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A mathematical explanation via “intelligent” PID controll ers
of the strange ubiquity of PIDs

Brigitte d’ANDRÉA-NOVEL, Michel FLIESS, Cédric JOIN, Hugues MOUNIER, Bruno STEUX

Abstract— The ubiquity of PID controllers in the industry
has remained mysterious until now. We provide here a
mathematical explanation of this strange phenomenon by
comparing their sampling with the the one of “intelligent” PID
controllers, which were recently introduced. Some computer
simulations nevertheless confirm the superiority of the new
intelligent feedback design.

Keywords– PID, model-free control, intelligent PID, sampling.

I. I NTRODUCTION

PI and PID controllers (see,e.g., [2], [16]) are still by far
the most popular feedback design in industry. To the best
of our knowledge, there is no clear-cut explanation of their
strange ubiquity for a wide range of systems. Remember
that, from a purely mathematical standpoint, they are only
fully justified until now for first and second order linear
differential equations with constant coefficients! We solve
here this long-standing and quite irritating open problem via
the newly introducedintelligent PIDs ([6], [7]), which have
already been utilized quite successfully in several concrete
situations (see,e.g., [1], [4], [10], [11], [13], [14], [18]).

The proof relies on a crude time-sampling of both types
of regulators. It shows that the gains in a classic PI or PID
take into account, if they are properly tuned, the estimated
“structural” part of the intelligent controllers. Thus theeffi-
ciency of these intelligent controllers with respect to arbitrary
nonlinear plants ([6], [7]) is enough for fulfilling our purpose.
Let us nevertheless emphasize that the classic tuning rules
are quite intricate whereas their counterparts for intelligent
controllers are obvious.

Remark 1.1: Only few references (see,e.g., [3], [12]) in
the huge literature on PIDs exhibit some connections with
our viewpoint.

Our paper is organized as follows. Section II is devoted to
a brief review ofmodel-free control and of the corresponding
intelligent PID controllers. Section III, which establishes our

Brigitte d’ANDRÉA-NOVEL is with Centre de Robotique, Mines-
ParisTech, 75272 Paris Cedex 06, France.
Brigitte.Dandrea-Novel@mines-paristech.fr

Michel FLIESS is with INRIA-ALIEN & LIX (CNRS, UMR 7161), École
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results by comparing the sampling of classical and intelligent
controllers, gives a table for the connections between classic
and intelligent gains. The computer simulations in Section
IV confirms the superiority of the intelligent controllers (see,
also, [6], [7] for other examples). Some concluding remarks
are given in Section V.

II. M ODEL-FREE CONTROL1

The input-output behavior of the system, which for sim-
plicity’s sake is assumed to be monovariable, is “approxima-
tively” governed within its operating range by anunknown
finite-dimensional ordinary differential equation, whichis not
necessarily linear,

E(y, ẏ, . . . , y(a), u, u̇, . . . , u(b)) = 0 (1)

Replace Equation (1) by the following “phenomenological”
model, which is only valid during a very short time interval,

y(ν) = F + αu (2)

The derivation orderν, which is in general equal to1 or 2,
and the constant parameterα are chosen by the practitioner.
It implies that ν is not necessarily equal to the derivation
order a of y in Equation (1). The numerical value ofF
at any time instant is deduced from those ofu and y(ν),
thanks to our quite efficient numerical differentiators, which
are moreover real-time.2 The desired behavior is obtained
by implementing, if, for instance,ν = 2, the intelligent PID
controller (i-PID)

u =
1

α

(

−F + ÿ∗ +KP e+KI

∫

e+KDė

)

(3)

where

• y∗ is the output reference trajectory, which is deter-
mined e.g. via the rules of flatness-based control;

• e = y − y∗ is the tracking error;
• KP , KI , KD are the usual tuning gains.

Let us consider the following special cases:

• If againν = 2, we may use anintelligent PD controller
(i-PD)

u =
1

α
(−F + ÿ∗ +KP e +KDė) (4)

• If ν = 1, we can restrict ourselves to

1See [6], [7] for more details.
2See [8], [15] for details, and also [9].



– an intelligent PI controller (i-PI)

u =
1

α

(

−F + ẏ∗ +KP e+KI

∫

e

)

(5)

– or even to anintelligent P controller (i-P)

u =
1

α
(−F + ẏ∗ +KP e) (6)

Remark 2.1: If ν = 2 (resp.1), plugging Equations (3) or
(4) (resp. (5) or (6)) in Equation (2) yields the control of a
pure double (resp. simple) integrator. This is why tuning the
gains of our intelligent controllers is quite straightforward.

Remark 2.2: It should be emphasized, ifν = 2 (resp.
1), that Equation (4) (resp. (6)) is mathematically sufficient
for ensuring stability around the reference trajectory. The
integral termKI

∫

e in Equation (3) (resp. (5)) nevertheless
adds some well known robustness properties.

III. C ONNECTIONS BETWEEN CLASSIC AND

INTELLIGENT CONTROLLERS

A. PI and i-P

1) A crude sampling of PIs: Consider the classic
continuous-time PI controller

u(t) = kpe(t) + ki

∫

e(τ)dτ (7)

A crude sampling of the integral
∫

e(τ)dτ through a Rie-
mann sumI(t) leads to

∫

e(τ)dτ ≃ I(t) = I(t− h) + he(t)

whereh is the sampling interval. The corresponding discrete
form of Equation (7) reads:

u(t) = kpe(t) + kiI(t) = kpe(t) + kiI(t− h) + kihe(t)

Combining the above equation with

u(t− h) = kpe(t− h) + kiI(t− h)

yields

u(t) = u(t− h) + kp (e(t)− e(t− h)) + kihe(t) (8)

Remark 3.1: A trivial sampling of the “velocity form” of
Equation (7)

u̇(t) = kpė(t) + kie(t)

yields

u(t)− u(t− h)

h
= kp

(

e(t)− e(t− h)

h

)

+ kie(t)

which is equivalent to Equation (8).

2) Sampling i-Ps: Utilize, if ν = 1 in Equation (2), the
i-P (6), which may be rewritten as

u(t) =
ẏ∗(t)− F +KP e(t)

α

Replace, according to the computer implementation in [6],
[7], F by ẏ(t)− αu(t− h) and therefore by

y(t)− y(t− h)

h
− αu(t− h)

It yields

u(t) = u(t− h)−
e(t)− e(t− h)

hα
+

KP

α
e(t) (9)

3) Comparison: FACT .- Equations (8) and (9) become
identical if we set

kp = −

1

αh
, ki =

KP

αh
(10)

Remark 3.2: It should be emphasized that the above prop-
erty, defined by Equations (10), does not hold for continuous-
time PIs and i-Ps. This equivalence is strictly related to time
sampling,i.e., to computer implementation, as demonstrated
by takingh → 0 in Equations (10).

B. PID and i-PD

Extending the calculations of Section III-A is quite obvi-
ous. The velocity form of the PID

u(t) = kpe(t) + ki

∫

e(τ)dτ + kdė

readsu̇(t) = kpė(t) + kie(t) + kdë(t). It yields the obvious
sampling

u(t) = u(t− h) + kphė(t) + kihe(t) + kdhë(t) (11)

If ν = 2 on the other hand, Equation (4) yieldsu(t) =
1

α
(ÿ∗(t)− F +KP e(t) +KDė(t)). From the computer im-

plementationF = ÿ(t)− αu(t− h), we derive

u(t) = u(t− h)−
1

α
ë(t) +

KP

α
e(t) +

KD

α
ė(t) (12)

FACT .- Equations (11) and (12) becomeidentical if we set

kp =
KD

αh
, ki =

KP

αh
, kd = −

1

αh
(13)

C. i-PI and i-PID

Equation (12) becomes with the i-PID (3)

u(t) = u(t−h)−
1

α
ë(t)+

KP

α
e(t)+

KI

α

∫

e+
KD

α
ė(t) (14)

Introduce the PII2D controller

u(t) = kpe(t) + ki

∫

e(τ)dτ + kii

∫∫

edτdσ + kdė(t)

where a double integral appears.3 To its velocity formu̇(t) =
kpė(t) + kie+ kii

∫

edτ + kdë(t) corresponds the sampling

u(t) = u(t− h) + kphė(t) + kihe+ kiih

∫

edτ + kdhë(t)

3Such double integrals do not seem to be common in control engineering.



which is identical to Equation (14) if one sets

kp =
KD

αh
, ki =

KP

αh
, kii =

KI

αh
, kd = −

1

αh
(15)

The connection between iPIs and PII2s follows at once.

D. Table of correspondence

The previous calculations yield the following correspon-
dence table between the gains of our various controllers:

Remark 3.3: Due to the form of Equation (2), it should be
noticed that the tuning gains of the classic regulators ought
to be negative.

E. The explanation

The previous calculations and Table 1 explain why sam-
pled classic PI and PID controllers take into account, if their
gains are properly tuned, the structural term−F/α, which
contains all the structural information of the unknown non-
linear systems, in Equations (3), (4), (5), (6). The superiority
of intelligent controllers, which was already noted in [6],[7],
is however confirmed:

1) Tuning the gains of intelligent controllers is str-
aightforward whereas it is complex and painful for
classic PIDs in spite of all the numerous existing rules
in the literature (see,e.g., [2], [16]).

2) Contrarily to intelligent controllers, a correctly tuned
classic PI or PID controller is unable to take into
account heat effects, ageing processes, characteristic
dispersions due to mass production, . . . .

3) Fault tolerant control is much better handled by intel-
ligent controllers than by classic ones.

IV. CLASSIC VERSUS INTELLIGENT CONTROLLERS4

For the nonlinear system

ẏ + y3 = 2u (16)

we deduce a classic PI controller thanks to a method due to
Broı̈da and Dindeleux [5] which improves the well-known
Ziegler-Nichols rules (see,e.g., [2], [16]). Note however that
the open loop response of System (16), withy(0) = 0, is
somehow difficult to exploit as shown by Figure 1. It yields

• a delay system
ke−τs

1 + Ts

wherek = 1.160, T = 0.401, τ = 0.044;
• a PI wherekp = 6.350, ki = 15.817.

Figures 2 and 3, which depict the simulation results for the
above PI and an i-PI, do not show any significant difference.
Remember however that the i-PI, whereα = 1, KP = 6,
KI = 9, does not necessitate any cumbersome identification
procedure.

Without any new calibration of the PI for another operating
range Figure 4 shows a deterioration of the performances,
whereas the performances of the i-PI, which are depicted in
Figure 5, remain good.

4See [6], [7] for other examples.

Introduce now a fault accommodation via a control power
lossuPert = 0.996t/h × u, t > 4, where the sampling time
h = 0.01s. The i-PI behaves then much better (Figure 7)
than the PI (Figure 6). Note nevertheless a small deviation
of the i-PI controller when the power loss becomes quite
important (Figure 7-(b)).

V. CONCLUSION

The above numerical simulations as well as many existing
experimentations (see [6], [7], and [1], [4], [10], [11], [13],
[14], [18]) demonstrate that intelligent PID controllers yield
better performances than classic ones. This is achieved
moreover thanks to a quite straightforward and natural gain
tuning, which contrasts with the numerous complex rules for
classic PIDs. Those considerations as well as the results of
this communication imply therefore

• that classic PIDs might become obsolete,
• a change of paradigm for control engineering, and for

its teaching (see,e.g., [6], [7], and [17]).
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Dijon, 2009
(online http://hal.inria.fr/inria-00394972/en/).

[10] P.-A. Gédouin, C. Join, E. Delaleau, J.-M. Bourgeot, S. Arbab-Chirani,
S. Calloch, Model-free control of shape memory alloys antagonistic
actuators,17th IFAC World Congress, Seoul, 2008
(online http://hal.inria.fr/inria-00261891/en/).

[11] P.-A. Gédouin, C. Join, E. Delaleau, J.-M. Bourgeot, S. Arbab-Chirani,
S. Calloch, A new control strategy for shape memory alloys actuators,
8th Europ. Symp. Martensitic Transformations, Prague, 2009
(online http://hal.inria.fr/inria-00424933/en/).

[12] J. Han, From PID to active disturbance rejection control, IEEE Trans.
Ind. Elec., vol. 56, pp. 900-906, 2009.

[13] C. Join, J. Masse, M. Fliess,Étude préliminaire d’une
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i-P i-PD i-PI i-PID

PI kp −1/αh
ki KP /αh

PID kp KD/αh
ki KP /αh
kd −1/αh

PII2 kp −1/αh
ki KP /αh
kii KI/αh

PII2D kp KD/αh
ki KP /αh
kii KI/αh
kd −1/αh

TABLE I: Correspondence between the gains of sampled classic and intelligent controllers.
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