
HAL Id: inria-00498482
https://hal.inria.fr/inria-00498482

Submitted on 7 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Quality of your Software with MoQam
Jannik Laval, Alexandre Bergel, Stéphane Ducasse

To cite this version:
Jannik Laval, Alexandre Bergel, Stéphane Ducasse. Assessing the Quality of your Software with
MoQam. FAMOOSr 2008 - 2nd Workshop on FAMIX and Moose in Reengineering, Oct 2008, Antwerp,
Belgium. �inria-00498482�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50073326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00498482
https://hal.archives-ouvertes.fr

Assessing the Quality of your Software with MoQam

Jannik Laval, Alexandre Bergel, Stéphane Ducasse
RMoD Team, INRIA, Lille, France

firstname.lastname@inria.fr

1. INTRODUCTION
Over the last decade, the need for quality in software has increased.

Several quality models have been proposed [4, 6, 11]. These mod-

els emphasize the need to have quality checks while developing a

software program. As far as we are aware of, no model to assess

quality of existing software have reached a significant acceptance.

This paper describes the Qualixo quality model. Qualixo is an

open-source quality model developed by several companies and

pushed further in the context of the Squale research project. Ac-

cording to Marinescu and Ratiu [9], Qualixo can be classified as a

Factor-Criteria-Metrics quality model. Qualixo is being applied in

large companies such as AirFrance or PSA. It uses measurements

to assess software quality. These measurements cover a number

of different aspects of a software, including specification accuracy,

programming rules, and test coverage. Qualixo has been origi-

nally implemented on top of Eclipse. In this paper we present Mo-

Qam (Moose Quality Assessment Model), the implementation of

the Qualixo quality model in the Moose open-source reengineering

environment.

This paper is organized as follows: Section 2 presents the model

and its four components. Section 3 describes how the model is

implemented in Moose. Section 4 offers two examples of notation

and a real test of MoQam. Section 5 gives a brief overview of the

related works, and finally, Section 6 concludes.

2. OVERVIEW OF THE QUALIXO MODEL
The model defined by Qualixo is composed of four elements, each

having a different granularity. Figure 1 presents the four levels of

the Qualixo model. Starting from the most fine-grained element it

is composed of:

• a metric is a measurement directly computed from the pro-

gram source code. The current implementation provides 17

metrics.

• a practice assesses one quality of a model. A practice is as-

sociated to one or more metrics. 50 practices are currently

implemented.

• a criteria assesses one principle of software quality by weight-

ing a set of practices. Such a principle could be safety, sim-

plicity, or modularity. For now, 15 criteria are implemented.

• a factor represents the highest quality assessment. A factor

is computed over a set of weighted criteria. 6 factors are

currently available and are explained in a following section.

aMetric

aPractice

aCriterion

aFactor

aMetricaMetric

aPracticeaPractice

... ...

Figure 1: Meta-model of Qualixo Model.

Metrics. A metric is a measurement on a source code. it is a

function that returns a numerical value which evaluate a source

code. As such, metrics are considered as low level. Literature on

metrics provides a significant amount of metrics such as the well

known Depth Inheritance Tree (DIT, INH) and Specialization Index

(SIX) [5,7,8]. Figure 2 shows the different information collected to

fully represent a metric. It is composed by an acronym, a name and

a list of alternative names (a metric may have several name), a for-

mulae referencing a function object, a version number (the version

number refers to possible different implementations of the same

metrics), a reference pointing to the articles precisely defining the

metrics, possible metrics that could be used to replace the current

one, a reference source and their associated results against which

the metric can be tested for non-regression, supportedBy lists the

list of tools implementing the metrics.

Practices. A practice is a composition of metrics that weights

and scales the metric’s value down to make it range between 0 and

3. By convention, 3 is a good mark meaning that the software un-

der analyses does it well for the given metric. A practice may be

associated to one or more metrics.

1

acronym
name
alternateNames
version
formula
definedInArticles
supportedBy

Metric

substituableBy

JUnit,
Source code

validatedOn

name
version
formula
ponderation
isDiscrete

Practice

usedBy

usedBy

Figure 2: Meta model for metrics.

The practice formula is defined in two different ways: either by a

continuous function, or by a discrete function using metric thresh-

olds. For example, a discrete function is used in practice Inheri-

tance Size. It is based on Depth Inheritance Tree (DIT) [8].

Value is 0 if DIT > 7
Value is 1 if SIX > 6
Value is 2 if SIX > 5
Value is 3 if SIX =< 5

A practice is a formula based on metrics. Most of the time, the for-

mula weights different metrics it is combining to emphasize a par-

ticular characteristic of the software under analysis. A practice may

be discrete or not. A discrete function is used by certain practices

to highlight component which are badly noted. It imposes thresh-

olds which should not be exceeded whereas a continuous function

is linear.

As an illustration, consider the practice Coupling Class Efferent. It

is based on the Coupling Between Object (CBO) metric [2]. This

formula returns a value between 0 and 3:

FAMIXClass>>notationOfComponentEfferentCoupling
| result |
result:= ((10- (self sureReferencedClasses size))/3) exp.
(result < 0) ifTrue: [^ 0].
(result > 3) ifTrue: [^ 3].
^ result

Another interesting practice is Documentation. In our implementa-

tion, this practice is associated with FAMIXMethod entity since it is

based on metrics Number of Lines of Code which counts the lines of

codes (and is equivalent to LOC) and Number Of Comments which

counts the number of lines of comments.

Quality Criteria. Practices are gathered and balanced to de-

fine criteria values. A criteria groups practices by categories. For

example, the criteria level of interdependence groups practices ef-

ferent coupling class and related coupling class because these two

practices show dependencies between classes.

Quality Factor. A factor gives a mark, called a quality factor,

between 0 and 3 for an average of criteria. Note that the criteria

used by a factor must be coherent and, for example, measures the

same entities. A factor is the highest level of evaluation. There-

fore, a factory quality is computed for the whole program and may

potentially covers all elements of the meta-model.

Six quality factors are currently defined in Qualixo:

• Functional capacity represents the adequacy between the needs

and functionalities offered.

• Architecture corresponds to the technical architecture qual-

ity.

• Maintainability represents the facility to correct residual er-

rors.

• Capacity to evolve measures the capacity to add functionali-

ties.

• Capacity to re-use represents faculty to re-use the code arti-

facts.

• Reliability represents the stability of the program.

Thus, a complete assessment of a software system results in 6 qual-

ity factor. A quality factor below 1 is interpreted as a failure in

meeting its quality objective. Between 1 and 2, the quality objec-

tive is considered as achieved with reserve. Above 2, the objective

is considered as achieved.

Applying the Qualixo model on a given software system cannot be

fully automated. Some metrics cannot be automatically extracted

from the code, and thus require human intervention. Typically, met-

rics related to the documentation fall into this category.

3. IMPLEMENTATION
MoQam is the partial implementation of the Qualixo model on

top of the Moose reengineering environment [3, 10] based on the

FAMIX source code meta-model (See Figure 3). Only metrics that

can be automatically computed are covered by our implementation.

Therefore, practices, criteria and factors related to these software

metrics are provided by our implementation (9 practices, 4 criteria,

a part of 2 factors).

Our implementation enriches FAMIX element classes: class related

metrics and practices are implemented as extension in FAMIXClass,

method related metrics and practices in FAMIXMethod, package re-

lated metrics and practices in FAMIXPackage.

Moose comes with a large set of metrics. MoQam benefits from

them by mapping each MoQam metric into a Moose one. As factors

and criteria are application level aggregates, they are implemented

in the class MooseModel.

As an example, consider the practice Inheritance Size. It aggregates

one metric: DIT, which is weighted by a discrete function as shown

in ncInheritance, and then is weighted by npInheritance. The prac-

tice does an average of the weighting function and returns a result

between 0 and 3. The implementation is the following:

FAMIXClass>>DIT
^ self superclassHierarchy size

2

1..*

1..*

1..*

1..*

Factor

Criteria

PracticeAuto PracticeManual

characterize

1..*

1..*

characterize

used by

Source code

External Tool

substituableBy

name
language
metricsProposedByTool

Interface

acronym
name
alternateNames
version
formula
definedInArticles
supportedBy

Metric

name
version
formula
ponderation
isDiscrete

Practice

validatedOn

1..1

1..1

1..* 1..*use

isCalledBy

use

Figure 3: Qualixo meta-model implementation in FAMIX.

FAMIXClass>>notationOfComponentInheritance
(self dit > 7) ifTrue:[ˆ 0].
(self dit > 6) ifTrue:[ˆ 1].
(self dit > 5) ifTrue:[ˆ 2].
^ 3

FAMIXClass>>notationOfPracticepInheritance
^ (20 ** ((self notationOfComponentInheritance) negated))

MooseModel>>practiceInheritanceSize
| practice result |
practice:= self allClasses inject: 0 into:

[:first:each | first + each notationOfPracticepInheritance].
result:= practice / self allClasses size.
^ ((result log) / (20 log)negated)

4. CASE STUDIES
We apply the Qualixo model to two large software systems: Moose

(170 Classes) and ArgoUML (1654 Classes). Yet, just some prac-

tices and criteria are implemented.

Moose. This is a test of MoQam Implementation on the package

Moose. Just some practices are tested here:

result for practiceAfferentCoupling 1.47
result for practiceEfferentCoupling 1.04
result for practiceDocumentation 0
result for practiceInheritanceSize 0.83
result for practiceMethodsNumber: 3
result for practiceMethodsSize: 0
result for practiceSpaghettiCode: 0

Here, we can say:

• Links between classes are acceptable (practiceAfferentCou-

pling is equal to 1.47 and practiceEfferentCoupling is equal

to 1.04)

• There is little or no documentation (practiceDocumentation)

in methods.

• The depth inheritance tree is bad (practiceInheritanceSize

less than 1). When we look the inheritance tree of MooseC-

ore, we can notice that some classes have a hierarchy size

higher than 6 (like all classes which inherit from FAMIXAb-

stractNamedEntity). The DIT of the class FAMIXAbstract-

NamedEntity is 5, because DIT is calculated from the class

Object. So this is clearly an indication that the metric should

be interpreted since we know that the inheritance hierarchy

of Moose and in particular the FAMIX model is good and

optimal.

• The number of methods for a class is good (practiceMethod-

sNumber).

• But the size of methods and its complexity is high (prac-

ticeMethodsSize and practiceSpaghettiCode).

Here, results show mainly that this is less documentation and it is

necessary to add this. The result

ArgoUML. This is a test of MoQam Implementation on ArgoUML.

Just some practice are tested here:

result for practiceAfferentCoupling: 3.0
result for practiceEfferentCoupling: 3.0
result for practiceDocumentation: 0
result for practiceInheritanceSize: 0.3541
result for practiceMethodsNumber: 0.0012
result for practiceMethodsSize: 0
result for practiceSpaghettiCode: 0

We can say that just links between classes are good. The rest has

bad notation : there is no or little documentation, the inheritance

tree is high, the number, the size and the complexity of methods is

high.

Then criteria can be computed: the criterion criteriaInterdepen-

danceLevel is an average of practiceAfferentCoupling and practice-

EfferentCoupling. Thus its result is 3.0, the level of independence

of ArgoUML is very good. And the criterion criteriaSimplicity

is an average of practiceSpaghettiCode, practiceMethodsNumber

and PracticeMethodSize. Thus its result is 0, the simplicity of Ar-

goUML is very bad.

This list shows that we can improve the software. According to

the results, things to do is : first, to add more documentation in

methods and to review the number and the size of methods and

third to analysis the inheritance tree because it is high.

This analysis can be used by managers or engineers to improve the

process of reengineering of a software.

5. RELATED WORK
Swat4j. Swat4j1 is a quality model for Java. It comes with about

30+ Metrics and about 100+ Industry Standard Best Practice Rules.

Swat4j is designed based on the principles of ISO 9126-1 (Quality

Model) and ISO 9126-3 (Software Product Quality, Internal Met-

rics).

1http://www.codeswat.com

3

http://www.codeswat.com

Hierarchical model. The Quality Model for Object-Oriented De-

sign (QMOOD) model in use has lower-level design metrics de-

fined in terms of design characteristics, and quality is assessed as an

aggregation of the model’s individual high-level quality attributes.

These high-level attributes are assessed using a set of empirically

identified and weighted object-oriented design properties [1].

QMOOD involves four levels (L1 through L4), and three mappings

(L12, L23, L34) used to connect the four levels. While defining the

levels involves identifying design quality attributes, quality carry-

ing design properties, object-oriented design metrics, and object-

oriented design components, defining the mapping involves con-

necting adjacent levels by relating a lower level to the next higher

level.

QMOOD assesses for each component its quality. Squale provides

globals appreciations in terms of factors.

Detection strategies. Marinescu and Ratiu [9] raised the follow-

ing question How should we deal with measurement results? After

having pinpointed few limitations in Factor-Criteria-Metric mod-

els (e.g., obscure mapping of quality criteria onto metrics, poor

capacity to map quality problems to causes), they introduce detec-

tion strategies as a generic mechanism for analyzing a source code

model using metrics. The use of metrics in the detection strategies

is based on mechanisms of filtering and composition. A filtering

operation is characterized with thresholds and extremities. Com-

position operators are and, or, butnotin.

Based on the detection strategy mechanism, a new quality model

is proposed, called Factor-Strategy. This model uses a decompo-

sitional approach, but after decomposing quality in factors, these

factors are not anymore associated directly with a bunch of num-

bers. Instead, quality factors are now expressed and evaluated in

terms of detection strategies, which are the quantified expressions

of the good-style design rules for the object-oriented paradigm.

6. CONCLUSION
This paper describes MoQam, an implementation of a quality model

for software named Qualixo. An implementation is also described

and two case studies have been realized. Results of these case stud-

ies are encouraging to continue to develop it.

This approach has three positive points. First, MoQam uses four

levels of granularity, which offers different scopes for an analysis.

Second, the weighting to calculate the practices allow bad coding

style to be highlighted. Third, these results may be used in a dash-

board.

Future work will focus on four points: first, we will weight prac-

tices to calculate criteria. That allows the same purpose that the

weighting of practices: we will be able to highlight bad program-

ming style. Second, we will integrate some metrics to compare and

replace metrics which can be debatable (like LCOM, which can be

replaced by TCC and LCC (Tight and Loose Class Cohesion), for

example). The third thing is to integrate the manual practices of

the model to have all factors functional. We project to experiment

this model on several package which we wish to study. The Fourth

point is to allow to personalize criteria (which practices used) and

factors (which criteria used) according to project.

7. REFERENCES

[1] J. Bansiya and C. Davis. A hierarchical model for

object-oriented design quality assessment. IEEE

Transactions on Software Engineering, 28(1):4–17, Jan.

2002.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for

object oriented design. IEEE Transactions on Software

Engineering, 20(6):476–493, June 1994.

[3] S. Ducasse, T. Gîrba, M. Lanza, and S. Demeyer. Moose: a

collaborative and extensible reengineering environment. In

Tools for Software Maintenance and Reengineering, RCOST

/ Software Technology Series, pages 55–71. Franco Angeli,

Milano, 2005.

[4] R. L. Glass. Building Quality Software. Prentice-Hall, 1997.

[5] B. Henderson-Sellers. Object-Oriented Metrics: Measures of

Complexity. Prentice-Hall, 1996.

[6] H.-W. Jung, S.-G. Kim, and C.-S. Chung. Measuring

software product quality: A survey of iso/iec 9126. IEEE

Softw., 21(5):88–92, 2004.

[7] S. H. Kan. Metrics and Models in Software Quality

Engineering. Addison Wesley, 2002.

[8] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A

Practical Guide. Prentice-Hall, 1994.

[9] R. Marinescu and D. Raţiu. Quantifying the quality of

object-oriented design: the factor-strategy model. In

Proceedings 11th Working Conference on Reverse

Engineering (WCRE’04), pages 192–201, Los Alamitos CA,

2004. IEEE Computer Society Press.

[10] O. Nierstrasz, S. Ducasse, and T. Gîrba. The story of Moose:

an agile reengineering environment. In Proceedings of the

European Software Engineering Conference (ESEC/FSE’05),

pages 1–10, New York NY, 2005. ACM Press. Invited paper.

[11] D. Spinellis. Code Reading The Open Source Perspective.

Addison-Wesley, 2003.

4

	Introduction
	Overview of the Qualixo Model
	Implementation
	Case Studies
	Related Work
	Conclusion
	References

