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Abstract One of the challenges that come from the emergence of Grid architectures is to
invent new programming techniques for these new platforms. As we explain
in this article, we think that the architecture of the applications should reflect
both the parallel and the distributed aspects of Grid architectures. It results in
applications built as assemblies of parallel components. Since Grid architectures
are known to be highly dynamic, using resources efficiently on such architectures
is a challenging problem. Software must be able to react dynamically to the
changes of the underlying execution environment. In order to help developers to
create software for the Grid, we are investigating a model for the adaptation of
parallel components. This paper focuses on the adaptation mechanisms that are
provided as a meta-level for components. We describe how a generic platform
can help to develop efficient Grid software. First experimental results show the
gain that can be expected from the use of such a platform.

Keywords: Grid computing, dynamic self-adaptation, parallelism, software component, re-
flexive programming.
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1. Introduction

Research in Grid computing mainly focuses on the development of middle-
ware and services allowing applications to use various distributed resources.
Infrastructures and toolkits such as OGSA [3] and previously Globus [5] pro-
vide tools allowing naming and discovery of resources; they also provide the
necessary services for applications to deal with the underlying heterogeneity of
the Grid. Those projects provide the users with useful tools for deploying and
running applications without explicitly dealing with the various batch queues,
communication libraries and so on, installed on the local sites.

Although resource allocation and scheduling are taken into account, these
tools give no help for applications to make efficient use of the available Grid
resources at run time. Due to the dynamic nature of the Grid, it is also very
hard to design an application that fits well with any configuration of the Grid.
Moreover, constraints such as the number of available processors, their respec-
tive load level, available memory and network bandwidth are not static. The
bandwidth between sites running some parts of the same application may vary
during the execution time or some processors may be requested by other ap-
plications. For example, the CPU manager described in [8] may dynamically
change the number of processors allocated to each application. We think that
in many cases, application performance can be greatly improved when any part
of an application can take into account varying resources eg. is able to adapt
its behavior to “environmental changes”.

Because Grid applications are also quite complex, many approaches now rely
on service-oriented technologies such as OGSA [3] or on component-based ap-
proaches [11] such as CCM [9]. This helps building reusable software. Within
these programming techniques, one of the main issue is the so called “sepa-
ration of concerns” paradigm. Entities implementing distinct functionalities
should be located in different modules, objects, services or components. In the
remaining of this paper, the term “component” stands for any of these kinds of
pieces of application.

Our work focuses on the problem of adapting parallel codes encapsulated in
components to varying constraints on resources. In this paper, we show how to
combine parallel programming and adaptation techniques in a unified frame-
work. As a first step, this paper focuses on the adaptation of the inner parallel
code of a component. In section 1.2, we describe parallel objects and parallel
components. Section 1.3 is devoted to the presentation of adaptation techniques
in the context of scarce resources, putting the emphasis on the description of
the ACEEL framework. Section 1.4 presents the application model we con-
sider. Section 1.5 explains how we transpose adaptation models to the parallel
case to build a unified framework. The results of our experiments are given in
section 1.6. As a conclusion, we describe the main steps of our ongoing work.
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2. Parallel distributed objects for the Grid

During the last decade, improvements have been made in terms of soft-
ware reusability when object then component technologies appeared in many
application fields other than high performance computing. Because Grid archi-
tectures are complex, heterogeneous and dynamic, they make the development
of parallel applications more complex. Now, it becomes necessary for high per-
formance applications to adopt technologies enforcing code reusability. Well-
known component models such as CCM or Enterprise Java Beans should be
a good basis but they were not designed with performance and parallelism in
mind, so they have not been able to take into account High Performance Grid
applications.

In order to improve these environments, several projects have studied how
parallel code could be encapsulated within objects or components. Projects such
as PARDIS [7] and PaCO++ [2] have focused on increasing performances of
parallel distributed objects. They consider a parallel object as a set of identical
sequential objects. The same definition also applies to GridCCM [10] within
the component world.

Those projects allow to encapsulate SPMD code into so called “high per-
formance CORBA objects/components”. When a parallel object/component
has to process a remote call, each process executes one part of the processing
related to one part of the data set. The parallelism comes from the distribution
of the parameters.

In order to get some performance out of high-speed networks, an enhanced
request protocol has been defined among parallel objects/components: servers
allow their clients to “see” their internal structure and distribution at run time.
This allows parallel clients to send data directly from the source process to the
target process: data do not need to be received/sent by a single master object.
This multi-port communication mode allows to use the aggregated bandwidth,
which can be higher than if only one centralized communication port was used.

These approaches have shown that it is now possible to use component-based
techniques for programming high performance applications on the Grid without
loosing performance. The next step is to be able to have components that are
more flexible to allow the adaptation (not only the configuration) of parallel
codes.

3. Dynamic adaptation of components

In the area of wireless computing and mobile environments where resources
are a key issue, many techniques of dynamic adaptation have been developed:
from the observation of the environment, codes can adapt their behavior to fit
the resource constraints. This adaptation can be achieved in many different
ways ranging from a simple modification of some parameters to the complete
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exchange of the running code with a new one that is more suited to the envi-
ronment.

The adaptation could be achieved by designing ad hoc applications that take
into account the specificities of the targeted environment. For example, this
was done for the Web applications access protocol on mobile networks by
defining the WAP protocol [12]. A more general way to allow an application
to evolve according to its environment is to provide mechanisms that permit
dynamic self-adaptation by changing the behavior depending on the currently
available resources. In many cases, this has been achieved by embedding the
adaptation mechanism within the application code. For example, the AdOC
compression algorithm [6] includes such a mechanism to change dynamically
the compression level according to the available resources. However, it is
desirable to separate the adaptation engine from the application code in order to
make the code easier to maintain and to easily change or improve the adaptation
policy. In this case, a framework that provides generic mechanisms for the
adaptation process and for the definition of the adaptation rules is needed. This
is the case for example of the ACEEL framework.

Figure 1. Architecture of an ACEEL component
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ACEEL [1] is a generic framework for self-adaptable components that allows
the developer to focus on the implementations of the functionalities of his
component and on its adaptation policy: it separates the adaptability aspect
from the functional part of the component, as shown by the architecture of an
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ACEEL component on figure 1. Based on the Strategy design pattern [4], the
component offers a set of possible implementations, called behaviors. At any
time, only one behavior is active: the one that processes the incoming requests.
The generic adapter meta-object decides which of the available behaviors the
best to use according to the environment is. To help the adapter object to
decide, the component developer provides a policy as a set of event-based
rules: each rule is a triggering change of the environment associated with a
reaction, which might be either the activation of another behavior or the tuning
of some parameters. When a change in the characteristics or availability of a
resource happens, the monitoring engine notifies the adapter of the components
that depend on this resource for their adaptation policy. The context holds the
state of the component. Separating the state from the implementation makes it
easier to replace dynamically the implementation of the component.

4. A programming model for Grid applications

The applications we target in our project are “Grid applications”; they may be
composed of several parallel codes, so in our model, an application is considered
to be built as an assembly of components. Each component is deployed on a
site that is a parallel machine such as a cluster. As a first step, we focus on
the deployment and execution of one component and we do not investigate the
relations between components. In our model, each component is both parallel
and adaptable.

A component is parallel: this means that it is composed of a number of
internal processes working together to execute a given service. These processes
communicate between each other using a communication library such as PVM
or MPI or through a distributed shared memory. Here, we do not require
specifying how those processes are encapsulated within the component: this
aspect relies on constraints of existing components platforms such as GridCCM.

A component is adaptable: the platform where components are deployed can
monitor the resources of the deployment site and allow any component to react
to any change in the state of the resources.

We think that it makes sense to allow one single component to adapt itself
dynamically in most Grid environments for two main reasons. First, one char-
acteristic of Grid architectures is that sites are administrated independently one
from another and of the users of the Grid. It is thus possible that the site into
which the component is deployed is modified while the component is running.
Secondly, in a longer term, we can consider component migration as a spe-
cial case of adaptation. Because the sites implied in the migration may have
different characteristics, the adaptation of the component will be needed.
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5. Adaptation of parallel components

A parallel self-adaptable component is a component that is composed of sev-
eral processes working together and that is able to change its behavior according
to the changes of the environment.

5.1 Structure of the components

The structure of parallel self-adaptable components includes an adaptation
policy, a set of available implementations, called behaviors, and a set of reaction
steps.

The purpose of the adaptation policy is to define when the adaptation mech-
anism should be triggered and what should be the associated reactions. It is
mostly a set of event-based rules. Each rule associates a reaction to a specific
event. Events represent any change in the state of the environment. For ex-
ample, an adaptation policy can include the rule: “if the number of nodes is
increased, spawn new processes and redistribute arrays”. This rule shows both
the trigger event and the associated reaction.

Behaviors are implementations of the component. Each behavior differs
from the others in the way it uses resources and/or in the algorithm used. Each
behavior of a component implements the whole interface of the component;
they just use different ways. The active behavior is the one used to process the
incoming requests. The expression “functional code” denotes any code that is
productive and that resides in the behaviors.

Reaction steps are the means by which the component adapts itself. It can
be for example the replacement of the active behavior, the tuning of some
parameters, or the redistribution of arrays. These pieces of code are dynamically
inserted in the execution flow when the component adapts itself. Reactions must
ensure that they leave the component in such a consistent state that the execution
can resume and lead to the same result than if no reaction has been executed.

Because reactions must enforce the consistency of the component, reaction
steps cannot be inserted at any time in the execution flow. In order to specify
the places at which the component is able to adapt itself safely, we define the
notion of adaptation point.

5.2 Semantic of adaptation points

An adaptation point is an annotation in the code that indicates where the
component can be safely modified. The developer indicates that the behavior
is able to suspend in a consistent state and to resume from this state at an
adaptation point, no matter which behaviors and reaction steps combination
leads the component to that state.
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The platform enforces the mutual exclusion between the functional code
and reactions: it ensures that reactions might only be executed when the func-
tional code is suspended at an adaptation point. Adaptation points are thus the
moments at which reaction steps can be inserted in the execution flow.

Reaction steps must ensure that if the state of the component is consistent,
it remains consistent after the execution of the whole reaction. The scope of
this consistency includes both the variables of the component and the active
behavior. This means that the functional code should not be able to determine
whether a particular reaction step has been executed at a particular adaptation
point. Adaptation points are almost invisible to the functional code.

An adaptation point is said active when a reaction is scheduled at that adap-
tation point. Otherwise, the adaptation point is said inactive.

5.3 Introducing global adaptation points

Because several processes may collaborate during a single reaction, they need
to be synchronized and coordinated. As for global consistent states in distributed
systems, some of the combinations of adaptation points do not represent valid
states at which the component is able to adapt itself.

Adaptation points are local to each process; so are the annotated states. For
that reason, adaptation points are not sufficient to specify states at which the
whole behavior can be modified. This is why the developer has to give explic-
itly a compatibility relationship between the adaptation points of each process
of the behavior in order to allow the platform to find consistent states. The
platform enforces the fact that reactions can only be executed when all the pro-
cesses are suspended on adaptation points that are compatible with each other.
Those global adaptation points specify global states at which the component is
able to adapt itself, global states at which the developer permits the adaptation
mechanism to be executed. Our model only specifies the semantic of global
adaptation points: the developer should place them to indicate the global states
at which he thinks the adaptation can occur safely.

5.4 Building a host platform

We consider that modern programming techniques should conform to the
“separation of concerns” paradigm. For this reason, we think that adaptability
should be a service given by the platform that hosts the component is deployed.
Figure 2 shows the overall architecture of a platform hosting a parallel self-
adaptable component.

The platform mainly provides two kinds of objects: the decider and the
coordinators. The decider is the object that makes the decisions: it decides when
(events to watch) and how (reactions to execute) the component should adapt
itself according to the adaptation policy. It bases its decisions on the reports
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Figure 2. Overall architecture of a parallel self-adaptable component
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given by the monitors that are interfaced with the platform. The monitors
are daemons that track and report changes in the state of the environment.
The coordinators execute the directives given by the decider: they serve as
intermediaries between the code of the component and the platform. Their role
is to synchronize the adaptation mechanism with the functional code and to
coordinate the execution of the reactions.

When a monitor detects a change in the state of the resources it watches, it
notifies the decider. The decider then interprets the given adaptation policy.
During this step, the decider might query the monitors for a detailed report on
the state of the resources. If it concludes that there is no need to adapt, it stops
the adaptation process until the next notification from a monitor; otherwise, it
broadcasts its decision to the coordinators, which decide collectively when the
reaction is effectively executed. This is done by selecting a global adaptation
point - and activating the corresponding adaptation point of each process. Once
a process reaches an active adaptation point, its coordinator executes the reaction
chosen by the decider.

6. Experimental results

In order to validate the feasibility of our approach, we have built a prototype
platform that partially implements the model we have proposed.
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6.1 Test platform

The test platform we developed implements a subset of the model. It con-
centrates on SPMD applications. The adaptation points we implemented allow
to execute user-defined reaction.

Although the application we use in our tests seems simple, it is sufficient
to show that our adaptation model works well with parallel applications with-
out significant performance degradation. Our application is a generic vector
iteration that distributes its vectors using a block scheme. It uses MPI for its
communications. Its adaptation policy is to use as many nodes as the moni-
tor reports: it spawns new processes when nodes are added to the system and
terminates the processes that use nodes reclaimed by the system. Because the
MPI implementation we use cannot dynamically spawn or terminate processes,
the application starts with a fixed number of processes, but uses only the re-
ported number. For this reason, we simulate the monitoring of the number of
available processors; this also allows us to have full-control over the adaptation
mechanism. We place one adaptation point between iterations.

6.2 Gain of the adaptation

In this experience, once the application has been started, the number of
available nodes is increased from 4 to 6. Figure 3 shows the elapsed time at the
end of the iterations. The execution of the reaction occurs between iterations 12

Figure 3. Execution time of an adaptable application
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and 13; this appears as a break on the curve. This figure shows that several
iterations are needed in order to balance the cost of the execution of the reaction.
In the long term, the gain of the adaptable version over the original application
is substantial. The amount of iterations needed before the adaptable version
becomes effectively better depends on the reaction that has been executed and
on the component itself.

6.3 Overhead of the adaptation platform

We compared the execution time of the original application and of its adapt-
able version in a totally static environment. The difference linearly depends
on the number of encountered adaptation points. It shows the time needed to
initialize the platform and the execution time lost in adaptation points. The
execution time overheads are shown in table 1, depending on the number of
encountered adaptation points. This measure is very noisy. The execution time
lost in each adaptation point seems constant at about 0.2 milliseconds.

Table 1. Execution time for several iterations count

Adaptation points Overhead (ms)

50 264.9
100 295.6
150 304.3
200 376.4
250 278.5

6.4 Ease of use

Our prototype assumes that the application is iterative and that adaptation
points only reside between iterations. The reason is that it makes it easier to
build the state of spawned processes. However, our model does not impose
such a restriction.

One of the hardest questions to answer to when using the platform is the
placement of adaptation points and their frequency. For our experiments, we
arbitrarily place one adaptation point per iteration, but there was no a priori
reason for doing so. Having many adaptation points makes the application
more reactive to environmental changes at the cost of an increased overhead.
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7. Conclusion

In this paper, we have shown that the idea of combining a dynamic adaptation
framework with parallelism and distribution is a promising way for efficiently
programming the Grid. We have built a prototype that extends the ACEEL adap-
tation engine to take into account the parallelism that can reside in components.
This allowed us to experiment our ideas.

Our model complies with the separation of concerns paradigm, since it com-
pletely separates the adaptation mechanism from the functional code of the
component. Moreover, it provides a basis for the dynamic adaptation of paral-
lel code, whereas many projects have focused on their configuration at startup.
This separation allowed us to experiment our idea without integrating a full-
featured component platform. However, we expect that building application
using a component infrastructure help doing the adaptation. Indeed, contain-
ers offered by the component infrastructures are a privileged place into which
non-functional services (such as security or adaptation) should reside. Those
containers also help doing the adaptation with their introspection ability.

In our ongoing works, we plan to define more formally the properties that the
component is required to satisfy in order to be able to adapt itself. This includes
the properties of global states where an adaptation can occur. The constraints
on behavior replacement should also be investigated. The goal of those studies
is to help the developer when establishing constraints on the adaptation. We
expect this will allow to detect automatically valid adaptation points or at least
to check that the points specified by the developer are correct.

Studying the relationship between fault tolerance systems that use check-
pointing and adaptation in the context of Grid computing is an important per-
spective. Firstly, finding shared properties between checkpoints and adapta-
tion points would be of great help in establishing properties and constraints
on adaptation point placement. Secondly, fault tolerant systems suppose that
the execution environment is dynamic since any fault results in changes in the
environment. Keeping in mind fault-tolerance related works seems a natural
approach since they share with adaptation the need to find “special points” at
which the execution can resume. However, fault tolerance systems try to repair
faults rolling-back the execution, whereas adaptation does its best until the code
is able to react.

By the time, we have only studied the overall architecture for the adaptation
of parallel codes. Our work is currently focusing on how to choose the global
adaptation point at which the reaction steps should be executed. This work is
going to lead to the definition of an algorithm to suspend the execution in a
well-defined point without rollback.

We have no precise idea of the overhead required from the developer to
make a component able to adapt itself using a generic framework. However,
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several examples exist of parallel codes made dynamically adaptable in an ad-
hoc way and we expect that having a generic framework simplifies the task of
the developer. In order to have a reasonable opinion about this subject, we plan
to study how several parallel and distributed codes can be made self-adaptable.
In particular, we think of how parallel discrete event simulators can be modified
to adapt itself to the execution environment. We expect from these experiments
to get a measurement of the work such a goal needs.
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