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Theorem provers like COQ [3] based on the Curry-
Howard isomorphism enjoy a mechanism which incorpo-
rates computations within deductions. This allows replac-
ing the proof of a proposition by the proof of an equiva-
lent proposition obtained from the former thanks to possibly
complex computations. Adding more power to this mech-
anism leads to a calculus which is more expressive (more
terms are typable), which provides more automation (more
deduction steps are hidden in computations) and, most im-
portantly, eases the use of dependent data types in proof
development.

COQ was initially based on the Calculus of Construc-
tions (CC) of Coquand and Huet [4], which is an impred-
icative type theory incorporating polymorphism, dependent
types and type constructors. At that time, computations
were restricted to β-reduction: other forms of computations
were encoded as deductions.

The Calculus of Inductive Constructions of Coquand and
Paulin [5, 11] introduced inductive types and their associ-
ated elimination rules. CIC permits, for example, a defini-
tion of Peano natural numbers based on the two constructors
0 and S along with the ability to define addition by induc-
tion: x + 0 → x and x + S(y) → S(x + y). The cal-
culus can then identify the expressions x + S(S(y)) and
S(x + y) + S(0), but fails in identifying x + S(y) and
S(x) + y. This forbids users to easily define functions on
dependent data-types (like the reverse function on de-
pendent lists) as the types list(n+ 1) and list(1 + n) will
not be convertible to each other.

In the 90’s, new attempts to incorporate user-defined
computations as rewrite rules were carried out. This re-
sulted in the definition of the Calculus of Algebraic Con-
structions [1]. By introducing the correct rewriting rules,
the calculus is able to identify terms like x + S(y) and
S(x)+y. Although quite powerful (CAC captures CIC [2]),
this paradigm does not yet fulfill all needs, as it fails to iden-
tify open terms like x+ y and y + x.

Further steps in the direction of integrating first-order
theories into the Calculus of Constructions are Stehr’s Open
Calculus of Constructions (OCC) [8] and Oury’s Exten-
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sional Calculus of Constructions (ECC) [7]. OCC allows
the use of an arbitrary equational theory in conversion. ECC
can be seen as a particular case of OCC in which all prov-
able equalities can be used in conversion. Unfortunately,
strong normalization and decidability of type checking are
lost in ECC and OCC.

In [9], we defined the Calculus of Inductive Congruence
Constructions (CCIC), which was our first answer to the
problem of incorporating validity entailment of an equa-
tional first-order theory T in the computation mechanism
of the Calculus of Inductive Constructions. This calculus
partially solved the problem but contained too many ad-hoc
restrictions to be implementable in practice. Besides, the
procedure could not be invoked to solve goals occurring be-
low eliminators.

1. Achievements

Our objective is to incorporate in the Calculus of Induc-
tive Constructions, a general mechanism invoking a deci-
sion procedure for equality in some first-order theory T , for
solving conversion-goals of the form Γ ⇒ U = V . This
mechanism should be simple enough to be implementable
in practice.

Our theoretical contribution is the definition of a new
version of the Calculus of Congruent Inductive Construc-
tions, called COQMT. COQMT integrates in its computa-
tional part the entailment relation - via decision procedures -
of a first order theory T over equalities. A major techni-
cal innovation of COQMT lies in the computational mecha-
nism: goals are sent to the decision procedure together with
a set of user hypotheses available from the current context
Γ of the proof - a mechanism we call equations extraction.

Not only is the new formulation much simpler, but is is
also more general: in particular, we succeeded to remove
the ad-hoc restrictions of CCIC [9]. In particular, conver-
sion now contains the entire equational theory T , allowing
its use below eliminators.

In CCIC, meta-theoretical results were obtained via a
complex sequence of definitions and lemmas. By drasti-
cally simplifying the definition of CCIC, we were able to



carry out the meta-theoretical study of COQMT in a much
simpler way than in [9]: subject reduction, strong normal-
ization of reduction, logical consistency and decidability of
type-checking are all satisfied.

Further, we have formalized CoqMT (without the equa-
tions extraction mechanism) in COQ, and already carried
out part of its formal meta-theoretical study.

We have implemented COQMT, a new version of COQ
based on our work. As of today, this implementation allows
the use of decision procedures in the conversion rule. The
equations extraction mechanism will be released very soon.

We developed in COQMT the theory of dependent lists
as a paradigmatic example. In COQMT, dependent lists
definitions are just those of non-dependent lists which can
be found in Coq. Likewise, proofs of all basic proper-
ties of dependent lists in CoqMT follow from the ones of
non-dependent lists in Coq. The full (commented) develop-
ment can be found in the source release of COQMT (/test-
suite/dp/*).

All these developments are available at on the first author
website 2. An extended abstract of the first author results
can be found in [10].

2. Work in progress

When formalizing abstract mathematical structures and
properties (abstract algebras, lattices, categories, ...), it is
often necessary to use constructions which are not compati-
ble with impredicativity. This problem can be addressed by
introducing a cumulative hierarchy of predicative universes,
and then define the needed constructions in this hierarchy.
Indeed, the current version of COQ has such a type hierar-
chy, which is similar to the one of [6], except for the im-
predicative universe of propositions situated at the bottom
of the hierarchy.

Although the current implementation of COQMT- as an
extension of COQ - makes use of this type hierarchy, we
did not study the meta-theory of such a calculus. We have
strong reasons to believe that the introduction of decision
procedures, as done in COQMT, is compatible with the in-
troduction of a type hierarchy. We have recently started this
study as a part of the PhD work of the second author, which
aims at studying the metatheory of the Coq and CoqMT im-
plementations.

3. Perpectives

The extraction mechanism under implementation in CO-
QMT will allow much more than described in Sections 1
and 2: using extracted equations below eliminators and
within the reduction mechanism will be possible.

2http://strub.nu/research/coqmt/

In the theoretical model, however, reduction modulo T
cannot use extracted equations, since otherwise potential
user’s inconsistencies could propagate and compromise the
logical consistency of the calculus. A work-around would
be to only use, during reduction, a subset of extracted equa-
tions consistent by construction. Although the idea is quite
straightforward, the many dependencies between conver-
sion, reduction modulo and consistency of extracted equa-
tions make it difficult to get a definition which meets our
requirement of simplicity.

Further, we plan to extend the extraction mechanism
(currently restricted to equations) to arbitrary first-order
propositions, possibly using other predicates (like the or-
dering on natural numbers) or universal quantification.

Finally, we plan to define a more general calculus where
decision procedures are seen as heuristics tagging the terms
of the calculus with non-intrusive conversion markers. Such
a calculus would capture COQMT, allow the use of incom-
plete decision procedures, and lead to a more elegant imple-
mentation of COQMT.

Acknowledgment: we thank Jean-Pierre Jouannaud for
useful discussions.
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