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Abstract: Multi-Point Relaying (MPR) is a well-known relay pruning al-
gorithm that has proved to be useful for efficient dissemination in Mobile Ad
hoc Networks (MANETs). But this technique may be useful for other tasks in
MANET link-state routing as well. In particular, the approach is attractive for
the selection of topology information to be flooded across the network. Require-
ments for such topology selection are however different from those applying for
efficient dissemination, so approaches in such direction need to address these
requirements and adapt or complement the MPR mechanism accordingly. This
paper analyzes the main asymptotic properties of MPR and MPR-based topol-
ogy selection algorithms, and provides sufficient conditions for the correctness
of MPR-based topology selection. It examines as well in detail the MPR-based
topology selection algorithm of MPR-OSPF, Path MPR, and shows that this
algorithm may be unable, in certain conditions, to preserve optimal routes in its
topology selection. The paper concludes by proposing and validating a modifi-
cation of the Path MPR algorithm to overcome this sub-optimal performance.

Key-words: OSPF, OLSR, MANET, MPR, Routing, Path MPR, Graph,
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MPR-based Pruning Techniques for Shortest

Path Tree Computation

Résumé : Multi-Point Relaying (MPR) est un algorithme de sélection de re-
lais bien connu qui s’est avéré utile pour les tâches de diffusion efficace (efficient
flooding) dans les réseaux mobiles ad hoc (MANET). Mais cette technique peut
être utile aussi pour d’autres tâches en ce qui concerne le routage d’état-lien en
réseaux MANET. En particulier, l’approche est intéressante pour la réduction
des liens faisant partie de la topologie notifié à chaque routeur. Néanmoins,
les conditions pour la sélection topologique sont assez différentes de celles à
l’efficient flooding, et donc les approches basées sur MPR dans cette direction
doivent répondre à ces conditions-là et s’adapter ou compléter le mécanisme de
MPR en conséquence. Cet memorandum analyse les propriétés asymptotiques
plus importantes de MPR et les algorithmes de sélection topologiques basées
sur MPR, tout en fournissant des conditions suffisantes quant à l’exactitude
des mecanismes de sélection topologique. Le memorandum examine aussi un
algorithme concret de sélection topologique, Path MPR, et montre que cet al-
gorithme, utilisé et specifié dans l’extension d’OSPF pour MANET RFC 5449,
ne peut pas assurer, en certaines conditions qui se détaillent, la préservation des
routes optimales pour l’algorithme de sélection. Le memorandum conclut en
proposant et validant une modification de l’algorithme Path MPR qui permet
de corriger cet effet.

Mots-clés : OSPF, OLSR, MANET, MPR, Routing, Path MPR, Graph, SPT
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4 J.A. Cordero

1 Introduction

The Multi-Point Relaying (MPR) technique is a well-known relay pruning al-
gorithm. It has proved to be useful for performing efficient dissemination in
networks characterized by bandwidth sharing and scarcity, such as Mobile Ad
hoc Networks (MANETs) [6] [7] [8].

The MPR technique may be useful for other goals as well. There have been
some extensions of the Multi-Point Relays algorithm, which are addressed to
topology discovery in link-state routing protocols. In such protocols, topology
information has to be flooded across the network so that every node keeps up-
dated its local Link-State Database (LSDB) and thus compute optimal routes to
all possible destinations. But in bandwidth-scarce networks as MANETs, such
requirement of LSDB maintenance needs to be balanced with the minimization
of control traffic, which includes the traffic dedicated to advertise the network
topology. The MPR principle provides then a promising approach to reduce the
set of links to advertise (pruning operation). Therefore, MPR-based topology
pruning algorithms have been designed for OSPF MANET (Path MPR algo-
rithm in MPR-OSPF [3]) and similar approaches are intended to be developed
for OLSR [1] [5].

Requirements for such a topology pruning mechanism are nonetheless dif-
ferent to those applying for an efficient dissemination mechanism, as section 2
points out. They mostly relate to the quality of the resulting topology sub-
graph. The paper discusses analytically in section 3 the fulfillment of such
requirements both in the MPR technique and in the MPR-based mechanisms
for topology pruning, and it proposes sufficient conditions for the asymptotic
correctness of these mechanisms.

The paper then focus on a particular, standardized MPR-based topology
extension, the Path MPR algorithm [3], and examine its performance in different
network metric frameworks. Section 4 shows that the current specification of
this algorithm may not provide, as claimed, shortest paths with respect to a
non-unitary metric. Section 5 then proposes and formally validates an algorithm
modification in order to assure its correctness as a topology pruning mechanism.
The impact of such modifications is presented and discussed in the same section
via simulations. Finally, section 6 concludes the paper.

1.1 Terminology

In the remainder of this paper, terms from graph theory (graph, vertex, edge)
and from networking theory (network graph, node, link) are employed indis-
tinctly to refer to the same concepts. Aside from that, the following terminology
and notation conventions are used:

❼ A (network) graph is denoted by G = (V,E), with V = V (G) being the
set of vertices and E = E(G) the set of edges. Unless otherwise stated, it
is assumed that G stands for a connected graph.

❼ Given a vertex (node) x ∈ V , N(x) is the set of adjacent vertices (bidirec-
tional neighbors) of x, N2(x) is the set of bidirectional 2-hop neighbors of
x.

INRIA



MPR-based Pruning Techniques for Shortest Path Tree Computation 5

❼ Given two adjacent vertices (neighbor nodes) x, y ∈ V and an edge metrics
function cost(e ∈ E) ∈ R, cost(xy) = cost(x, y) stands for the cost of the
direct link xy.

❼ Given two vertices (nodes) x, y ∈ V and a path pxy =
{xm1,m1m2, ...,mimi+1, ...,mky} between x and y, |pxy| = k + 1 is the
length of pxy, that is, the number of hops between x and y through the
path pxy. The shortest path (w.r.t. an edge metrics function cost) be-
tween x and y is denoted by p∗xy. It will be considered as well an extended
path metrics function cost(pxy), defined as

cost(pxy) = cost(x, m1) +

k−1
X

i=1

cost(mi, mi+1) + cost(mk, y)

❼ Given two vertices (nodes) x, y ∈ V , dist(x, y) is the cost of the optimal
path (w.r.t. cost) between x and y, that is dist(x, y) = cost(p∗xy). Simi-
larly, given two vertices x, y ∈ V reachable in 2 hops, it will be denoted
by dist2(x, y) the cost of the optimal path between x and y in 2 hops or
less (so called local shortest path).

2 Background

This section briefly describes the basics about the MPR technique, as well as the
requirements that a topology pruning algorithm based on local node decision
should fulfill in order to enable valid Shortest Path Tree (SPT) computation.

2.1 Multi-Point Relays – MPR

The Multi-Point Relays (MPR) [6] technique is an algorithm that enables a node
to select a subset of its 1-hop neighbors, so-called multi-point relays, such that
each 2-hop neighbor is reachable through (at least) one of the selected 1-hop
neighbors. Such condition is known as the MPR coverage criterion, and can
only be achieved if nodes are aware of their 2-hop neighbors – e.g. by exchange
of Hello messages [3]. Figure 1 illustrates the benefits of the MPR technique for
flooding optimization, with respect to the classic flooding consisting of allowing
every neighbor to retransmit any packet coming from the source.

RR n➦ 7329



6 J.A. Cordero

Figure 1: (a) Multi-Point Relays flooding vs. (b) classic flooding. Solid balls
represent neighbors selected as multi-point relays.

Several heuristics are possible as long as they satisfy the MPR coverage
criterion. In this paper it is used the following one, inspired in [3]:

1. Input: x, N(x) = N , N2(x) = N2.

2. MPR={∅}

3. MPR ← {n ∈ N : ∃m ∈ N2, m is only covered by n}

4. while (∃ uncovered m ∈ N2)
MPR ← n ∈ N : covers max.# of uncovered m ∈ N2

5. Output: MPR(x, N, N2)

2.2 Requeriments of a Topology Pruning Algorithm

Formally, a topology pruning algorithm is an algorithm that extracts, from a
given network graph G = (V,E), a subgraph G′ = (V,E′) ⊆ G containing the
same set of vertices and a subset of the edges (links) of the original network
graph (see figure 2).

Topology Pruning
Algorithm

G’=(V,E’)G=(V,E)

Figure 2: A topology pruning algorithm.

Such subgraph G′ has to be computed locally (by every node in the network)
and the resulting output is to be used as a basis for the Shortest Path Tree (SPT)
calculation of the corresponding node. Hence, this subgraph needs to fulfill the
following requirements:

❼ Connection. A non-connected subgraph would not permit the computing
node to reach destinations in connected components other than the own.

❼ Preservation of network-wide shortest paths. SPT calculation al-
gorithms (such as Dijkstra or Bellman-Ford) over G′ identify the optimal
paths in G′ w.r.t. a metric. These optimal paths will correspond to those
of G if and only if the G-shortest paths are in G′.

INRIA
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3 Using MPR for Topology Pruning

This section explores the above-mentioned requirements in subgraphs gener-
ated by the MPR selection algorithm and the MPR-based topology pruning
algorithms. Subsection 3.1 focus on MPR connection issues, whereas subsection
3.2 elaborates on connection and shortest paths preservation of MPR-based
topology pruning algorithms.

3.1 MPR Connection Analysis

Given a network graph G = (V,E), let us consider the subgraph SMPR =
(V,EMPR), hereafter called MPR graph, with EMPR = {xy : x ∈ V, y ∈
MPR(x)} ⊆ E being the set of links between nodes from the network and
their MPRs. It is immediate to show that the MPR graph is dense (meaning
that every vertex in the network graph is either connected or at distance 1 of
the MPR graph) [8], but it is not necessarily connected. Figure 3.a shows an ex-
ample of disconnection in a 3-diameter network. Note that the displayed MPR
election is legitimate since it satisfies the MPR coverage criterion.

1

2 3

4 5

6

7

8

1 2

3 4

2k-1 2k

(k-1)

a) b)

Figure 3: (a) Disconnection of the MPR set. Thick directed lines represent
MPR selection relationships. (b) Disconnection of the MPR set in a k-diameter
network.

More in general, for every value k > 0, it is easy to find a k-diameter network
in which there are valid non-connected MPR set configurations (see figure 3.b).

This fact prevents MPR as-is to be used as an algorithm for construction
of subgraphs that need to be connected, in particular subgraphs to be used
for Shortest Path Tree (SPT) computation in a link-state routing protocol. A
subgraph solely including MPR links might be unable to reach all destinations
in the network.

Attempts to use the MPR as an algorithm for building such subgraphs,
e.g. [3], are thus required to include additional links in the MPR subgraph in
order to assure the connectivity of the resulting subgraph. The following two
Lemmas prove that the addition of links from a single node of the network to
all its neighbors is sufficient to guarantee such connection: Lemma 1 shows that
connected components of the MPR graph are dense and Lemma 2 concludes
that the union of the MPR graph and the set of links from a single node to its
neighbors is necessarily connected.

Lemma 1 Let G = (V, E) be a network connected graph, and H ⊆ G the subgraph of
G containing the links from every vertex in the graph to all its MPRs. Then, every
connected component of H is dense over G.

RR n➦ 7329



8 J.A. Cordero

Proof: Let Hcx ⊆ H be a connected component of H. Let us consider x ∈ Hcx. It
will be proved, by induction over k, that every vertex z ∈ G at a distance k (in hops,
k <∞ because G is connected) from x has (at least) a neighbor that belongs to Hcx.

❼ k = 1 is trivial from the definition.

❼ k = 2, then z is a 2-hop neighbor of x and, by definition of the MPR, there will
be a vertex y ∈ N(x) ∩N(z) so that xy ∈ Hcx.

❼ k =⇒ k+1. Let us consider the vertex y ∈ G satisfying dist(x, y) = k, y ∈ N(z).
Note that such node y exists because dist(x, z) = k + 1, and by induction
hypothesis, y is at a distance ≤ 1 from Hcx. Let t be the closest node of Hcx

to y. Then, t is either a neighbor or a 2-hop neighbor of z; in both cases, the
argument for k = 1, 2 concludes that the dist(z, Hcx) ≤ 1, and thus Hcx (and,
more in general, every connected component of H) is dense in G.

Lemma 2 Let G = (V, E) be a network connected graph, and H ⊆ G the subgraph of
G consisting of:

1. H1 ⊆ G: For every vertex x ∈ V , the edges from x to the neighbor vertices
selected by x as MPRs.

2. H2 ⊆ G: For a certain s ∈ V , the edges from s to every neighbor of s.

Then, H is connected.

Proof: It is known from Lemma 1 that, in case that there are several connected

components of H1 (that is, H1 is disconnected), all of them are dense over G, meaning

that every vertex of G has at least a neighbor belonging to each of them. Then, the

subgraph that results from adding the links from any vertex of G (say s ∈ G) to all its

neighbors (H2) to H1 will necessarily be connected. Note that the argument is valid

with an arbitrary s.

Note that these results also imply that the number of connected components
of the MPR graph is upper-bounded by the minimum number of neighbors
achieved by a node within the network.

3.2 MPR-based Topology Pruning Analysis

Let us consider a MPR-based topology pruning algorithm, denoting by such a
distributed topology pruning algorithm that consists of running MPR in every
node of the network. Such algorithm computes its output among a subgraph of
its 2-hop neighborhood, and it has to provide routes to every 2-hop neighbor.
Then, the above-presented properties for the MPR graph apply as well to the
subgraph generated by such MPR-based topology pruning algorithm. In par-
ticular, such subgraph is not necessarily connected (and thus may be unable to
provide shortest paths to all destinations).

According to Lemma 2, the subgraph generated by a MPR-based topology
pruning algorithm is connected if it is joined by the links of any node to its
1-hop neighbors. In particular, for a node x ∈ V (being G = (V,E) a network
connected graph), the subgraph resulting from the union of links from x to
its 1-hop neighbors and the subgraph generated by an MPR-based topology
pruning algorithm is connected. If such algorithm preserves local the shortest
paths from the 2-hop neighbors of x to x, then the resulting subgraph contains
the shortest paths to all destinations in the network (Lemma 3).

Lemma 3 Let G = (V, E) be a network graph, an edge metrics function cost(e ∈ E),
a node s ∈ V and a subgraph G′

s = (V, E′
s) including:

INRIA
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1. the edges connecting s to its 1-hop neighbors, and

2. for every node x of the network, the edges from x to those 1-hop neighbors of x
providing local shortest paths from every 2-hop neighbor of x to x.

Then, the Dijkstra algorithm computed on a source node s over G′
s selects the shortest

paths in G from the source to every possible destination.

Proof: Since the Dijkstra algorithm selects the shortest paths of the graph (w.r.t.
a given metrics cost) over which it is computed, it needs to be proved that the shortest
paths from s in G are contained in G′

s, i.e., SPTs(G) ⊂ G′
s ⊂ G. Let z be an arbitrary

node z ∈ V , szsh−p be the shortest path (w.r.t. cost) between s and z, and let d(x, y)
be the distance in hops between x and y.

❼ If d(s, z) = 1, szsh−p ∈ G′ by condition 1 of the hypothesis.

❼ For d(s, z) = n > 1, let {mi} be the intermediate nodes of szsh−p, so that
d(s, mi) = i. The edge sm1 belongs to G′

s by definition of G′
s (condition 1).

The edge mimi+1 (consider m1z if n = 2) is included in G′
s because mi is part

of the local shortest path from s (2-hop neighbor of mi+1) to mi+1 (condition 2 of
the hypothesis about G′

s). Repeating the argument along szsh−p for {mj}1≤j<n,
leads to the conclusion that all segments sm1, ..., mimi+1, ..., mn−1z belong to
G′

s and thus szsh−p belongs too.

4 Path MPR as Topology Pruning Mechanism

This section focus on a particular case of MPR-based topology pruning algo-
rithm – the Path MPR algorithm, used in the standard OSPF MANET ex-
tension and specified in Appendix B of [3]. Such algorithm is described in
subsection 4.1, and its correctness in terms of preservation of shortest paths
is discussed in subsections 4.2 and 4.3, for unit-cost and arbitrary link cost
scenarios, respectively.

4.1 The Path MPR Algorithm

According to the specification, the Path MPR algorithm intends to ”provide
the router with a Path-MPR set (..) such that for any element of N or N2

that is not in the Path-MPR set, there exists a shortest path that goes from
this element to the router through a neighbor selected as Path-MPR (unless
the shortest path is only one hop)” [3]. The subgraph generated by Path MPR
selection in every node of the network should thus include, for any node x of the
network, the links to x from the neighbors providing local shortest paths (w.r.t.
a given cost function) from the 2-hop neighborhood of x to x. Note that these
links are directed, meaning that the Path MPR supports links with different
costs depending on the direction.

The Path MPR algorithm extracts from the set of 1-hop neighbors of the
computing node x a subset of neighbors (so called N ′(x)) for which the direct
link to x is as well the local shortest path w.r.t. the current metric. The
algorithm extracts as well from the set of 2-hop and 1-hop neighbors of x a
subset of neighbors (so called N ′

2(x)) for which the local shortest path is not
direct (it has 2 hops). Then, it computes the MPR algorithm from x (see
subsection 3.1) over the 2-hop neighborhood subgraph resulting of considering
N ′(x) as 1-hop neighborhood and N ′

2(x) as 2-hop neighborhood. The algorithm
can be thus summarized as follows:

RR n➦ 7329



10 J.A. Cordero

1. Input: x, N(x), N2(x).

2. The following subsets, N ′ ⊆ N , N ′
2 ⊆ N ∪N2, are calculated:

N ′ = {n ∈ N |cost(x, n) = dist(x, n)}

N ′
2 = {n ∈ N, N2|n /∈ N ′, ∃m ∈ N ′ :

: cost(n, m) + cost(m, x) = dist2(n, x)}

3. The router runs the MPR selection procedure with arguments x, N ′(x) and
N ′

2(x).

4. Output: PathMPR(x, N, N2) = MPR(x, N ′, N ′
2)

Note that the Path MPR algorithm is a MPR-based topology pruning algo-
rithm in the sense of subsection 3.2; and therefore the results presented in that
section apply.

4.2 Correctness in Unit Link Costs Scenarios

Let us assume that the network links have a uniform cost. Then, the sets N ′(x)
and N ′

2(x) computed by the Path MPR algorithm from a node x are expressed
as follows:

N ′ = {n ∈ N |cost(x, n) = dist2(x, n)} =

= [cost(x, n) = dist2(x, n) = 1] = N

N ′
2 = {n ∈ N ∪N2|n /∈ N ′, ∃m ∈ N ′ :

: cost(n, m) + cost(m, x) = dist2(n, x)} =

= [N = N ′] = {n ∈ N2|∃m ∈ N :

: cost(n, m) + cost(m, x) = dist2(n, x)} =

= [dist2(n, x) = cost(n, m) + cost(m, x) = 2] = N2

Thus, the Path MPR algorithm becomes equivalent to MPR. Neighbors se-
lected as Path MPRs of a source x provide coverage to/from every 2-hop neigh-
bor of x. Since all paths from 2-hop neighbors to x have a cost 2 (number of
hops), that trivially means that the Path MPR algorithm provides local shortest
paths in unit link cost networks.

4.3 Correctness in Arbitrary Link Costs Scenarios

In case that the link costs can take arbitrary values, the Path MPR algorithm
may be unable to preserve shortest paths 2 hops away from the computing
node. Figure 4 illustrates a simple example in which the Path MPR algorithm
computed on node 1 selects a neighbor not providing local shortest paths from
the 2-hop neighbors of 1 to 1.

INRIA
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1

2

3

4

5

3

1

1

1

1

Figure 4: Path MPR malfunctioning example, w.r.t. node (1).

It is immediate to check that, for this case, the sets N(1) and N ′

2(1) have
the following composition:

N ′(1) = {n ∈ N(1) : cost(n, 1) = dist2(n, 1)} = {2, 3}

N ′
2(1) = {m ∈ N(1) ∪N2(1) : ∃n ∈ N ′(1) :

: cost(m, n) + cost(n, 1) = dist2(n, 1)} = {4, 5}

Thus, according to the algorithm presented in subsection 4.1, the output
from the Path MPR selection would be PathMPR(1) = {3}, since node (3)
would be sufficient for covering all nodes in N ′

2(1) (MPR coverage criterion).
This election would nonetheless not contain the shortest path from (4) to (1),
p∗41 = {42, 21}.

In general terms, the problem shown in figure 4 comes from the fact that
MPR is a cost-agnostic algorithm that only relies on coverage, while the Path
MPR algorithm is expected to select links according to cost minimization rules.
By running MPR over the subgraph formed by N ′(x) and N ′

2(x), the algorithm
may select vertices of N ′(x) providing sub-optimal paths (in terms of cost) from
N ′

2(x) to x, if they provide a better coverage (in terms of number of covered
vertices belonging to N ′

2(x)) than the vertices providing optimal (local shortest)
paths.

5 Fixing the Path MPR algorithm

This section proposes a modification on the Path MPR algorithm in order to
avoid non-optimal paths selection phenomena such as those observed in figure
4. The correction is described and analytically justified in subsections 5.1 and
5.2, whereas subsection 5.3 presents some simulations results that illustrate the
impact of such modification in the algorithm performance.

5.1 Proposed Modification

If the Path MPR algorithm relies on MPR to select the relays providing shortest
paths from 2-hops away to the source, it needs to exclude not only those nodes
not providing sub-optimal paths (N ′(x)\N(x) = {n ∈ N(x) : cost(x, n) >

dist2(x, n)}), but also sub-optimal links (in terms of cost) from the subgraph
over which MPR runs.

Therefore, the subgraph S′

x ⊆ G over which MPR should be run for selecting
the Path MPRs of a node x has the following expression:

RR n➦ 7329



12 J.A. Cordero

V (S′
x) = N ′(x) ∪N ′

2(x)

E(S′
x) = {xn ∈ E(G) : n ∈ N ′(x)} ∪

{nm ∈ E(G) : n ∈ N ′(x), m ∈ N ′
2(x),

cost({xn, nm}) = dist2(x, m)}

5.2 Correctness and Characterization

By construction of the subgraph S′

x, if a path pxz = {xy, yz} is not optimal,
with y ∈ N ′(x), z ∈ N ′

2(x), then yz will not belong to E(S′

x). That assures that
this modification of the Path MPR algorithm is able to select the local (2 hops)
shortest paths to the computing node x. Thus, Lemma 3 applies. That proves
the following Lemma 4:

Lemma 4 Let G = (V, E) be a network graph. Given a vertex x ∈ V representing a
node of the network, let us consider the subgraph Sx ⊆ G which results from joining:

1. the subgraph generated by the Path MPR links of every node in the newtork, and

2. the links from x to its 1-hop neighbors n ∈ N(x).

Then, Sx contains the network-wide shortest paths from x to every other destination
in the network.

5.3 Simulations

The following simulation results illustrate the impact of the proposed modifica-
tion on the Path MPR algorithm.

5.3.1 Configuration

The presented results correspond to the simulation in Maple of ideal, static and
connected networks in which links are bidirectional.

Nodes are distributed uniformly through a fixed square grid (400 × 400m),
and have a uniform radio range r = 150m. Link costs satisfy cost(e) ∈
N, 1 ≤ cost(e) ≤ 10. Results are presented for a random link cost model
(cost ∼ Uniform(1, 10)) and for a distance-based link cost model (cost(xy) =

⌊10dist(x,y)
r

⌋ + 1). Each value corresponds to the mean value of 20 samples.

5.3.2 Average Path Length

The results show that the average length of paths computed from a fixed node id
(chosen 1, without loss of generality) to every other destination in the network.
It can be observed (fig. 5) that the modified algorithm produces significantly
shorter (in terms of cost) paths than the sub-optimal algorithm, not only with
random costs links but also with more realistic distance-based metrics.

INRIA
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Figure 5: Average cost to destination from node (1) with (a) a random cost
matrix, (b) a distance-based cost matrix.

This path cost reduction is at the expense of a slightly higher average number
of hops (and thus of retransmissions). This effect is due to the fact that the
modified algorithm runs MPR on a 2-hop neighborhood subgraph in which some
additional links have been excluded (see subsection 5.1), which causes a larger
or equal number of (cheaper) hops.

5.3.3 Average Number of Advertised Links

The exclusion of non-optimal links in the 2-hop neighborhood subgraph leads
as well to a bigger number of advertised links (fig. 6). Since relays are no longer
selected according to their number of covered 2-hop neighbors, the average num-
ber of covered neighbors per Path MPR drops necessarily, meaning that more
Path MPRs are needed for the same coverage.
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Figure 6: Average number of advertised PMPR links per node, with (a) a
random cost matrix, (b) a distance-based cost matrix.

6 Conclusion

This paper has explored the use of MPR as a basis for topology pruning algo-
rithms for MANETs, addressed to reduce the amount of topology information
required for enabling every node to build its SPT. MPR properties makes it ap-
propiate for optimizing the control traffic dedicated to topology diffusion while
preserving essential information for the nodes. But it needs to be adapted in
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14 J.A. Cordero

order to fulfill the various requirements that such a topology pruning algorithm
imposes. This paper has presented several analytical results in this domain,
both characterizing inner asymptotic properties of MPR and providing suffi-
cient conditions for the correct operation of an MPR-based topology pruning
algorithm.

The paper has examined as well the correctness of the Path MPR algorithm
in various link cost models. It has shown that such algorithm may lead, in
asymptotic conditions, to sub-optimal relay elections which may prevent nodes
to select valid shortest paths. Finally, it has thus proposed and validated for-
mally a modification that overcomes this sub-optimal behavior.
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