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A mathematical explanation via “intelligent” PID controll ers
of the strange ubiquity of PIDs

Brigitte d’ANDREA-NOVEL, Michel FLIESS, Cédric bIN, Hugues MOUNIER, Bruno STEUX

Abstract— The ubiquity of PID controllers in the industry  results by comparing the sampling of classical and intetitg
has remained mysterious until now. We provide here a controllers, gives a table for the connections betweersitas
mathematical explanation of this strange phenomenon by ,nq jntelligent gains. The computer simulations in Section

comparing their sampling with the the one of “intelligent” P1D . L - -
controllers, which were recently introduced. Some compute conf|rms the superiority of the intelligent controllerseg,

simulations nevertheless confirm the superiority of the new also, [6], [7] for other examples). Some concluding remarks

intelligent feedback design. are given in SectiorElV.
Keywords- PID, model-free control, intelligent PID, sampling. Il. M ODEL-FREE CONTROIH
. INTRODUCTION The input-output behavior of the system, which for sim-

Pl and PID controllers (seeg., [2], [16]) are still by far plicity’s sake is assumed to be monovariable, is “approxima

the most popular feedback design in industry. To the bel¥ely” governed within its operating range by anknown

of our knowledge, there is no clear-cut explanation of theiinite-dimensional ordinary differential equation, whismot

strange ubiquity for a wide range of systems. Rememb&gcessarily linear,
that, _fror_n_ a pure_ly mathema_tncal standpoint, they are only Ely, 9, YD '”7u(b)) —0 1)
fully justified until now for first and second order linear
differential equations with constant coefficients! We solv Replace Equatior{}(1) by the following “phenomenological”
here this long-standing and quite irritating open probléan v model, which is only valid during a very short time interval,
the newly introducedntelligent PIDs ([6], [7]), which have
already been utilized quite successfully in several cdecre y) =F + au 2)
situations (see.g., [1], [4], [10], [11], [13], [14], [18]).

The proof relies on a crude time-sampling of both typeshe derivation order, which is in general equal tb or 2,
of regulators. It shows that the gains in a classic Pl or PI@nd the constant parameterare chosen by the practitioner.
take into account, if they are properly tuned, the estimatdtl implies thatv is not necessarily equal to the derivation
“structural” part of the intelligent controllers. Thus tléfi- ordera of y in Equation [1). The numerical value df
ciency of these intelligent controllers with respect toialpy ~ at any time instant is deduced from thosewofand y*),
nonlinear plants ([6], [7]) is enough for fulfilling our puspe. thanks to our quite efficient numerical differentiators,ieth
Let us nevertheless emphasize that the classic tuning rukexe moreover real-timfg.The desired behavior is obtained
are quite intricate whereas their counterparts for irgelit by implementing, if, for instance; = 2, theintelligent PID
controllers are obvious. controller (i-PID)

Remark 1.1: Only few references (seeg., [3], [12]) in 1
the huge literature on PIDs exhibit some connections with u=— (—F + 3" + Kpe+ Kf/e + KDé) 3)
our viewpoint. @

Our paper is organized as follows. Sect@n Il is devoted tovhere
a brief review ofmodel-free control and of the corresponding y* is the output reference trajectory, which is deter-

intelligent PID controllers. Sectidn JI1, which estableghour mined e.g. via the rules of flatness-based control;

* 1 .
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o If v =1, we can restrict ourselves to



— anintelligent PI controller (i-Pl) 2) Sampling i-Ps. Utilize, if v = 1 in Equation [p), the
i-P (E), which may be rewritten as

u= é (—F+y* +er+K1/e) (5) yr(t) — F + Kpe(t)

u(t) =
o
— or even to arintelligent P controller (i-P) Replace, according to the computer implementation in [6],
. [7], F by g(t) — cu(t — h) and therefore by
=—(-F+y"+K 6 —y(t—
u a( Y pe) (6) yt) —yt—h) ot — h)

h
Remark 2.1: If v = 2 (resp.1), plugging Equationg3) or It yields
@) (resp. [b) or[f6)) in Equatiorf](2) yields the control of a
pure double (resp. simple) integrator. This is why tuning th u(t) = u(t — h) — M + Kp e(t)  (9)
gains of our intelligent controllers is quite straightfama. _ ho‘_ @
Remark 2.2: It should be emphasized, i# = 2 (resp. ) Comparison: FACT.- Equations [(8) and[}9) become
1), that Equation[{4) (resp[](6)) is mathematically suffitienidentical if we set

for ensuring stability around the reference trajectorye Th _ 1 kb — Kp (10)
integral termK; [ e in Equation [B) (resp[]5)) nevertheless P ah’ ' ah
adds some well known robustness properties. Remark 3.2: It should be emphasized that the above prop-
erty, defined by EquationﬂlO), does not hold for continuous
INTELLIGENT CONTROLLERS sampling,i.e., to computer implementation, as demonstrated
by takingh — 0 in Equations [(70).
A Plandi-P B. PID and i-PD
1) A crude sampling of Pls: Consider the classic  Extending the calculations of Secti¢n I]-A is quite obvi-
continuous-time PI controller ous. The velocity form of the PID
u(t) = kpe(t) + ki/e(T>dT (7 u(t) = kpe(t) + ks /e(T)dT + kqé
A crude sampling of the integraf e()dr through a Rie- readsq(t) = kpé(t) + hie(t) + kaé(t). It yields the obvious
mann sum/ (¢t) leads to sampling
u(t) = u(t — h) + kphé(t) + khe(t) + kqhé(t)  (11)
/e(T)dT ~ I(t) = I(t — h) + he(t) If v = 2 on the other hand, Equatiofi] (4) yieldgt) =

1

— (§*(t) — F + Kpe(t) + Kpé(t)). From the computer im-
whereh is the sampling interval. The corresponding discretey () . * Ife( )+ Kpé(t)) ) P
form of Equation [[7) reads: plementationF’ = §(t) — au(t — h), we derive

B 1. Kp Kp .
u(t) = u(t — h) ae(t) + " e(t) + " ety  (12)
FACT .- Equations|[(11) and (]Ll2) becorientical if we set
Kp Kp 1

u(t) = kpe(t) + ki L(t) = kpe(t) + kI(t — h) + k;he(t)

Combining the above equation with

u(t — h) = kye(t — h) + k;I(t — h) W= M=y M=oy (13)
_ C. i-Pl and i-PID
yields Equation [1R) becomes with the i-PIfj (3)
w(t) =u(t —h)+k, (e(t) —e(t — h)) + k;he(t 8 wlt) = u(t— 7lé Ee K e @é
(£) = ult = h) + ky (e(t) — e(t = ) O @ ) = u-h) ety + (t)+a/+a ) (14)

Remark 3.1: A trivial sampling of the “velocity form” of |ntroduce the PRAD controller

Equation [J)
a(t) = kyelt) + ke(t) u(t) = kpe(t) + ks /e(T)dT + Ky // edrdo + kqé(t)
ields where a double integral appe@r‘fﬁo its velocity formu(t) =
y kpé(t) + kie + ki [ edr + kqé(t) corresponds the sampling
t)—u(t—nh t)—e(t—h
% = kyp (c?();h()) + kie(t) u(t) = u(t — h) + kphé(t) + kihe + kiih/edT + kqhé(t)

which is equivalent to Equatiorﬂ(S). 3Such double integrals do not seem to be common in controheagng.



which is identical to Equatior] (14) if one sets Introduce now a fault accommodation via a control power

l0SS Upert = 0.9961/" x u, t > 4, where the sampling time
Kp Kp K; 1 _ _
p=p ki= o k= ka=—— (15) h = 0.01s. The i-Pl behaves then much better (Figlife 7)
) ) than the PI (Figur(ﬂG). Note nevertheless a small deviation
The connection between iPls and iffollows at once. of the i-PI controller when the power loss becomes quite

D. Table of correspondence important (Figurg]7-(b)).

The previous calculations yield the following correspon- V. CONCLUSION
dence table between the gains of our various controllers:  The above numerical simulations as well as many existing
Remark 3.3: Due to the form of Equatior{]2), it should be experimentations (see [6], [7], and [1], [4], [10], [11],3}
noticed that the tuning gains of the classic regulators bugfu 4], [18]) demonstrate that intelligent PID controllerieiyd
to be negative. better performances than classic ones. This is achieved
moreover thanks to a quite straightforward and natural gain

E. The explanation . . .
tuning, which contrasts with the numerous complex rules for

The previous calculations and Table 1 explain why samyassic pPIDs. Those considerations as well as the results of
pled classic Pl and PID controllers take into account, ifrthe iis communication imply therefore

gains are properly tuned, the structural ternf’/«, which
contains all the structural information of the unknown non-
linear systems, in Equationd (3)] (4)} (5}, (6). The supiyio
of intelligent controllers, which was already noted in [G]},
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i-P i-PD i-Pl i-PID

PI kp —1/ah
ki Kp/ah

PD  k, Kp/ah
k; Kp/ah
kq —1/ah

PIZ K, —1/ah
ki Kp/ah
k‘“‘ K[/ah

PI2D Ky Kp/ah
ki Kp/ah
kii Kr/ah
kq —1/ah

TABLE I: Correspondence between the gains of sampled classi intelligent controllers.
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