniform 6.6 200 470 440 420 410 8/15
1: AdapSS 4.1 4.6470 440 420 410 8/15

f23 3 520 1.4e4 3.2e4 3.3e4 3.4e4 15/15
0: Uniform 2 11 2.5 3.6 5.5 7.2 15/15
1: AdapSS 1.8 8.9 12 14 21 27 5/15

f24 1600 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
0: Uniform 4.3 3.7 0.17 0.15 0.11 0.11 4/15
1: AdapSS 5.9 6.8 0.24 0.36 0.27 0.27 2/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 15/15

0: Uniform 150 300 440 730 1.0e3 1.3e3 15/15
1: AdapSS100!3 200!3 290!3 470!3 650!3 830!3 15/15

f2 380 390 390 390 390 390 15/15
0: Uniform 77 92 110 140 170 200 15/15
1: AdapSS 52!3 63!3 73!3 93!3 110!3 130!3 15/15

f3 5100 7600 7600 7600 7600 7700 15/15
0: Uniform ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f4 4700 7600 7700 7700 7800 1.4e5 9/15
0: Uniform ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 41 15/15
0: Uniform 69 83 85 86 86 86 15/15
1: AdapSS 82 92 96 96 96 96 15/15

f6 1300 2300 3400 5200 6700 8400 15/15
0: Uniform 29 23 20 20 20 20 15/15
1: AdapSS 20!3 16!3 15!3 14!3 14!3 14!3 15/15

f7 1400 4300 9500 1.7e4 1.7e4 1.7e4 15/15
0: Uniform 8.4 5.2 3.3 2.7 2.7 2.7 15/15
1: AdapSS 5.9!3 3.4!3 2.1!3 1.6!3 1.6!3 1.7!3 15/15

f8 2000 3900 4000 4200 4400 4500 15/15
0: Uniform 34 31 33 35 37 39 15/15
1: AdapSS 35 35 38 39 40 41 15/15

f9 1700 3100 3300 3500 3600 3700 15/15
0: Uniform 41 39 41 43 45 46 15/15
1: AdapSS 37 41 43 45 46 47 15/15

f10 7400 8700 1.1e4 1.5e4 1.7e4 1.7e4 15/15
0: Uniform 3.9 4.1 3.9 3.6 3.9 4.6 15/15
1: AdapSS 2.7!3 2.8!3 2.6!3 2.4!3 2.6!3 3!3 15/15

f11 1000 2200 6300 9800 1.2e4 1.5e4 15/15
0: Uniform 11 8.1 3.8 3.8 4 4.2 15/15
1: AdapSS 8.7!3 5.7!3 2.6!3 2.5!3 2.6!3 2.7!3 15/15

f12 1000 1900 2700 4100 1.2e4 1.4e4 15/15
0: Uniform 44 27 25 26 12 13 15/15
1: AdapSS 29!3 18!3 20 24 12 13 15/15

f13 650 2000 2800 1.9e4 2.4e4 3.0e4 15/15
0: Uniform 43 20 19 4.1 4.2 4.2 15/15
1: AdapSS 28!3 13!3 12!3 2.6!3 2.6!3 2.6!3 15/15

f14 75 240 300 930 1600 1.6e4 15/15
0: Uniform 53 50 64 38 31 4.2 15/15
1: AdapSS 43!2 34!3 43!3 25!3 20!3 2.8!3 15/15

f15 3.0e4 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
0: Uniform 980 ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1400 2.7e4 7.7e4 1.9e5 2.0e5 2.2e5 15/15
0: Uniform 2.1e4 ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS 2.2e4 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 1000 4000 3.1e4 5.6e4 8.0e4 15/15
0: Uniform 38 19 10 3 3.2 2.8 15/15
1: AdapSS 23 13!3 6.6!3 1.9!3 1.8!3 18 7/15

f18 620 4000 2.0e4 6.8e4 1.3e5 1.5e5 15/15
0: Uniform 18 7.8 2.8 1.7 1.5 1.6 15/15
1: AdapSS 13!3 5.4!3 1.9!3 8.4 6.5 7.8 7/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
0: Uniform 2.8e3 9.5e6 ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS 1.8e3! ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 4.6e4 3.1e6 5.5e6 5.6e6 5.6e6 14/15
0: Uniform 76 ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS 46!3 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f21 560 6500 1.4e4 1.5e4 1.6e4 1.8e4 15/15
0: Uniform 21 460 570 550 520 460 3/15
1: AdapSS 12!3 350 570 550 520 460 3/15

f22 470 5600 2.3e4 2.5e4 2.7e4 1.3e5 12/15
0: Uniform 1.6e3 990 ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS 1.6e3 2.3e3 ∞ ∞ ∞ ∞2.0e6 0/15

f23 3.2 1600 6.7e4 4.9e5 8.1e5 8.4e5 15/15
0: Uniform 3 6.0e3 ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS 1.5 8.5e3 ∞ ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
0: Uniform ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15
1: AdapSS ∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different ∆f values for functions f1–f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞. #succ is the
number of trials that reached the final target fopt + 10−8. 0: Uniform is Uniform-DE and 1: AdapSS is PM-
AdapSS-DE. Bold entries are statistically significantly better compared to the other algorithm, with p = 0.05
or p = 10−k where k > 1 is the number following the $ symbol, with Bonferroni correction of 48.


