
HAL Id: hal-00502586
https://hal.archives-ouvertes.fr/hal-00502586

Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the 7th Python in Science conference
Gaël Varoquaux, Travis Vaught, Jarrod Millman

To cite this version:
Gaël Varoquaux, Travis Vaught, Jarrod Millman. Proceedings of the 7th Python in Science conference.
SciPy 2008: 7th Python in Science Conference, Aug 2008, Pasadena, United States. pp.1-78. �hal-
00502586�

https://hal.archives-ouvertes.fr/hal-00502586
https://hal.archives-ouvertes.fr


Proceedings of the 7th Python in Science
Conference

SciPy Conference – Pasadena, CA, August 19-24, 2008.

Editors: Gaël Varoquaux, Travis Vaught, Jarrod Millman





Proceedings of the 7th Python in Science Conference (SciPy 2008)

Contents

Editorial 3

G. Varoquaux, T. Vaught, J. Millman

The State of SciPy 5

J. Millman, T. Vaught

Exploring Network Structure, Dynamics, and Function using NetworkX 11

A. Hagberg, D. Schult, P. Swart

Interval Arithmetic: Python Implementation and Applications 16

S. Taschini

Experiences Using SciPy for Computer Vision Research 22

D. Eads, E. Rosten

The SciPy Documentation Project (Technical Overview) 27

S. Van der Walt

Matplotlib Solves the Riddle of the Sphinx 29

M. Droettboom

The SciPy Documentation Project 33

J. Harrington

Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy 36

V. Laidler, P. Greenfield, I. Busko, R. Jedrzejewski

How the Large Synoptic Survey Telescope (LSST) is using Python 39

R. Lupton

Realtime Astronomical Time-series Classification and Broadcast Pipeline 42

D. Starr, J. Bloom, J. Brewer

Analysis and Visualization of Multi-Scale Astrophysical Simulations Using Python and NumPy 46

M. Turk

Mayavi: Making 3D Data Visualization Reusable 51

P. Ramachandran, G. Varoquaux

Finite Element Modeling of Contact and Impact Problems Using Python 57

R. Krauss

Circuitscape: A Tool for Landscape Ecology 62

V. Shah, B. McRae

Summarizing Complexity in High Dimensional Spaces 66

K. Young

Converting Python Functions to Dynamically Compiled C 70

I. Schnell

1



unPython: Converting Python Numerical Programs into C 73

R. Garg, J. Amaral

The content of the articles of the Proceedings of the Python in Science Conference is copyrighted and owned
by their original authors.

For republication or other use of the material published, please contact the copyright owners to obtain permis-
sion.

2



Proceedings of the 7th Python in Science Conference (SciPy 2008)

Editorial

Gael Varoquaux (gael.varoquaux@normalesup.org) – Neurospin, CEA Saclay , Bât 145, 91191 Gif-sur-Yvette
France

Travis Vaught (tvaught@enthought.com) – Enthought, Austin TX USA

Jarrod Millman (millman@berkeley.edu) – University of California Berkeley, Berkeley CA USA

The Annual Scipy Conference began in 2002 with a
gathering of some extremely bright (and admittedly
odd and passionate) folks. They gathered at the Cal-
tech campus in Pasadena, California to discover and
share ideas about a compelling approach to scientific
computing. These pioneers had been using Python, a
dynamic language, to perform and drive their model-
ing, data exploration and scientific workflows. At that
time, Python already had the advantage of a very fast
numerics library as well as the flexibility of being in-
terpreted, procedural (if you wanted it to be), and,
in a true academic spirit, permissively open source.
That gathering 7 years ago yielded many interesting
ideas, but more importantly, it crystalized a commu-
nity and established relationships that persist today.
From those inauspicious beginnings, the conference has
now grown to a fully international meeting attracting
a variety of interests—yet still inspired by the propo-
sition of a humane language interface to fast compu-
tation, data analysis and visualization.

This year marked the 7th edition of the conference;
however, it is the first edition for which proceedings
are to be published. We are thrilled by this new devel-
opment. These proceedings are the sign of a maturing
community not only of developers, but also of scientific
users. Python’s use as a tool for producing scientific
results is, by now, well established. Its status as the
subject of research and academic publication is now
being recognized and we hope that the proceedings
of the SciPy Conference will help communicate how
scientists and engineers are using and building upon
various Python tools to solve their problems. Commu-
nication is indeed paramount to both the software and
the scientific community. A scientist needs access to
the methods of others; he also needs to get academic
credit for his work, which is often measured in publi-
cations and citations. A developer needs to be aware
of the ongoing software efforts to reduce duplication of
effort; he also needs to advertise his work to potential
users.

The variety of subjects covered in the talks, and in the
following proceedings, is striking because is shows the
extent of the use made of these tools in heterogeneous
communities. This is the power of open source projects
and a key factor to their success. Different actors are
able to contribute to the quality of the tools in ways
unique to their field and interests, resulting in a whole
stack that is much greater than the sum of its parts.

Among the scientific results presented this year, there
is a strong presence of the astronomy community—a
community that has a long history in software en-
gineering and is an early adopter of Python. Also

of note were the inroads that Python has gained in
many other contexts, ranging from ecology and neu-
roimaging, to mechanical engineering and computer
vision. As presented at the conference, scientists are
attracted to Python by the quality and ease of use
of the language itself, and the richness of the exist-
ing scientific packages. Another major presence at the
conference this year was the more abstract-oriented
research fields of mathematics or graph theory. The
SAGE project has been very successful at building
upon Python to give a consistent package for num-
ber theory, or computational mathematics in general.
More component-oriented mathematical projects such
as NetworkX, for graph theory, or pyinterval, for inter-
val arithmetic, contribute to the stack from a very dif-
ferent perspective than the usual array-manipulating
numerical packages. Finally, a sizable fraction of the
talks where focused on the current effort to improve
the available tools. On the numerical side, the focus
is on speed, with some research in compiling part or
all of the Python code to fast machine code. We also
note a strong effort on the documentation of the tools,
where there has been a tremendous amount of work
toward filling a historical gap in user docs.

The SciPy Conference has been supported since its
creation by the Center for Advanced Computing Re-
search, at CalTech, and Enthought Inc. In addition,
this year we were delighted to receive funding from
the Python Software Foundation which allowed us to
pay for travel, conference fees and accommodation for
10 students. We are very grateful to Leah Jones, of
Enthought, and Julie Ponce, of the CACR (Caltech),
for their invaluable help in organizing the conference.
The conference, like much of the software presented,
was truly a global effort and we are hopeful that the
impact will continue to grow.
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The State of SciPy

Jarrod Millman (millman@berkeley.edu) – University of California Berkeley, Berkeley, CA USA

Travis Vaught (travis@enthought.com) – Enthought, Austin, TX USA

The annual SciPy conference provides a unique op-
portunity to reflect on the state of scientific pro-
gramming in Python. In this paper, we will look
back on where we have been, discuss where we are,
and ask where we are going as a community.

Given the numerous people, projects, packages, and
mailing lists that make up the growing SciPy commu-
nity, it can be difficult to keep track of all the disparate
developments. In fact, the annual SciPy conference is
one of the few events that brings together the commu-
nity in a concerted manner. So it is, perhaps, appro-
priate that we begin the conference proceedings with
a paper titled “The State of SciPy”. Our hope is we
can help provide the context for the many interesting
and more specific papers to follow. We also aim to
promote a much more detailed discussion of the state
of the project, community, and software stack, which
will continue throughout the year.

The last year has seen a large number of exciting de-
velopments in our community. We have had numer-
ous software releases, increased integration between
projects, increased test coverage, and improved docu-
mentation. There has also been increased focus on im-
proving release management and code review. While
many of the papers in the proceedings describe the
content of these developments, this paper attempts to
focus on the view from 10,000 feet.

This paper is organized in three sections. First, we
present a brief and selective historical overview. Sec-
ond, we highlight some of the important developments
from the last year. In particular, we cover the status of
both NumPy and SciPy, community building events,
and the larger ecosystem for scientific computing in
Python. Finally, we raise the question of where the
community is heading and what we should focus on
during the coming year. The major goal of the last
section is to provide some thoughts for a roadmap for-
ward—to improve how the various projects fit together
to create a more unified user environment.

In addition to this being the first year that we have
published conference proceedings, it is also the first
time we have had a formal presentation on the state
of SciPy. It is our hope that these will both continue
in future conferences.

Past: Where we have been

Before highlighting some of the communities’ accom-
plishments this year, we briefly present a history of
scientific computing in Python. Since almost the first
release of Python, there has been interest in the scien-
tific community for using Python. Python is an ideal
choice for scientific programming; it is a mature, ro-
bust, widely-used, and open source language that is

freely distributable for both academic and commercial
use. It has a simple, expressive, and accessible syntax.
It does not impose a single programming paradigm
on scientists but allows one to code at many levels
of sophistication, including Matlab style procedural
programming familiar to many scientists. Python is
available in an easily installable form for almost ev-
ery software platform, including Windows, Macintosh,
Linux, Solaris, FreeBSD and many others. It is there-
fore well suited to a heterogeneous computing environ-
ment. Python is also powerful enough to manage the
complexity of large applications, supporting functional
programming, object-oriented programming, generic
programming, and metaprogramming. In contrast,
commercial languages like Matlab and IDL, which also
support a simple syntax, do not scale well to many
complex programming tasks. Lastly, Python offers
strong support for parallel computing. Because it is
freely available, and installed by default on most Unix
machines, Python is an excellent parallel computing
client.

Using Python allows us to build on scientific program-
ming technologies that have been under active devel-
opment and use for over 10 years; while, at the same
time, it allows us to use mixed language program-
ming (primarily C, C++, FORTRAN, and Matlab)
integrated under a unified Python interface. IPython
(ipython.scipy.org) is the de facto standard interac-
tive shell in the scientic computing community. It has
many features for object introspection, system shell ac-
cess, and its own special command system for adding
functionality when working interactively. It is a very
efficient environment both for Python code develop-
ment and for exploration of problems using Python
objects (in situations like data analysis). Further-
more, the IPython has support for interactive paral-
lel computing. Matplotlib (matplotlib.sourceforge.net)
is a tool for 2D plots and graphs, which has become
the standard tool for scientific visualization in Python.
NumPy (numpy.scipy.org) is a high-quality, fast, stable
package for N-dimensional array mathematics. SciPy
(scipy.org) is a collection of Python tools providing
an assortment of basic scientific programming algo-
rithms (e.g., statistics, optimization, signal process-
ing, etc.). The combination of IPython, matplotlib,
NumPy, and SciPy forms the basis of a Matlab-like
environment that provides many of the strengths of
Matlab (platform independence, simple syntax, high
level algorithms, and visualization routines) without
its limitations (proprietary, closed source with a weak
object model and limited networking capabilities).

Here is a selective timeline:

• 1994 — Python Matrix object (Jim Fulton)
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• 1995 — Numeric born (Jim Hugunin, Konrad Hin-
sen, Paul Dubois, David Ascher, Jim Fulton)

• 2000 — Numeric moves to sourceforge (Project reg-
istered as numpy)

• 2001 — SciPy born (Pearu Peterson, Travis
Oliphant, Eric Jones)

• 2001 — IPython born (Fernando Perez)

• 2002 — SciPy ’02 - Python for Scientific Computing
Workshop

• 2003 — matplotlib born (John Hunter)

• 2003 — Numarray (Perry Greenfield, J. Todd Miller,
Rick White, Paul Barrett)

• 2006 — NumPy 1.0 Released

Present: Where we are

With the release of NumPy 1.0 in 2006, the commu-
nity had a new foundation layer for scientific comput-
ing built on the mature, stable Numeric codebase with
all the advanced functionality and features developed
in Numarray. Of course, the existing scientific software
had to be ported to NumPy. While Travis Oliphant
spent a considerable effort to ensure that this would
be as simple as possible, it did take some time for all
the various projects to convert.

This is the second conference for the community since
the release of NumPy. At this point, most projects
have adopted NumPy as their underlying numeric li-
brary.

NumPy and SciPy packages

For several months leading up to last year’s conference,
we were in the unfortunate position that the current
releases of NumPy and SciPy were incompatible. At
the conference we decided to resolve this by releasing
NumPy 1.0.3.1 and SciPy 0.5.2.1. These releases in-
cluded a few other minor fixes, but didn’t include the
bulk of the changes from the trunk. Since then we have
had three releases of NumPy and one release of SciPy:

• SciPy 0.6.0 (September 2007)

• NumPy 1.0.4 (November 2007)

• NumPy 1.1.0 (May 2008)

• NumPy 1.1.1 (August 2008)

These releases featured a large number of features,
speed-ups, bug-fixes, tests, and improved documenta-
tion.

• New masked arrays — MaskedArray now subclasses
ndarray. The behavior of the new MaskedArray

class reproduces the old one.

• Overhaul of IO Code — The NumPy/SciPy IO code
is undergoing a major reworking. NumPy will pro-
vide basic IO code for handling NumPy arrays, while
SciPy will house file readers and writers for third-
party data formats (data, audio, video, image, etc.).
NumPy also supports a new standard binary file for-
mat (.npy/.npz) for arrays/groups_of_arrays. This
is the new default method of storing arrays; pickling
arrays is discouraged.

• Better packaging — The win32 installer now solves
the previously recurring problem of non-working at-
las on different sets of CPU. The new installer simply
checks which CPU it is on, and installs the appro-
priate NumPy accordingly (without atlas if the CPU
is not supported). We also now provide an official
Universal Mac binary.

• Improved test coverage — This year has seen a con-
certed focus on better test coverage as well as a push
for test-driven development. An increasing number
of developers are requesting patches or commits to
include unit tests.

• Adopted Python Style Guide [PEP8] — For years
the official naming convention for classes in NumPy
and SciPy was lower_underscore_separated. Since
the official Python convention used CapWords for
classes as well as several SciPy-related projects (e.g.,
ETS, matplotlib), it was confusing and led to both
standards being used in our codebase. Going for-
ward, newly created classes should adhere to the
Python naming convention. Obviously, we will have
to keep some of the old class names around so that
we don’t needlessly break backward compatibility.

Version numbering. During the lead up to the 1.1.0
release, it became apparent that we needed to become
more disciplined in our use of release version number-
ing. Our current release versioning uses three numbers,
separated by periods <major.minor.bugfix>.1 De-
velopment code for a new release appends an alphanu-
meric string to the upcoming release numbers, which
designate that status (e.g., alpha, beta) of the devel-
opment code. For example, here is a key to the current
minor 1.2.x release series:

• 1.2.0dev5627 — development version 5627

• 1.2.0a1 - first alpha release

• 1.2.0b2 — second beta release

• 1.2.0rc1 — first release candidate

• 1.2.0 — first stable release

• 1.2.1 — first bug-fix release

http://conference.scipy.org/proceedings/SciPy2008/paper_1 6
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According to this numbering scheme, the NumPy 2.0.0
release will be the first in this series to allow us to make
more significant changes, which would require large-
scale API breaks. The idea being that a major release
might require people rewriting code where a minor re-
lease would require a no more than a small amount
of refactoring. Bug-fix releases will not require any
changes to code depending on our software.

Buildbot. Albert Strasheim and Stéfan van der Walt
set up a buildbot for numpy shortly before last year’s
SciPy conference. The buildbot is an automated sys-
tem for building and testing. This allows the devel-
opers and release manager to better track the ongoing
evolution of the software.

Community Involvement

The level of community involvement in the project has
seen solid growth over the last year. There were nu-
merous coding sprints, training sessions, and confer-
ence events. We also held a number of documentation
and bug-fix days. And Gaël Varoquaux set up a SciPy
blog aggregator early in 2008, which currently has al-
most fifteen subscribers:

http://planet.scipy.org/

Sprints. Sprints have become popular coding activi-
ties among many open-source projects. As the name
implies, sprints are essentially short, focused coding
periods where project members work together in the
same physical location. By bringing developers in
same location for short-periods of time allows them
to socialize, collaborate, and communicate more ef-
fectively than working together remotely. While the
SciPy community has had sprints for a number of
years, this year saw a marked increase. Here is a list
of a few of them:

• August 2007 — SciPy 2007 post-conference sprint

• December 2007 — SciPy sprint at UC Berkeley

• February 2008 — SciPy/SAGE sprint at Enthought

• March 2008 — NIPY/IPython sprint in Paris

• April 2008 — SciPy sprint at UC Berkeley

• July 2008 — Mayavi sprint at Enthought

Conferences. In addition to the SciPy 2008 confer-
ence, SciPy has had a major presence in several other
conferences this year:

• PyCon 2008 — Travis Oliphant and Eric Jones
taught a tutorial session titled “Introduction to
NumPy” and another titled “Tools for Scientific
Computing in Python”. While, John Hunter taught
a session titled “Python plotting with matplotlib
and pylab”.

• 2008 SIAM annual meeting — Fernando Perez and
Randy LeVeque organized a 3-part minisymposium
entitled “Python and Sage: Open Source Scientific
Computing”, which were extremely well received
and chosen for the conference highlights page.

• EuroSciPy 2008 — The first ever EuroSciPy confer-
ence was held in Leipzig, Germany on Saturday and
Sunday July 26-27, 2008. Travis Oliphant delivered
the keynote talk on the history of NumPy/SciPy.
There were about 45 attendees.

The Larger Ecosystem

The NumPy and SciPy packages form the basis for a
much larger collection of projects and tools for scien-
tific computing in Python. While many of the core de-
velopers from this larger ecosystem will be discussing
recent project developments during the conference, we
want to selectively highlight some of the exciting de-
velopments in the larger community.
Major Releases. In addition to releases of NumPy
and SciPy, there have been a number of important re-
leases.

• matplotlib 0.98 — Matplotlib is a core component of
the stack, and the 0.98 release contains a rewrite of
the transforms code. It also features mathtext with-
out the need of LaTeX installed, and a 500-pages-
long user-guide.

• ETS 3 — The Enthought Tool Suite (ETS) is a col-
lection of components developed by Enthought and
their partners. The cornerstone on which these tools
rest is the Traits package, which provides explicit
type declarations in Python; its features include ini-
tialization, validation, delegation, notification, and
visualization of typed attributes.

• Mayavi 2 — This Mayavi release is a very important
one, as Mayavi 2 now implements all the features of
the original Mayavi 1 application. In addition, it is
a reusable library, useful as a 3D visualization com-
ponent in the SciPy ecosystem.

• IPython 0.9 — This release of IPython marks the
integration of the parallel computing code with the
core IPython interactive shell.

Distribution. While the quantity and quality of
the many scientific Python package has been one the
strengths of our community, a mechanism to easily
and simply install all these packages has been a weak-
ness. While package distribution is an area that still
needs improvement, the situation has greatly improved
this year. For years the major Linux distributions
have provided official packages of the core scienti-
tific Python projects including NumPy, SciPy, mat-
plotlib, and IPython. Also starting with version 10.5
“Leopard”, Mac OS X ships with NumPy 1.0.1 pre-
installed. Also, as mentioned above, the NumPy and

1The NumPy 1.0.3.1 and SciPy 0.5.2.1 releases being an aberration from this numbering scheme. In retrospect, those releases
should have been numbered 1.0.4 and 0.5.3 respectively.
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SciPy projects have worked to provide better binary
installers for Windows and Mac. This year has also
seen a number of exciting efforts to provide a one stop
answer to scientific Python software distribution:

• Python Package Index — While there are still many
issues involving the wide-spread adoption of setup-
tools, an increasing number of projects are providing
binary eggs on the Python Packaging Index. This
means an increasing number of scientists and engi-
neers can easily install scientific Python packages
using easy_install.

• Python(x,y) — www.pythonxy.com

• EPD — Enthought Python Distribution,
www.enthought.com/epd

• Sage — Sage is a Python-based system which aims
at providing an open source, free alternative to exist-
ing proprietary mathematical software and does so
by integrating multiple open source projects, as well
as providing its own native functionality in many ar-
eas. It includes by default many scientific packages
including NumPy, SciPy, matplotlib, and IPython.

Cool New Tools. There were also several useful
tools:

• Sphinx — Documentation-generation tool.

• Cython — New Pyrex: mixing statically-typed,
compiled code with dynamically-typed code, with
a Python-like syntax.

Future: Where are we going?

What will the future hold? - Improved release manage-
ment. - More regular releases. - Clear policy on API
and ABI changes. - Better unification of the existing
projects.

In the broader view, our ecosystem would benefit from
more project cohesion and common branding, as well
as an IDE (integrated development environment), an
end-user application that would serve as an entry point
to the different technologies.

NumPy and SciPy packages

NumPy 1.2 and SciPy 0.7 are on track to be released
by the end of this month. This is the first synchronous
release since NumPy last August. SciPy 0.7 will re-
quire NumPy 1.2 and both releases require Python 2.4
or greater and feature:

• Sphinx-based documentation — This summer saw
the first NumPy Documentation Marathon, during
which many thousands of lines of documentation
were written. In addition, a web framework was de-
veloped which allows the community to contribute
docstrings in a wiki-like fashion, without needing ac-
cess to the source repository. The new reference

guide, which is based on these contributions, was
built using the popular Sphinx tool. While the doc-
umentation coverage is now better than ever, there
is still a lot of work to be done, and we encourage
interested parties to register and contribute further.

• Guide to NumPy — Travis Oliphant released his
“Guide to NumPy” for free and checked it into the
trunk. Work has already begun to convert it to the
ReST format used by Sphinx.

• Nose-based testing framework — The NumPy test
framework now relies on the nose testing framework
version 0.10 or later.

In addition, SciPy 0.7 includes a whole host of new
features and improvements including:

• Major sparse matrices improvements —

• Sandbox removed — The sandbox was originally in-
tended to be a staging ground for packages that were
undergoing rapid development during the port of
SciPy to NumPy. It was also a place where bro-
ken code could live. It was never intended to stay in
the trunk this long and was finally removed.

• New packages and modules — Several new packages
and modules have been added including constants,
radial basis functions, hierarchical clustering, and
distance measures.

Python 3.0. Python 2.6 and 3.0 should be released
before the end of the year. Python 3.0 is a new major
release that breaks backward compatibility with 2.x.
The 2.6 release is provided to ease forward compatibil-
ity. We will need to keep supporting Python 2.x for the
at least the near future. If needed, once released we
will provide bug-fix releases to the current releases of
NumPy and SciPy to ensure that they run on Python
2.6. We don’t currently have a time-frame for Python
3.0 support, but we would like to have a Python 3.0
compatible releases before next year’s SciPy confer-
ence. The [PEP3000] recommends:

1. You should have excellent unit tests with close to
full coverage.

2. Port your project to Python 2.6.

3. Turn on the Py3k warnings mode.

4. Test and edit until no warnings remain.

5. Use the 2to3 tool to convert this source code to 3.0
syntax. Do not manually edit the output!

6. Test the converted source code under 3.0.

7. If problems are found, make corrections to the 2.6
version of the source code and go back to step 3.

8. When it’s time to release, release separate 2.6 and
3.0 tarballs (or whatever archive form you use for
releases).

http://conference.scipy.org/proceedings/SciPy2008/paper_1 8
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Release Management

While we were able to greatly improve the quality of
our releases this year, the release process was a much
less than ideal. Features and API-changes continually
creep in immediately before releases. Release sched-
ules repeatedly slipped. And the last SciPy release is
out of date compared to the trunk. Obviously these
problems are not unique to our project. Software de-
velopment is tricky and requires balancing many dif-
ferent factors and a large distributed project like ours
has the added complexity of coordinating the activ-
ity of many different people. During the last year,
we had several thoughtful conversations about how to
improve the situation. A major opportunity for our
project this year will be trying to improve the quality
of our release management. In particular, we will need
to revisit issues involving release management, version
control, and code review.

Time Based Releases. Determining when and how
to make a new release is a difficult problem for software
development projects. While there are many ways to
decide when to release code, it is common to think in
terms of feature- and time-based releases:

[Feature-based]

A release cycle under this model is driven by
deciding what features will be in the next re-
lease. Once all the features are complete, the
code is stabilized and finally a release is made.
Obviously this makes it relatively easy to pre-
dict what features will be in the next release,
but extremely difficult to determine when the
release will occur.

[Time-based]

A release cycle under this model is driven by
deciding when the next release will be. This, of
course, makes predicting when the release will
be out extremely easy, but makes it difficult to
know exactly what features will be included in
the release.

Over the last several years, many large, distributed,
open-source projects have moved to time-based release
management. There has been a fair amount of in-
terest among the SciPy development community to
move in this direction as well. Time-based releases
are increasingly seen as an antidote to the issues as-
sociated with more feature driven development in dis-
tributed, volunteer development projects (e.g., lack of
planning, continual release delays, out of date soft-
ware, bug reports against old code, frustration among
developers and users). Time-based releases also allows
“a more controlled development and release process in
projects which have little control of their contributors
and therefore contributes to the quality of the output”
[Mic07]. It also moves the ‘release when it’s ready’ pol-
icy down to the level of specific features rather than
holding the entire code base hostage.

A major objective of time-based releases is regular
releases with less time between releases. This rapid

pace of regular releases, in turn, enables more effi-
cient developer coordination, better short and long
term planning, and more timely user feedback, which
is more easily incorporated into the development pro-
cess. Time-based releases promote more incremental
development, while they discourage large-scale modifi-
cations that exceed the time constraints of the release
cycle.

An essential feature of moving to time-based releases is
determining the length of the release cycle. With a few
notable exceptions (e.g., Linux kernel), most projects
have followed the GNOME 6-month release cycle, orig-
inally proposed by Havoc Pennington [Pen02]. In or-
der to ensure that the project will succeed at meeting a
6-month time frame requires introducing new policies
and infrastructure to support the new release strat-
egy. And the control mechanisms established by those
policies and infrastructure have to be enforced.

In brief, here is a partial list of issues we will need
to address in order to successfully move to time-based
release schedule:

• Branching — In order to be able to release on
schedule requires that the mainline of development
(the trunk) is extremely stable. This requires that
a significant amount of work being conducted on
branches.

• Reviewing — Another important way to improve the
quality of project and keep the trunk in shape is to
require peer code review and consensus among the
core developers on which branches are ready to be
merged.

• Testing — A full test suite is also essential for being
able to regularly release code.

• Reverting — Sticking to release schedule requires
occasionally reverting commits.

• Postponing — It also requires postponing branch
merges until the branch is ready for release.

• Releasing — Since time-based release management
relies on a regular releases, the cost of making a re-
lease needs to be minimized. In particular, we need
to make it much, much easier to create the packages,
post the binaries, create the release notes, and send
out the announcements.

An important concern when using time-based releases
in open-source projects is this very ability to work rel-
atively “privately” on code and then easily contribute
it back to the trunk when it is finally ready.

Given how easy it is for developers to create their own
private branches and independently work on them us-
ing revision control for as long as they wish, it is impor-
tant to provide social incentives to encourage regular
collaboration and interaction with the other members
of the project. Working in the open is a core value of
the open-source development model. Next we will look
at two mechanisms for improving developer

9 http://conference.scipy.org/proceedings/SciPy2008/paper_1
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Proposals. Currently there is no obvious mecha-
nism for getting new features accepted into NumPy or
SciPy. Anyone with commit access to the trunk may
simply start adding new features. Often, the person
developing the new feature, will run the feature by the
list. While this has served us to this point, the lack of
a formal mechanism for feature proposals is less than
ideal.
Python has addressed this general issue by requiring
proposals for new features conform to a standard de-
sign document called a Python Enhancement Proposal
(or “PEP”). During the last year, several feature pro-
posals were written following this model:

• A Simple File Format for NumPy Arrays [NEP1]

• Implementing date/time types in NumPy

• Matrix Indexing

• Runtime Optimization

• Solvers Proposal

Code Review. We also lack a formal mechanism for
code review. Developers simply commit code directly
to the trunk. Recently there has been some interest in
leveraging the Rietveld Code Review Tool developed
by Guido van Rossum [Ros08]. Rietveld provides web-
based code review for subversion projects. Another
option would be to use bzr and the code review func-
tionality integrated with Launchpad.
Code review provides a mechanism for validating de-
sign and implementation of patches and/or branches.
It also increases consistency in design and coding style.
Distributed Version Control. While subversion
provides support for branching and merging, it is not
its best feature. The difficult of branch tracking and
merging under subversion is pronounced enough that
most subversion users shy away from it. Since there is
a clear advantage to leverage branch development with
time-based releases, we will want to consider using ver-
sion control mechanisms that provide better branching
support.
Distributed Version Control Systems (DVCS), unlike
centralized systems such as subversion, have no tech-
nical concept of a central repository where everyone
in the project pulls and pushes changes. Under DVCS
every developer typically works on his own local repos-
itory or branch. Since everyone has their own branch,
the mechanism of code sharing is merging. Given that
with DVCS, branching and merging are essential activ-
ities, they are extremely well-supported. This makes
working on branches and then merging the code in the
trunk only once it is ready extremely simple and easy.
DVCS also have the advantage that they can be used
off-line. Since anyone can create their own branch from
the project trunk, it potentially lowers the barrier to
project participation. This has the potential to cre-
ate a greater culture of meritocracy than traditional
central version control systems, which require poten-
tial project contributors to acquire “committer” status
before gaining the ability to commit code changes to
the repository. Finally, DVCS makes it much easier

to do private work—allowing you to use revision con-
trol for preliminary work that you may not want to
publish.

Proposed Release Schedule. Assuming we (1)
agree to move to a time-based release, (2) figure out
how to continuously keep the trunk in releasable con-
dition, and (3) reduce the manual effort required to
make both stable and development releases, we should
be able to increase the frequencies of our releases con-
siderably.

Devel Stable

Oct 1.3.0b1 1.2.1
Nov 1.3.0rc1
Nov 1.3.0
Jan 1.4.0a1 1.3.1
Mar 1.4.0b1 1.3.2
Apr 1.4.0rc1
May 1.4.0rc1 1.3.3

subsystem maintainers, release conference calls, irc
meetings, synchronized releases of NumPy and SciPy.

Getting involved

• Documentation

• Bug-fixes

• Testing

• Code contributions

• Active Mailing list participation

• Start a local SciPy group

• Code sprints

• Documentation/Bug-fix Days

• Web design
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NetworkX is a Python language package for explo-
ration and analysis of networks and network algo-
rithms. The core package provides data structures
for representing many types of networks, or graphs,
including simple graphs, directed graphs, and graphs
with parallel edges and self-loops. The nodes in Net-
workX graphs can be any (hashable) Python object
and edges can contain arbitrary data; this flexibil-
ity makes NetworkX ideal for representing networks
found in many different scientific fields.

In addition to the basic data structures many graph
algorithms are implemented for calculating network
properties and structure measures: shortest paths,
betweenness centrality, clustering, and degree dis-
tribution and many more. NetworkX can read and
write various graph formats for easy exchange with
existing data, and provides generators for many
classic graphs and popular graph models, such as
the Erdos-Renyi, Small World, and Barabasi-Albert
models.

The ease-of-use and flexibility of the Python pro-
gramming language together with connection to the
SciPy tools make NetworkX a powerful tool for sci-
entific computations. We discuss some of our recent
work studying synchronization of coupled oscillators
to demonstrate how NetworkX enables research in
the field of computational networks.

Introduction

Recent major advances in the theory of networks com-
bined with the ability to collect large-scale network
data has increased interest in exploring and analyz-
ing large networks [New03] [BNFT04]. Applications of
network analysis techniques are found in many scien-
tific and technological research areas such as gene ex-
pression and protein interaction networks, Web Graph
structure, Internet traffic analysis, social and collab-
orative networks including contact networks for the
spread of diseases. The rapid growth in network theory
has been fueled by its multidisciplinary impact; it pro-
vides an important tool in a systems approach to the
understanding of many complex systems, especially in
the biological sciences.

In these research areas and others, specialized software
tools are available that solve domain-specific problems
but there are few open-source general-purpose compu-
tational network tools [CN] [OFS08]. NetworkX was
developed in response to the need for a well-tested and
well-documented, open source network analysis tool
that can easily span research application domains. It
has effectively served as a platform to design theory

and algorithms, to rapidly test new hypotheses and
models, and to teach the theory of networks.

The structure of a network, or graph, is encoded in the
edges (connections, links, ties, arcs, bonds) between
nodes (vertices, sites, actors). NetworkX provides ba-
sic network data structures for the representation of
simple graphs, directed graphs, and graphs with self-
loops and parallel edges. It allows (almost) arbitrary
objects as nodes and can associate arbitrary objects to
edges. This is a powerful advantage; the network struc-
ture can be integrated with custom objects and data
structures, complementing any pre-existing code and
allowing network analysis in any application setting
without significant software development. Once a net-
work is represented as a NetworkX object, the network
structure can be analyzed using standard algorithms
for finding degree distributions (number of edges inci-
dent to each node), clustering coefficients (number of
triangles each node is part of), shortest paths, spectral
measures, and communities.

We began developing NetworkX in 2002 to analyze
data and intervention strategies for the epidemic
spread of disease [EGK02] and to study the structure
and dynamics of social, biological, and infrastructure
networks. The initial development was driven by our
need for rapid development in a collaborative, mul-
tidisciplinary environment. Our initial goals were to
build an open-source tool base that could easily grow
in a multidisciplinary environment with users and de-
velopers that were not necessarily experts in program-
ming or software engineering. We wanted to interface
easily with existing code written in C, C++, and FOR-
TRAN, and to painlessly slurp in large nonstandard
data sets (one of our early tests involve studying dy-
namics on a 1.6 million node graph with roughly 10
million edges that were changing with time). Python
satisfied all of our requirements but there was no ex-
isting API or graph implementation that was suitable
for our project. Inspired by a 1998 essay by Python
creator Guido van Rossum on a Python graph repre-
sentation [vR98] we developed NetworkX as a tool for
the field of computational networks. NetworkX had
a public premier at the 2004 SciPy annual conference
and was released as open source software in April 2005.

In this paper we describe NetworkX and demonstrate
how it has enabled our recent work studying synchro-
nization of coupled oscillators. In the following we give
a brief introduction to NetworkX with basic examples
that demonstrate some of the classes, data structures,
and algorithms. After that we describe in detail a re-
search project in which NetworkX plays a central role.
We conclude with examples of how others have used
NetworkX in research and education.
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Using NetworkX

To get started with NetworkX you will need the
Python language system and the NetworkX package.
Both are included in several standard operating system
packages [pac]. NetworkX is easy to install and we sug-
gest you visit the project website to make sure you have
the latest software version and documentation [HSS].
In some of the following examples we also show how
NetworkX interacts with other optional Python pack-
ages such as NumPy, SciPy, and Matplotlib, and we
suggest you also consider installing those; NetworkX
will automatically use them if they are available.

The basic Graph class is used to hold the network in-
formation. Nodes can be added as follows:

>>> import networkx

>>> G = networkx.Graph()

>>> G.add_node(1) # integer

>>> G.add_node(’a’) # string

>>> print G.nodes()

[’a’, 1]

Nodes can be any hashable object such as strings, num-
bers, files, or functions,

>>> import math

>>> G.add_node(math.cos) # cosine function

>>> fh = open(’tmp.txt’,’w’)

>>> G.add_node(fh) # file handle

>>> print G.nodes()

[<built-in function cos>,

<open file ’tmp.txt’, mode ’w’ at 0x30dc38>]

Edges, or links, between nodes are represented as tu-
ples of nodes. They can be added simply

>>> G.add_edge(1,’a’)

>>> G.add_edge(’b’,math.cos)

>>> print G.edges()

[(’b’, <built-in function cos>), (’a’, 1)]

When adding an edge, if the nodes do not already exist
they are automatically added to the graph.

Edge data d can be associated with the edge by adding
an edge as a 3-tuple (u, v, d). The default value for
d is the integer 1 but any valid Python object is al-
lowed. Using numbers as edge data allows a natural
way to express weighted networks. In the following ex-
ample we use Dĳkstra’s algorithm to find the shortest
weighted path through a simple network of four edges
with weights.

>>> G = networkx.Graph()

>>> e = [(’a’,’b’,0.3),(’b’,’c’,0.9),

(’a’,’c’,0.5),(’c’,’d’,1.2)]

>>> G.add_edges_from(e)

>>> print networkx.dijsktra_path(G,’a’,’d’)

[’a’, ’c’, ’d’]

NetworkX includes functions for computing network
statistics and metrics such as diameter, degree distri-
bution, number of connected components, clustering
coefficient, and betweenness centrality. In addition,
generators for many classic graphs and random graph
models are provided. These graphs are useful for mod-
eling and analysis of network data and also for testing
new algorithms or network metrics. The following ex-
ample shows how to generate and compute some statis-
tics for a network consisting of a path with 6 nodes:

>>> G = networkx.path_graph(6)

>>> print G.degree()

[1, 2, 2, 2, 2, 1]

>>> print networkx.density(G)

0.333333333333

>>> print networkx.diameter(G)

5

>>> print networkx.degree_histogram(G)

[0, 2, 4]

>>> print networkx.betweenness_centrality(G)

{0: 0.0, 1: 0.4, 2: 0.6, 3: 0.6, 4: 0.4, 5: 0.0}

NetworkX leverages existing Python libraries to ex-
tend the available functionality with interfaces to well-
tested numerical and statistical libraries written in C,
C++ and FORTRAN. NetworkX graphs can easily be
converted to NumPy matrices and SciPy sparse matri-
ces to leverage the linear algebra, statistics, and other
tools from those packages. For example, to study the
eigenvalue spectrum of the graph Laplacian the Net-
workX laplacian() function returns a NumPy matrix
representation. The eigenvalues can be then easily
computed using the numpy.linalg sub-package

>>> L = networkx.laplacian(G)

>>> print L # a NumPy matrix

[[ 1. -1. 0. 0. 0. 0.]

[-1. 2. -1. 0. 0. 0.]

[ 0. -1. 2. -1. 0. 0.]

[ 0. 0. -1. 2. -1. 0.]

[ 0. 0. 0. -1. 2. -1.]

[ 0. 0. 0. 0. -1. 1.]]

>>> import numpy.linalg

>>> print numpy.linalg.eigvals(L)

[ 3.7321e+00 3.0000e+00 2.0000e+00

1.0000e+00 -4.0235e-17 2.6795e-01]

For visualizing networks, NetworkX includes an inter-
face to Python’s Matplotlib plotting package along
with simple node positioning algorithms based on
force-directed, spectral, and geometric methods.

>>> G = networkx.circular_ladder_graph(12)

>>> networkx.draw(G)
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Figure 1: Matplotlib plot of a 24 node circular ladder
graph

Connections to other graph drawing packages are
available either directly, for example using PyGraphviz
with the Graphviz drawing system, or by writing the
data to one of the standard file interchange formats.
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Inside NetworkX

NetworkX provides classes to represent directed and
undirected graphs, with optional weights and self
loops, and a special representation for multigraphs
which allows multiple edges between pairs of nodes.
Basic graph manipulations such as adding or removing
nodes or edges are provided as class methods. Some
standard graph reporting such as listing nodes or edges
or computing node degree are also provided as class
methods, but more complex statistics and algorithms
such as clustering, shortest paths, and visualization are
provided as package functions.

The standard data structures for representating graphs
are edge lists, adjacency matrices, and adjacency lists.
The choice of data structure affects both the storage
and computational time for graph algorithms [Sed02].
For large sparse networks, in which only a small frac-
tion of the possible edges are present, adjacency lists
are preferred since the storage requirement is the
smallest (proportional to m + n for n nodes and m
edges). Many real-world graphs and network models
are sparse so NetworkX uses adjacency lists.

Python built-in dictionaries provide a natural data
structure to search and update adjacency lists [vR98];
NetworkX uses a “dictionary of dictionaries” (“hash of
hashes”) as the basic graph data structure. Each node
n is a key in the G.adj dictionary with value consist-
ing of a dictionary with neighbors as keys to edge data
values with default 1. For example, the representation
of an undirected graph with edges A−B and B−C is

>>> G = networkx.Graph()

>>> G.add_edge(’A’,’B’)

>>> G.add_edge(’B’,’C’)

>>> print G.adj

{’A’: {’B’: 1},

’B’: {’A’: 1, ’C’: 1},

’C’: {’B’: 1}}

The outer node dictionary allows the natural expres-
sions n in G to test if the graph G contains node n
and for n in G to loop over all nodes [Epp08]. The
“dictionary of dictionary” data structure allows find-
ing and removing edges with two dictionary look-ups
instead of a dictionary look-up and a search when using
a “dictionary of lists”. The same fast look-up could be
achieved using sets of neighbors, but neighbor dictio-
naries allow arbitrary data to be attached to an edge;
the phrase G[u][v] returns the edge object associated
with the edge between nodes u and v. A common use is
to represent a weighted graph by storing a real number
value on the edge.

For undirected graphs both representations (e.g A−B
and B − A) are stored. Storing both representations
allows a single dictionary look-up to test if edge u− v
or v−u exists. For directed graphs only one of the rep-
resentations for the edge u → v needs to be stored but
we keep track of both the forward edge and the back-
ward edge in distinct “successor” and “predecessor”
dictionary of dictionaries. This extra storage simpli-
fies some algorithms, such as finding shortest paths,
when traversing backwards through a graph is useful.

The “dictionary of dictionaries” data structure can
also be used to store graphs with parallel edges (multi-
graphs) where the data for G[u][v] consists of a list of
edge objects with one element for each edge connecting
nodes u and v. NetworkX provides the MultiGraph
and MultiDiGraph classes to implement a graph
structure with parallel edges.

There are no custom node objects or edge objects by
default in NetworkX. Edges are represented as a two-
tuple or three-tuple of nodes (u, v), or (u, v, d) with d
as edge data. The edge data d is the value of a dictio-
nary and can thus be any Python object. Nodes are
keys in a dictionary and therefore have the same re-
strictions as Python dictionaries: nodes must be hash-
able objects. Users can define custom node objects as
long as they meet that single requirement. Users can
define arbitrary custom edge objects.

NetworkX in action: synchronization

We are using NetworkX in our scientific research for
the spectral analysis of network dynamics and to
study synchronization in networks of coupled oscilla-
tors [HS08]. Synchronization of oscillators is a fun-
damental problem of dynamical systems with applica-
tions to heart and muscle tissue, ecosystem dynam-
ics, secure communication with chaos, neural coordi-
nation, memory and epilepsy. The specific question
we are investigating is how to best rewire a network
in order to enhance or decrease the network’s ability
to synchronize. We are particularly interested in the
setting where the number of edges in a network stays
the same while modifying the network by moving edges
(defined as removing an edge between one pair of nodes
and adding an edge between another). What are the
network properties that seriously diminish or enhance
synchronization and how hard is it to calculate the
required rewirings?

Our model follows the framework presented by [FJC00]
where identical oscillators are coupled in a fairly gen-
eral manner and said to be synchronized if their states
are identical at all times. Small perturbations from
synchronization are examined to determine if they
grow or decay. If the perturbations decay the system
is said to be synchronizable. In solving for the growth
rate of perturbations, it becomes apparent that the dy-
namical characteristics of the oscillator and coupling
separate from the structural properties of the network
over which they are coupled. This surprising and pow-
erful separation implies that coupled oscillators syn-
chronize more effectively on certain networks indepen-
dent of the type of oscillator or form of coupling.

The effect of the network structure on synchroniza-
tion is determined via the eigenvalues of the network
Laplacian matrix L = D−A where A is the adjacency
matrix representation of the network and D is a diag-
onal matrix of node degrees. For a network with N
oscillators, there are N eigenvalues which are all real
and non-negative. The lowest λ0 = 0 is always zero
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and we index the others λi in increasing order. For
a connected network it is true that λi > 0 for i > 0.
The growth rate of perturbations is determined by a
Master Stability Function (MSF) which takes eigen-
values as inputs and returns the growth rate for that
eigenmode. The observed growth rate of the system is
the maximum of the MSF evaluations for all eigenval-
ues. The separation comes about because the MSF is
determined by the oscillator and coupling but not by
the network structure which only impacts the inputs to
the MSF. So long as all eigenvalues lie in an interval
where the MSF is negative, the network is synchro-
nizable. Since most oscillator/couplings lead to MSFs
where a single interval yields negative growth rates,
networks for which the eigenvalues lie in a wide band
are resistant to synchronization. An effective measure
of the resistance to synchronization is the ratio of the
largest to smallest positive eigenvalue of the network,
r = λN−1/λ1. The goal of enhancing synchronization
is then to move edges that optimally decrease r.
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Figure 2: The change in resistance to synchrony r

as edges are moved in four example random net-
work models. An algorithm using Laplacian eigen-
vectors compares favorably to those using node de-
gree. Eigenvectors are found via NetworkX calls to
SciPy and NumPy matrix eigenvalue solvers.

Python makes it easy to implement such algorithms
quickly and test how well they work. Functions that
take NetworkX.Graph() objects as input and return
an edge constitute an algorithm for edge addition or
removal. Combining these gives algorithms for mov-
ing edges. We implemented several algorithms using
either the degree of each node or the eigenvectors of
the network Laplacian and compared their effective-
ness to each other and to random edge choice. We

found that while algorithms which use degree infor-
mation are much better than random edge choice, it is
most effective to use information from the eigenvectors
of the network rather than degree.

Of course, the specific edge to choose for rewiring de-
pends on the network you start with. NetworkX is
helpful for exploring edge choices over many different
networks since a variety of networks can be easily cre-
ated. Real data sets that provide network configura-
tions can be read into Python using simple edge lists as
well as many other formats. In addition, a large collec-
tion of network model generators are included so that,
for example, random networks with a given degree dis-
tribution can be easily constructed. These generator
algorithms are taken from the literature on random
network models. The Numpy package makes it easy
to collect statistics over many networks and plot the
results via Matplotlib as shown in Fig. 2.

In addition to computation, visualization of the net-
works is helpful. NetworkX provide hooks into Mat-
plotlib or Graphviz (2D) and VTK or UbiGraph (3D)
and thereby allow network visualization with node and
edge traits that correlate well with r as shown in Fig.
3.
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Figure 3: A sample graph showing eigenvector ele-
ments associated with each node as their size. The
dashed edge shows the largest difference between two
nodes. Moving the edge between nodes 3 and 8 is
more effective at enhancing synchronization than the
edge between the highest degree nodes 3 and 6.

NetworkX in the world

The core of NetworkX is written completely in Python;
this makes the code easy to read, write, and document.
Using Python lowers the barrier for students and non-
experts to learn, use, and develop network algorithms.
The low barrier has encouraged contributions from the
open-source community and in university educational
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settings [MS07]. The SAGE open source mathemat-
ics system [Ste08] has incorporated NetworkX and ex-
tended it with even more graph-theoretical algorithms
and functions.
NetworkX takes advantage of many existing applica-
tions in Python and other languages and brings then
together to build a powerful analysis platform. For the
computational analysis of networks using techniques
from algebraic graph theory, NetworkX uses adja-
cency matrix representations of networks with NumPy
dense matrices and SciPy sparse matrices [Oli06]. The
NumPy and SciPy packages also provide linear sys-
tem and eigenvalue solvers, statistical tools, and many
other useful functions. For visualizing and drawing,
NetworkX contains interfaces to the Graphviz network
layout tools [EGK04], Matplotlib (2d) [Hun07] and
UbiGraph (3d) [Vel07]. A variety of standard net-
work Models are included for realization and creation
of network models and NetworkX can import graph
data from many external formats.

Conclusion

Python provides many tools to ease exploration of sci-
entific problems. One of its strengths is the ability to
connect existing code and libraries in a natural way
that eases integration of many tools. Here we have
shown how NetworkX, in conjunction with the Python
packages SciPy, NumPy, Matplotlib and connection to
other tools written in FORTRAN and C, provides a
powerful tool for computational network analysis. We
hope to have enticed you to take a look at NetworkX
the next time you need a way to keep track of connec-
tions between objects.
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Interval Arithmetic: Python Implementation and Applications

Stefano Taschini (s.taschini@altis.ch) – Altis Investment Management AG, Poststrasse 18, 6300 Zug Switzer-

land

This paper presents the Python implementation of
an interval system in the extended real set that is
closed under arithmetic operations. This system
consists of the lattice generated by union and inter-
section of closed intervals, with operations defined
by image closure of their real set counterparts. The
effects of floating-point rounding are accounted for
in the implementation. Two applications will be dis-
cussed: (1) estimating the precision of numerical
computations, and (2) solving non-linear equations
(possibly with multiple solutions) using an interval
Newton-Raphson algorithm.

Introduction

Consider the following function, an adaptation [R1] of
a classic example by Rump [R2]:

f(x, y) =(333.75 − x2)y6 + x2(11x2y2 − 121y4 − 2)

+ 5.5y8 + x/(2y)

Implementing this function in Python is straightfor-
ward:

>>> def f(x,y):

... return (

... (333.75 - x**2)* y**6 + x**2 *

... (11* x**2 * y**2 - 121 * y**4 - 2)

... + 5.5 * y**8 + x/(2*y))

Evaluating f(77617, 33096) yields

>>> f(77617.0, 33096.0)

1.1726039400531787

Since f is a rational function with rational coefficients,
it is possible in fact to carry out this computation by
hand (or with a symbolic mathematical software), thus
obtaining

f(77617, 33096) = −54767

66192
= −0.827396 . . .

Clearly, the former result, 1.1726... is completely
wrong: sign, order of magnitude, digits. It is exactly
to address the problems arising from the cascading ef-
fects of numerical rounding that interval arithmetic
was brought to the attention of the computing com-
munity. Accordingly, this paper presents the Python
implementation [R4] of an interval class that can be
used to provide bounds to the propagation of round-
ing error:

>>> from interval import interval

>>> print f(interval(77617.0), interval(33096.0))

interval([-3.54177486215e+21, 3.54177486215e+21])

This result, with a spread of approximately 7 × 1021,
highlights the total loss of significance in the result.
The original motivations for interval arithmetic do not

exhaust its possibilities, though. A later section of this
papers presents the application of interval arithmetic
to a robust non-linear solver finding all the discrete
solutions to an equation in a given interval.

Multiple Precision

One might be led into thinking that a better result in
computing Rump’s corner case could be achieved sim-
ply by adopting a multiple precision package. Unfortu-
nately, the working precision required by an arbitrary
computation to produce a result with a given accuracy
goal is not obvious.

With gmpy [R3], for instance, floating-point values can
be constructed with an arbitrary precision (specified
in bits). The default 64 bits yield:

>>> from gmpy import mpf

>>> f(mpf(77617, 64), mpf(33096, 64))

mpf(’-4.29496729482739605995e9’,64)

This result provides absolutely no indication on its
quality. Increasing one more bit, though, causes a
rather dramatic change:

>>> f(mpf(77617, 65), mpf(33096, 65))

mpf(’-8.2739605994682136814116509548e-1’,65)

One is still left wandering whether further increasing
the precision would produce completely different re-
sults.

The same conclusion holds when using the decimal

package in the standard library.
>>> from decimal import Decimal, getcontext

>>> def fd(x,y):

... return (

... (Decimal(’333.75’)-x**2)* y**6 + x**2 *

... (11* x**2 * y**2 - 121*y**4 - 2)

... + Decimal(’5.5’) * y**8 + x/(2*y))

The default precision still yields meaningless result:

>>> fd(Decimal(77617), Decimal(33096))

Decimal("-999999998.8273960599468213681")

In order to get a decently approximated result, the
required precision needs to be known in advance:

>>> getcontext().prec = 37

>>> fd(Decimal(77617), Decimal(33096))

Decimal("-0.827396059946821368141165095479816292")

Just to prevent misunderstandings, the purpose of
this section is not to belittle other people’s work
on multiple-precision floating-point arithmetic, but to
warn of a possibly naive use to tackle certain issues of
numerical precision loss.

Clearly, very interesting future work can be envisaged
in the integration of multiple-precision floating-point
numbers into the interval system presented in this pa-
per.
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Functions of intervals

Notation-wise, the set of all closed intervals with end-
points in a set X is denoted as

IX = {[a, b] | a, b ∈ X}

The symbols R and R
∗ denote the set of the real

numbers and the extended set of real numbers, R
∗ =

R ∪ {−∞,+∞}. Let f([a, b]) be the image of the
closed interval [a, b] under the function f . Real anal-
ysis teaches that if the interval is bounded and the
function is continuous over the interval, then f([a, b])
is also a closed, bounded interval, and, more signifi-
cantly,

f([a, b]) =

[
min

x∈[a,b]
f(x), max

x∈[a,b]
f(x)

]
(1)

Computing the minimum and maximum is trivial if
the function is monotonic (see Figure 1), and also for
the non-monotonic standard mathematical functions
(even-exponent power, cosh, sin, cos...) these are rela-
tively easy to determine.

a b
x

y

f(a)

f(b)

a b
x

y

f(a)

f(b)

Figure 1. The image f([a, b]) for a continuous monotonic func-
tion: [f(a), f(b)] for a non-decreasing f (left), and [f(b), f(a)]
for a non-increasing f (right).

Equation (1) no longer holds if the interval is un-
bounded – e.g., tanh([0,+∞]) = [0, 1), which is not
closed on the right – or the function is not continu-
ous over the whole interval – e.g., the inverse func-
tion inv(x) = 1/x yields inv([−1,+1]) = (−∞,−1] ∪
[+1,+∞), two disjoint intervals (see Figure 2).

x

y

a

b
f(a)

f(b)

Figure 2. The image f([a, b]), with f(x) = 1/x, is the union
of two disjoint intervals.

Both limitations can be overcome by means of two gen-
eralizations: 1) using the image closure instead of the
image, and 2) looking at the lattice generated by IR

⋆

instead of IR
⋆.

The image closure is defined for any subset K ⊆ R
∗ as

f̄(K) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞

xn ∈ K
}

(2)

Equation (2) is a generalization of equation (1), in the
sense that if f is continuous over K and K is a closed,
bounded interval, equations (1) and (2) yield the same
result, i.e.:

f ∈ C0([a, b]) =⇒ f̄([a, b]) = f([a, b])

The lattice generated by the intervals in the extended
real set, L(IR∗), is the smallest family of sets contain-
ing IR

∗ that is closed under union and intersection –
this extension accommodates the fact that, in general,
the union of two intervals is not an interval. The sets
in the lattice can always be written as the finite union
of closed intervals in R

∗. In Python,

>>> k = interval([0, 1], [2, 3], [10, 15])

represents the the union [0, 1]∪[2, 3]∪[10, 15] ∈ L(IR∗).
The intervals [0, 1], [2, 3], and [10, 15] constitute the
connected components of k. If the lattice element con-
sists of only one component it can be written, e.g., as

>>> interval[1, 2]

interval([1.0, 2.0])

signifying the interval [1, 2], not to be confused with
>>> interval(1, 2)

interval([1.0], [2.0])

which denotes {1} ∪ {2}. When referring to a lattice
element consisting of one degenerate interval, say {1},
both following short forms yield the same object:

>>> interval(1), interval[1]

(interval([1.0]), interval([1.0]))

The empty set is represented by an interval with no
components:

>>> interval()

interval()

The state of the art on interval arithmetic [R5] is at
present limited to considering either intervals of the
form [a, b] with a, b ∈ R

∗ or to pairs [−∞, a] ∪ [b,∞],
as in the Kahan-Novoa-Ritz arithmetic [R6]. The more
general idea of taking into consideration the lattice
generated by the closed intervals is, as far as the author
knows, original.

Note that equation (2) provides a consistent definition
for evaluating a function at plus or minus infinity:

f̄({+∞}) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞

xn = +∞
}

f̄({−∞}) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞

xn = −∞
}

For instance, in the case of the hyperbolic tangent one
has that tanh({+∞}) = {1}. More generally, it can
be proved that if f is discontinuous at most at a finite
set of points, then

∀K ∈ L(IR∗), f̄(K) ∈ L(IR∗) (3)
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The expression in equation (3) can be computed by
expressing K as a finite union of intervals, and then
by means of the identity

f̄ (
⋃

h[ah, bh]) =
⋃

h f̄([ah, bh])

For the inverse function, one has that

inv (
⋃

h[ah, bh]) =
⋃

h inv([ah, bh])

with

inv([a, b]) =



[b−1, a−1] if 0 6∈ [a, b]

[−∞, inv−(a)] ∪ [inv+(b),+∞] if 0 ∈ [a, b]

where inv−(0) = −∞, inv+(0) = +∞, and inv−(x) =
inv+(x) = 1/x if x 6= 0.

In Python,:
>>> interval[0].inverse()

interval([-inf], [inf])

>>> interval[-2,+4].inverse()

interval([-inf, -0.5], [0.25, inf])

Interval arithmetic

The definition of image closure can be immediately ex-
tended to a function of two variables. This allows sum
and multiplication in L(IR∗) to be defined as

H + K =
{

lim
n→∞

(xn + yn)
∣∣∣ lim

n→∞

xn ∈ H, lim
n→∞

yn ∈ K
}

H × K =
{

lim
n→∞

xnyn

∣∣∣ lim
n→∞

xn ∈ H, lim
n→∞

yn ∈ K
}

Since sum and multiplication are continuous in R × R

the limits need to be calculated only when at least one
of the end-points is infinite. Otherwise the two oper-
ations can be computed component-by-component us-
ing equation (1). Subtraction and division are defined
as

H − K = H + {−1} × K

H ÷ K = H × inv(K)

These definitions provide a consistent generalization of
the real-set arithmetic, in the sense that for any real
numbers x and y

x ∈ H, y ∈ K =⇒ x ⋄ y ∈ H ⋄ K

whenever x⋄y is defined, with ⋄ representing one of the
arithmetic operations. Additionally, this arithmetic is
well-defined for infinite end-points and when dividing
for intervals containing zero.

In conclusion, the lattice of intervals in the real ex-
tended set is closed under the arithmetic operations as
defined by image closure of their real counterparts.

In Python, the arithmetic operations are input us-
ing the usual +, -, * and / operators, with integer-
exponent power denoted by the ** operator. Addi-
tionally, intersection and union are denoted using the
& and | operators, respectively.

Dependency

One may not always want to find the image closure of
a given function on a given interval. Even for a simple
function like f(x) = x2−x one might wish to compute
f([0, 2]) by interpreting the expression x2 − x using
interval arithmetic. Interestingly, whereas

∀x ∈ R, x2 − x = x(x − 1) = (x − 1/2)2 − 1/4

the three expressions lead to different results when ap-
plied to intervals:

>>> (lambda x: x**2 - x)(interval[0,2])

interval([-2.0, 4.0])

>>> (lambda x: x*(x - 1))(interval[0,2])

interval([-2.0, 2.0])

>>> (lambda x: (x - 0.5)**2 - 0.25)(interval[0,2])

interval([-0.25, 2.0])

Incidentally, graphic inspection (see Figure 3) imme-
diately reveals that f̄([0, 2]) = [−1/4, 2]. The three
interval functions

f1 : X ∈ L(IR∗) 7→ X2 − X

f2 : X ∈ L(IR∗) 7→ X(X − 1)

f3 : X ∈ L(IR∗) 7→ (X − 1/2)2 − 1/4

(4)

differ because interval arithmetic handles reoccur-
rences of the same variables as independent instances
of the same interval. Only in the case of f3, where X
occurs only once, one has that f3(X) = f̄(X). For the
other two cases, given,

g1 : (x, y) ∈ R × R 7→ x2 − y

g2 : (x, y) ∈ R × R 7→ x(y − 1)

one has that f1(X) = ḡ1(X, X) and f2(X) = ḡ2(X, X).
This phenomenon, called dependency, causes f2 and
f3 to yield in general wider intervals (or the union
thereof) than what is returned by the image closure.

x

y

0 2

−1/4

2

Figure 3. f([0, 2]) for f(x) = x2
− x.

The idea of a function g on the interval lattice return-
ing “wider” results than needed is captured by saying
that g is an interval extension of f :

g ∈ ext(f) ⇐⇒ ∀X ∈ L(IR∗), f̄(X) ⊆ g(X)

Referring to the example of equation (4), f1, f2, and
f3 are all interval extensions of f . Interval extensions
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can be partially ordered by their sharpness: given
two extensions g, h ∈ ext(f), g is sharper than h on
X ∈ L(IR∗) if g(X) ⊂ h(X).

The extensions f1, f2 are not as sharp as f3 because
of dependency. A second source of sharpness loss is
rounding, as it will be shown in the following.

Reals and floats

Floating-point numbers, or floats in short, form a finite
subset F ⊂ R

∗. It is assumed that floats are defined
according to the IEEE 754 standard [R7]. Rounding is
the process of approximating an arbitrary real number
with some float. It is worth noting that rounding is a
necessity because for an arbitrary real function f and
an arbitrary float x ∈ F, f(x) is generally not a float.
Of the four rounding techniques defined in the stan-
dard, relevant for the following are rounding toward
−∞, or down, defined as

↓(x) = max{p ∈ F | p ≤ x}

and rounding towards +∞, or up, defined as

↑(x) = min{p ∈ F | p ≥ x}

The interval I(x) = [↓(x), ↑(x)] is the float enclo-
sure of x, i.e., the smallest interval containing x with
end-points in F. The enclosure degenerates to the
single-element set {x} whenever x ∈ F. Similarly,
for an interval [a, b], its float enclosure is given by
I([a, b]) = [↓(a), ↑(b)]. Note that the enclousure of
an interval extension f is also an interval extension, at
best as sharp as f .

Also for any of the arithmetic operations, again repre-
sented by ⋄, it can happen that for any two arbitrary
H,K ∈ L(IF), H ⋄ K 6∈ L(IF). It is therefore neces-
sary to use the float enclosure of the interval arithmetic
operations:

H ⊕ K = I(H + K) H ⊖ K = I(H − K)

H ⊗ K = I(H × K) H ⊘ K = I(H ÷ K)

In Python, the effect of the float enclosure on the arith-
metic operations is easily verifiable:

>>> interval[10] / interval[3]

interval([3.333333333333333, 3.3333333333333339])

Controlling the rounding mode of the processor’s
floating-point unit ensures that arithmetic operations
are rounded up or down. In the Python implemen-
tation presented here, ctypes provides the low-level
way to access the standard C99 functions as declared
in fenv.h [R8], falling back to the Microsoft C runtime
equivalents if the former are not present. A lambda ex-
pression emulates the lazy evaluation that is required
by the primitives in the interval.fpu module:

>>> from interval import fpu

>>> fpu.down(lambda: 1.0/3.0)

0.33333333333333331

>>> fpu.up(lambda: 1.0/3.0)

0.33333333333333337

Unfortunately, common implementations of the C
standard mathematical library do not provide the
means of controlling how transcendental functions are
rounded. For this work it was thus decided to use CR-
libm, the Correctly Rounded Mathematical Library
[R9], which makes it possible to implement the float
enclosure of the image closures for the most common
transcendental functions.

The transcendental functions are packaged in the
interval.imath module:

>>> from interval import imath

>>> imath.exp(1)

interval([2.7182818284590451, 2.7182818284590455])

>>> imath.log(interval[-1, 1])

interval([-inf, 0.0])

>>> imath.tanpi(interval[0.25, 0.75])

interval([-inf, -1.0], [1.0, inf])

A more compact output for displaying intervals is pro-
vided by the to_s() method, whereby a string is re-
turned that highlights the common prefix in the dec-
imal expansion of the interval’s endpoints. For in-
stance, some of the examples above can be better dis-
played as:

>>> (1 / interval[3]).to_s()

’0.3333333333333333(1,7)’

>>> imath.exp(1).to_s()

’2.718281828459045(1,5)’

Solving nonlinear equations

Let f be a smooth function in [a, b], i.e., therein contin-
uous and differentiable. Using the mean-value theorem
it can be proved that if x∗ ∈ [a, b] is a zero of f , then

∀ξ ∈ [a, b], x∗ ∈ N̄({ξ}, [a, b])

where N is the Newton iteration function,

N(ξ, η) = ξ − f(ξ)/f ′(η) (5)

If f(x) = 0 has more than one solutions inside [a, b],
then, by Rolle’s theorem, the derivative must vanish
somewhere in [a, b]. This in turn nullifies the denom-
inator in equation (5), which causes N̄({ξ}, [a, b]) to
possibly return two disjoint intervals, in each of which
the search can continue. The complete algorithm is
implemented in Python as a method of the interval

class:
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def newton(self, f, p, maxiter=10000):

def step(x, i):

return (x - f(x) / p(i)) & i

def some(i):

yield i.midpoint

for x in i.extrema.components:

yield x

def branch(current):

for n in xrange(maxiter):

previous = current

for anchor in some(current):

current = step(anchor, current)

if current != previous:

break

else:

return current

if not current:

return current

if len(current) > 1:

return self.union(branch(c) for

c in current.components)

return current

return self.union(branch(c) for

c in self.components)

In this code, step implements an interval extension
of equation (4), with the additional intersection with
the current interval to make sure that iterations are
not widening the interval. Function some selects ξ:
first the midpoint is tried, followed by each of the end-
points. The arguments f and p represent the func-
tion to be nullified and its derivative. The usage of
the Newton-Raphson solver is straightforward. For in-
stance, the statement required to find the solutions to
the equation

(x2 − 1)(x − 2) = 0 x ∈ [−100,+100]

simply is

>>> interval[-100, 100].newton(

... lambda x: (x**2 - 1)*(x - 2),

... lambda x: 3*x**2 - 4*x -1)

interval([-1.0], [1.0], [2.0])

Figure 4 shows the iterations needed to solve the same
equation in the smaller interval [−1.5, 3]. The non-
linear solver can be used with non-algebraic equations
as well:

>>> interval[-100, 100].newton(

... lambda x: imath.exp(x) + x,

... lambda x: imath.exp(x) + 1).to_s()

’-0.567143290409783(95,84)’

solves the equation

ex + x = 0 x ∈ [−100,+100]

and:

>>> print interval[-10, 10].newton(

... lambda x: imath.cospi(x/3) - 0.5,

... lambda x: -imath.pi * imath.sinpi(x/3) / 3)

interval([-7.0, -7.0], [-5.0, -5.0], [-1.0, -1.0],

[1.0, 1.0], [5.0, 5.0], [7.0, 7.0])

solves the equation

cos
(πx

3

)
=

1

2
x ∈ [−10,+10]

0
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Figure 4. Solving (x2
− 1)(x − 2) = 0 in [−100, +100]. An it-

eration producing an empty interval is marked as ∅, whereas
the checkmark denotes an iteration producing a fixed-point.
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Experiences Using SciPy for Computer Vision Research

Damian Eads (eads@lanl.gov) – Los Alamos National Laboratory, MS D436, Los Alamos, NM USA

Edward Rosten (edrosten@lanl.gov) – Los Alamos National Laboratory, MS D436, Los Alamos, NM USA

SciPy is an effective tool suite for prototyping new
algorithms. We share some of our experiences us-
ing it for the first time to support our research
in object detection. SciPy makes it easy to inte-
grate C code, which is essential when algorithms
operating on large data sets cannot be vectorized.
The universality of Python, the language in which
SciPy was written, gives the researcher access to
a broader set of non-numerical libraries to support
GUI development, interface with databases, manip-
ulate graph structures, render 3D graphics, unpack
binary files, etc. Python’s extensive support for op-
erator overloading makes SciPy’s syntax as succinct
as its competitors, MATLAB, Octave, and R. More
profoundly, we found it easy to rework research code
written with SciPy into a production application, de-
ployable on numerous platforms.

Introduction

Computer Vision research often involves a great deal
of effort spent prototyping new algorithms code. A
highly agile, unstructured, iterative approach to code
development takes place. Development in low-level
languages may be ideal in terms of computational ef-
ficiency but is often time consuming and bug prone.
MATLAB’s succinct “vectorized” syntax and efficient
numerical, linear algebra, signal processing, and image
processing codes has led to its popularity in the Com-
puter Vision community for prototyping algorithms.
Last year, we started a completely new research
project in object detection using the SciPy+Python
[Jon01] [GvR92] framework without any extensive ex-
perience developing with it but having substantial
knowhow with MATLAB and C++. The software had
to run on Windows and be packaged with an installer.
The research problem was very open-ended so a large
number of prototype algorithms needed development
but eventually the most promising among them had
to be integrated into a production application. The
project sponsor imposed short deadlines so the de-
cision to use a new framework was high risk as we
had to learn the new tool set while keeping the re-
search on pace. Postmortem, we found SciPy to be
an excellent choice for both prototyping new code and
migrating prototypes into a production system. Ac-
quiring proficiency with SciPy was quick: completing
useful, complicated tasks was achievable within a few
hours of first installing the software. In this paper, we
share some noteworthy reflections on our first experi-
ence with SciPy in a full-scale research project.

A Universal Language

One of the strengths of SciPy is that it is a library
for Python, a universal and pervasive language. This
has two main benefits. First, there is a separation of
concerns: the language (Python) is developed indepen-
dently of the SciPy tool set. The Python community
focuses strictly on maintaining the language and its
interpreter while the SciPy community focuses on the
development of scientific tool sets. The efforts of both
groups are not spread thinly across both tasks freeing
more time to focus on good design, maintenance, re-
liability, and support. MATLAB [Mwc82], R [Rcd04],
and Octave [Eat02] must instead accomplish several
tasks at once: designing a language, implementing and
maintaining an interpreter, and developing numerical
codes. Second, the universality of Python means there
is a much broader spectrum of self-contained communi-
ties beyond scientific computation, each of which solely
focuses on a single kind of library (e.g. GUI, database,
network I/O, cluster computation). Third-party li-
brary communities are not as common for highly spe-
cialized numerical languages so additional effort must
be spent developing tertiary capabilities such as GUI
development, database libraries, image I/O, etc. This
further worsens the “thin spread” problem: there are
fewer time and resources to focus on the two core tasks:
developing the language and developing numerical and
scientific libraries.

SciPy does not suffer from the “thin spread” problem
because of the breadth of libraries available from the
many self-contained Python communities. As long as
a library is written in Python, it can be integrated
into a SciPy application. This was very beneficial to
our research in computer vision because we needed ca-
pabilities such as image I/O, GUI development, etc.
This enabled a more seamless migration into produc-
tion system.

Operator Overloading: Succinct Syntax

Python’s extensive support for operator overloading is
a big factor in the success of the SciPy tool set. The
array bracket and slice operators give NumPy great
flexibility and succinctness in the slicing of arrays (e.g.
B=A[::-1,::-1].T flips a rectangular array in both
directions then transposes the result.)

Slicing an array on the left-hand side of an assignment
performs assignments in-place, which is particularly
useful in computer vision where data sets are large and
unnecessary copying can be costly or fatal. If an array
consumes half of the available memory on a machine,
an accidental copy will likely result in an OutOfMemory
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error. This is particularly unacceptable when an algo-
rithm takes several weeks to run and large portions of
state cannot be easily check-pointed.

In NumPy, array objects either own their data or are
simply a view of another array’s data. Both array slic-
ing and transposition generate array views so they do
not involve copying. Instead, a new view is created
as an array object with its data pointing to the data
of the original array but with its striding parameters
recalculated.

Extensions

Prior to the project’s start, we wrote a large corpora
of computer vision code in C++, packaged as the
Cambridge Video Dynamics Library (LIBCVD) [Ros04].
Since many algorithms being researched depended on
these low-level codes, a thorough review of different
alternatives for C and C++ extensions in Python was
needed. Interestingly, we eventually settled on the na-
tive Python C extensions interface after trying several
other packages intended to enhance or replace it.

A brief description is given of the Image and ImageRef

classes, the most pervasive data structures within
LIBCVD. An Image<T> object allocates its own raster
buffer and manages its deallocation while its sub-
class BasicImage<T> is constructed from a buffer and
is not responsible for the buffer’s deallocation. The
ImageRef class represents a coordinate in an image,
used for indexing pixels in an Image object.

ctypes

ctypes [Hel00] seems the easiest and quickest to get
started but has a major drawback in that distutils

does not support compilation of shared libraries on
Windows and Mac OS X. We also found it cumber-
some to translate templated C++ data structures into
NumPy arrays. The data structure would first need
to be converted into a C-style array, passed back to
Python space, and then converted to a NumPy array.

For example, a set of (x, y) coordinates would be rep-
resented using std::vector<ImageRef> where the co-
ordinates are defined as struct ImageRef {int x,

y;};. The function for converting a vector of these
ImageRef structs into a C array is:

int *convertToC(vector <ImageRef> &xy_pairs,

int *num) {

int *retval = new int[xy_pairs.size()*2];

*num = xy_pairs.size();

for (int i = 0; i < xy_pairs.size(); i++) {

retval[i*2] = xy_pairs[i].x;

retval[i*2+1] = xy_pairs[i].y;

}

return retval;

}

Not knowing in advance the size of output buffers is a
common problem in scientific computation. In the ex-
ample, the number of (x, y) pairs is not known a priori
so the NumPy array cannot be allocated prior to call-
ing the C++ function generating the pairs. One could

use the NumPy array allocation function in C++-
space but this defeats one of the main advantages of
ctypes: to interface Python-unaware code.

Once the C-style array is returned back to Python-
space, the next natural step is to use the pointer as
the data buffer of a new NumPy array object. Un-
fortunately, this is not easy as it seems because three
problems stand in the way. First, there is no func-
tion to convert the pointer to a Python buffer object,
which is required by the frombuffer constructor; sec-
ond, the frombuffer constructor creates arrays that
do not own their data; third, even if an array can be
created that owns its own data, there is no way to tell
NumPy how to deallocate the buffer. In this exam-
ple, the C++ operator delete is required instead of
free(). In other cases, a C++ destructor would need
to be called.

We eventually worked around these issues by creating
a Python extension with three functions: one that con-
verts a C-types pointer to a Python buffer object, one
that constructs an nd-array that owns its own data
from a Python buffer object, and a hook that deallo-
cates memory using C++ delete. Even with these
functions, each C++ function needs to be wrapped
with a C-style equivalent:

int* wrap_find_objects(const float *image,

int m, int n, int *size) {

BasicImage <float> cpp(image, ImageRef(m, n));

vector <ImageRef> cpp_refs;

find_objects(cpp, cpp_refs);

*size = cpp_refs.size();

return convertToC(cpp_refs);

}

This function takes in an input image and size, which it
converts to a BasicImage and calls the find_objects

routine, which is used to find the (x, y) pairs corre-
sponding to the locations of objects in an image, which
it returns as a C-style array. Since ctypes does not
implement C++ name mangling, there is no function
signature embedded in the shared library. Thus, type
checking is not performed in Python so a core dump
may result when not invoked properly. To avoid these
bugs, we needed to create a Python wrapper to do ba-
sic type checking of arguments and conversion of input
and post-processing of output. ctypes is intended to
eliminate the need for wrappers, yet two were needed
for each C++ function being wrapped. We found
ctypes inappropriate for our purposes: wrapping large
amounts of C++ code safely and efficiently. We did,
however, find ctypes appropriate for wrapping:

• numerical C codes where the size of output buffers
is known ahead of time and can be done in Python-
space to avoid ownership and object lifetime issues.

• wrapping non-numerical C codes, particularly those
with simple interfaces that use basic C data struc-
tures (e.g. encrypting a string, opening a file, or
writing a buffer to an image file.)
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Weave

With SciPy weave, C++ code can be embedded di-
rectly in a Python program as a multi-line string in
a Python program. MD5 hashes are used to cache
compilations of C++ program strings. Whenever the
type of a variable is changed, a different program string
results, causing a separate compilation. weave prop-
erly handles iteration over strided arrays. Compilation
errors can be cryptic and the translation of a multi-
line program string prior to compilation is somewhat
opaque. Applications using weave need a C++ com-
piler so it did not fit the requirements of our sponsor.
However, we found it useful for quickly prototyping
“high risk” for-loop algorithms that could not be vec-
torized.

Boost Python

Boost Python is a large and powerful library for inter-
facing C++ code from Python. Learning the tool set is
difficult so a large investment of time must be made up
front before useful tasks can be accomplished. Boost
copies objects created in C++-space, rather than stor-
ing pointers to them. This reduces the potential of a
dangling reference to an object from Python space, a
potentially dangerous situation. Since our computer
vision codes often involve large data sets, excessive
copying can be a show-stopper.

SWIG

SWIG [Bea95] is a tool for generating C and C++
wrapper code. Our time budget for investigating dif-
ferent alternatives for writing extensions was limited.
Several colleagues suggested using the SWIG library to
perform the translation and type checking. The doc-
umentation of more complicated features is somewhat
lacking. The examples are either the “hello world” va-
riety or expert-level without much in between. When
deadlines neared, we decided to table consideration of
SWIG. However, we encourage those in the SciPy com-
munity who have had success with SWIG to document
their experiences so others may benefit.

Cython

Cython [Ewi08] is a Python dialect for writing C ex-
tensions. Its development has been gaining momentum
over the past six months. Python-like code is trans-
lated into C code and compiled. It provides support
for static type checking as well as facilities for handling
object lifetime. Unfortunately, its support for inter-
facing with templated C++ code is limited. Given
the large number of templated C++ functions needing
interfacing, it was unsuitable for our purposes.

Native Python C Extensions

As stated earlier, we eventually settled native Python
C extensions as our extension framework of choice. A
small suite of C++-templated helper functions made
the C wrapper functions quite succinct, and performed
static type checking to reduce the possibility of intro-
ducing bugs.

We found that all the necessary type checking and con-
version could be done succinctly in a single C wrapper
function and that in most cases, no additional Python
wrapper was needed. A few helper functions were writ-
ten to accommodate the conversion and type checking:

• BasicImage<T> np2image<T>(img) converts a rect-
angular NumPy array with values of type T to a
BasicImage object. If the array does not contain
values compatible with T, an exception is thrown.

• PyArrayObject *image2np<T>(img) converts an
Image object to a NumPy array of type T.

• PyArrayObject *vec_imageref2np(v) converts an
std::vector<ImageRef> of N image references to a
N by 2 NumPy array.

• pair <size_t, T*> np2c(v) converts a a rectan-
gular NumPy array to a std::pair object with the
size stored in the first member and the buffer pointer
in the second.

Shown below is a boilerplate of a wrapper function.
C++ calls go in the try block and all errors are caught
in the catch. All of the helper functions throw an
exception if an error occurs during conversion, allo-
cation, or type check. By wrapping the C++ code
in a try/catch, any C++ exceptions thrown as a
std::string are immediately caught in the wrapper
function. The wrapper function then sets the Python
exception string and returns. This solution freed us
from having to use Python error handling and NumPy
type checking constructs in our core C++ code:

PyObject* wrapper(PyObject* self,

PyObject* args) {

try {

if(!PyArg_ParseTuple(...)) return 0;

// C++ code goes here.

}

catch(string err) {

PyErr_SetString(PyExc_RuntimeError, err.c_str());

return 0;

}

}

Shown below is an example of the np2image helper
function, which converts a PyArrayObject to a
BasicImage. If any errors occur during the type check,
a C++ exception is thrown, which gets translated into
a Python exception:
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template<class I>

BasicImage<I> np2image(PyObject *p,

const std::string &n="") {

if (!PyArray_Check(p)

|| PyArray_NDIM(p) != 2

|| !PyArray_ISCONTIGUOUS(p)

|| PyArray_TYPE(p) != NumpyType<I>::num) {

throw std::string(n + " must be "

+ "a contig array of " + NumpyType<I>::name()

+ "(typecode " + NumpyType<I>::code() + ")!");

}

PyArrayObject* image = (PyArrayObject*)p;

int sm = image->dimensions[1];

int sn = image->dimensions[0];

CVD::BasicImage <I> img((I*)image->data,

CVD::ImageRef(sm, sn));

return img;

}

Parsing arguments passed to a wrapper function is re-
markably simple given a single, highly flexible native
extensions function PyArg_ParseTuple. It provides
basic type checking of Python arguments, such as ver-
ifying an object is of type PyArrayObject. More thor-
ough type checking of the underlying type of data val-
ues in a NumPy array is handled by our C++ helper
functions.

Many of the functions in C++ are templated to work
across many pixel data types. We needed a solution for
passing a NumPy array to an appropriate instance of
a templated function without needing a complicated
switch or if statement for each templated function
being wrapped. A special wrapper function must be
written that generically calls instances of the tem-
plated function. We call this a “selector”, which is
encapsulated in a templated struct:

template<class List>

struct convolution_ {

static PyObject* fun(PyArrayObject *image,

double sigma) {

// Selector code goes here.

}

}

An example of a selector for a convolution function
is shown below. It works generically across multiple
pixel data types. An instance of the struct is gener-
ated for each type in a type list. We iterate through the
type list via a form of template-based pattern match-
ing, checking the type of the array with the type of
the type in the list’s head. If it matches, we call
convolveGaussian:

typedef typename List::type type;

typedef typename List::next next;

if (PyArray_TYPE(image) == NumpyType<type>::num) {

BasicImage <type> input

(np2image<type>(image, "image"));

PyArrayObject *py_result;

BasicImage <type> result

(alloc_image<type>(input.size(), &py_result));

convolveGaussian(input, result, sigma);

return (PyObject*)py_result;

}

Otherwise, we invoke the tail selector:

else {

return _convolution<next>::fun(image, sigma);

}

If the type is not supported because none of the types
matched, an exception must be thrown:

template<>

struct convolution_ <PyCVD::End> {

static PyObject* fun(PyArrayObject *image,

double sigma) {

throw string("Can’t convolve with type: "

+ PyArray_TYPE(image));

}

};

Finally, the native C wrapper function calls the convo-
lution selector. The selector is templated with a type
list of supported types:

extern "C" PyObject *convolution(PyObject *self,

PyObject *args) {

try {

PyArrayObject *_image;

double sigma;

if (!PyArg_ParseTuple(args, "O!d",

&PyArray_Type, &_image,

&sigma)) { return 0; }

return convolution_<CVDTypes>::fun(_image, sigma);

}

catch(string err) {

PyErr_SetString(PyExc_RuntimeError, err.c_str());

return 0;

}

}

The TypeList construct is now defined. All type lists
terminate with a special End (sentinel) struct:

struct End{};

template<class C, class D> struct TypeList {

typedef C type; typedef D next;

};

Type lists can now be defined to specify supported
data types for a selector. The first type list shown is
for most numeric data types while the second one is
for floating point types:

typedef TypeList<char,

TypeList<unsigned char,

TypeList<short,

TypeList<unsigned short,

TypeList<int,

TypeList<long long,

TypeList<unsigned int,

TypeList<float,

TypeList<double, End>

> > > > > > > > CVDTypes;

typedef TypeList<float,

TypeList<double, End>

> CVDFloatTypes;

Lastly, in order to support translation between native
C data types and NumPy type codes, we need a macro
for defining helper structs to perform the translation:

#define DEFNPTYPE(Type, PyType) \

template<> struct NumpyType<Type> {\

static const int num = PyType; \

static std::string name(){ return #Type;} \

static char code(){ return PyType##LTR;} \

}

template<class C> struct NumpyType {};

Next, we instantiate a helper struct for each C data
type, specifying its corresponding NumPy type code:
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DEFNPTYPE(unsigned char , NPY_UBYTE );

DEFNPTYPE(char , NPY_BYTE );

DEFNPTYPE(short , NPY_SHORT );

DEFNPTYPE(unsigned short, NPY_USHORT);

DEFNPTYPE(int , NPY_INT );

DEFNPTYPE(long long , NPY_LONGLONG);

DEFNPTYPE(unsigned int , NPY_UINT );

DEFNPTYPE(float , NPY_FLOAT );

DEFNPTYPE(double , NPY_DOUBLE);

Comparison with mex

Prior to this project, the authors had some experi-
ence working with MATLAB’s External Interface (i.e.
mex). mex requires a separate source file for each
function. No function exists with the flexibility as
Python’s PyArg_ParseTuple, making it difficult to
parse input arguments. Nor does a function exist like
PyBuildValue to succinctly return data. Opening mex

files in gdb is somewhat cumbersome, making it diffi-
cult to pin down segmentation faults. When a frame-
work lacks succinctness and expressibility, developers
are tempted to copy code, which often introduces bugs.

Object-oriented Programming

Many algorithms require the use of data structures
than other just rectangular arrays, e.g., graphs, sets,
maps, and trees. MATLAB’s
usually encodes such data structures with a matrix
(e.g. the treeplot and etree functions). MATLAB
supports object-oriented programming so in theory one
can implement a tree or graph class. The authors have
attempted to make use of this facility but found it lim-
ited: objects are immutable so changes to them involve
a copy. Since computer vision projects typically in-
volve large data sets, if not careful, subtle copying may
swamp the system. Moreover, it is difficult to organize
a suite of classes because each class must reside in its
own directory (named @classname) and each method
in its own file. Changing the name of a method re-
quires renaming a file and the method name in the file
followed by a traversal of all files in the directory to
ensure all remaining references are appropriately re-
named. Combining three methods into one involves
moving the code in the two files into the remaining file
and then deleting the originating files. This makes it
cumbersome to do agile object-oriented development.
To get around these shortcomings, most programmers
introduce global variables, but this inevitably leads to
bugs and makes code hard to maintain. After many
years of trial and error, we found Python+SciPy to be
more capable for developing both prototype code and
production scientific software.
Python has good facilities for organizing a software li-
brary with its modules and packages. A module is a
collection of related classes, functions, and data. All
of its members conveniently reside in the same source
file. Objects in Python are mutable and all methods
of a class are defined in the same source file. Since
Python was designed for object-orientation, many sub-
communities have created OO libraries to support al-
most any software engineering task: databases, GUI

development, network I/O, or file unpacking. This
makes it easy to develop production code.

Data structures such as maps, sets, and lists are built
into Python. Python also supports a limited version
of a continuation known as a generator function, per-
mitting lazy evaluation. Rich data structures such as
graphs can easily be integrated into our algorithms by
defining a new class. Workarounds such as global vari-
ables were not needed. Development with Python’s
object-oriented interface was remarkably seamless.

In MATLAB, variables are passed by value with copy-
on-write semantics. Python’s support for pass-by-
reference gives one more flexibility by allowing one to
pass large arrays to functions and modify them. While
these semantics are not as easy to understand as pass-
by-value, they are essential for developing production
applications as well as for computing on large data
sets.

Conclusion

We started a new research project using SciPy without
having any previous experience with it. SciPy’s suc-
cinct, vectorized syntax and its extensive support for
slicing makes it a good prototyping framework. The
universality of Python gives one access to a wide va-
riety of libraries, e.g. GUI toolkits, database tools,
etc., to support production development. Its modules
and object-orientation allows for a clean organization
of software components. Pass-by-reference semantics
permit efficient and safe handling of large data sets.
With the flexibility of Python’s C extension interface,
one can interface with a large corpora of existing C++
code. Our design permits core C++ algorithms to be
Python-unaware but with support for error reporting
back to the Python environment. Using C++ generics
combined with a small suite of macros and helper func-
tions, instances of templated algorithms can be called
in a manner that is generic to pixel data type. Overall,
we found the Python+SciPy to be an excellent choice
to support our research.
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The SciPy Documentation Project (Technical Overview)

Stefan Johann Van der Walt (stefan@sun.ac.za) – University of Stellenbosch, South Africa

This summer saw the first NumPy Documentation
Marathon, during which many thousands of lines of
documentation were written. In addition, a web
framework was developed which allows the com-
munity to contribute docstrings in a wiki-like fash-
ion, without needing access to the source repository.
The new reference guide, which is based on these
contributions, was built using the popular Sphinx
tool. While the documentation coverage is now bet-
ter than ever, there is still a lot of work to be done,
and we encourage interested parties to register and
contribute further. This paper gives a more detailed
overview of the events leading to this project, and
of the technical goals achieved.

Motivation and early history

The effort was funded by the University of Central
Florida, under management of Dr Joe Harrington. Dr
Harrington attempted to use the SciPy tool suite as
a basis for his lectures in astronomy last year, but
found that students struggled to become proficient
with NumPy and SciPy, much more so than with a
previous package used. A lack of documentation was
identified as the key deficiency, and, in response, this
project was started.

Joe hired me in order to write documentation, but we
soon realised that the mammoth task of documenting
packages as vast as NumPy and SciPy was beyond the
means of a single person. We needed to find a way to
involve the larger community - to distribute the load of
writing and to obtain input from people with a variety
of backgrounds.

In March, at the neuro-imaging sprint hosted by Neu-
roSpin in Paris, the first discussions centred around
such a framework took place between Fernando Perez,
Gaël Varoquaux and myself. Later that month, at the
IPython sprint, Emmanuelle Gouillart volunteered to
do the first implementation, and we sketched a rough
architecture. The plan was to coerce MoinMoin into
serving up docstrings, and propagate changes back into
a bzr repository of the NumPy source.

Meanwhile, Pauli Virtanen was hard at work on the
same concept, and when he announced his solution to
the mailing list, the obvious way forward was to join
forces. He and Emmanuelle proceeded to implement
the first usable version of the documentation wiki.

Documentation Web-app

The original MoinMoin-based documentation editor
that Pauli and Emmanuelle produced provided every-
thing we needed: a way of editing NumPy docstrings in

ReStructuredText, and of propagating those changes
back to source, albeit with a lot of effort.

Soon, however, it became clear that the MoinMoin-
based approach was limited. Adding a feature to the
editor often meant crudely hacking it onto a framework
written with a different use case in mind. This limited
our progress in (and enthusiasm for!) implementing
new ideas.

Pauli started working on a web framework in Django,
and completed it in record time. The new framework
supported all the features of the old one, but, being
a web app, allowed us to add things easily such as
workflow, merge control, access control, comments and
statistics.

Editing numpy.clip in the online documentation ed-
itor.

The source of the web-app is available here:
https://code.launchpad.net/~pauli-virtanen/scipy/

pydocweb

Documentation Standard

Even before the online editing infrastructure was com-
pletely in place, discussion started on finalising a doc-
umentation standard. Since we were going to invest a
significant amount of time formatting docstrings, we
wanted to do it right from the start. At the time, Jar-
rod Millman had already written up the format as it
stood, and we completed it, aided by feedback from
the community.

The documentation standard is tool-agnostic ReStruc-
turedText, and was designed with text terminals in
mind. It attempts to balance markup capabilities with
ease of readability.

We realised that the new format would not suit all
documentation tools, such as Sphinx and Epydoc, and
wrote a parser which generates a higher level view of
the docstring. It then becomes trivial to output it in
any suitable format.

The documentation parser is available at:
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https://code.launchpad.net/~stefanv/scipy/

numpy-refguide

Workflow

With the new web-app, implementing a workflow be-
came possible:

The workflow is not rigorously enforced: we focus in-
stead on moving docstrings into the source code as
rapidly as possible. The reviewer status was designed
to expose the code to more editors and thereby improve
the quality of the code, rather than as a mechanism of
restricting contribution.

Pauli furthermore implemented three-way merging,
which allows us to update docstrings in the web ap-
plication with those from the Subversion repository.
The administrator is given the opportunity to fix any
conflicts that may arise. After such an update, edits
are made against the latest changes.

Whenever required, a patch can be generated against
the latest SVN version of the code. This patch alters
our software to contain the latest changes from the
wiki, and takes into account special mechanisms for
adding docs, such as NumPy’s add_newdocs.py.

Progress Made

Considering that Dr Harrington funded the documen-
tation drive, the fifty-odd functions used in his classes

were given priority. After documenting those, an ad-
ditional 280 were identified as important targets, of
which more than half are now documented.

Writing documentation, particularly examples, leads
to a lot of testing, which in turn exposes bugs. The
documentation project therefore unexpectedly pro-
duced some code fixes to NumPy and Sphinx!

A reference guide of more than 300 pages was gener-
ated using the Sphinx tool (which was developed to
document Python itself). A Sphinx plugin was writ-
ten, using the parser mentioned above, to translate
the NumPy docstrings to a format ideally suited to
Sphinx.

The code used to generate the reference guide can be
found either at:

https://code.launchpad.net/~stefanv/scipy/

numpy-refguide

or at:

https://code.launchpad.net/~pauli-virtanen/scipy/

numpy-refguide

The latest reference guide can be downloaded from:

http://mentat.za.net/numpy/refguide

Conclusion

I would like to thank everyone who contributed to the
documentation effort thus far, be it by giving feedback
on the mailing list, by coding or by writing documen-
tation. Those of you who wrote more than a thousand
words of documentation were rewarded with T-shirt,
which is merely a small token of appreciation. In re-
ality, the contribution you have made is an imporant
one: significantly lowering a barrier to the adoption of
NumPy.

While we have made good progress, there is still a lot
left to do! We ask that you join us in writing, review-
ing and editing docstrings, or otherwise assist in the
ongoing development of the documentation application
and tools.
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Matplotlib Solves the Riddle of the Sphinx

Michael Droettboom (mdboom@gmail.com) – Space Telescope Science Institute, USA

This paper shares our experience converting mat-
plotlib’s documentation to use Sphinx and will hope-
fully encourage other projects to do so. Matplotlib’s
documentation serves as a good test case, because
it includes both narrative text and API docstrings,
and makes use of automatically plotted figures and
mathematical expressions.

Introduction

Sphinx [Bra08] is the official documentation tool for
future versions of Python and uses reStructuredText
[Goo06] as its markup language. A number of projects
in the scientific Python community (including IPython
and NumPy) have also converged on Sphinx as a doc-
umentation tool. This standardization, along with
the ease-of-use of reStructuredText, should encourage
more people to contribute to documentation efforts.

History

Before moving to Sphinx, matplotlib’s [Hun08] docu-
mentation toolchain was a homegrown system consist-
ing of:

• HTML pages written with the YAPTU templating
utility [Mar01], and a large set of custom functions
for automatically generating lists of methods, FAQ
entries, generating screenshots etc.

• Various documents written directly in LATEX, for
which only PDF was generated.

• pydoc [Yee01] API documentation, only in HTML.

• A set of scripts to build everything.

Moving all of these separate formats and silos of in-
formation into a single Sphinx-based build provides a
number of advantages over the old approach:

• We can generate printable (PDF) and on-line
(HTML) documentation from the same source.

• All documentation is in a single format, reStruc-
turedText, and in plain-text files or docstrings.
Therefore, there is less need to copy-paste-and-
reformat information in multiple places and risk di-
verging.

• There are no errors related to manually editing
HTML or LATEX syntax, and therefore the barrier
to new contributers is lower.

• The output is more attractive, since the Sphinx de-
velopers have HTML/CSS skills that we lack. Also,
the docstrings now contain rich formatting, which
improves readability over pydoc’s raw monospaced
text. (See Figures at the end of this paper).

• The resulting content is searchable, indexed and
cross-referenced.

Perhaps most importantly, by moving to a standard
toolchain, we are able to share our improvements and
experiences, and benefit from the contributions of oth-
ers.

Built-in features

Search, index and cross-referencing

Sphinx includes a search engine that runs completely
on the client-side. It does not require any features
of a web server beyond serving static web pages. This
also means that the search engine works with a locally-
installed documentation tree.

Sphinx also generates an index page. While docstrings
are automatically added to the index, manually index-
ing important keywords is inherently labor-intensive so
matplotlib hasn’t made use of it yet. However, this is a
problem we’d like to solve in the long term, since many
of the questions on the mailing list arise from not being
able to find information that is already documented.

autodoc

Unlike tools like pydoc and epydoc [Lop08], Sphinx
isn’t primarily a tool for fully-automatic API and code
documentation. Instead, its focus is on narrative doc-
umentation, meant to be read in a particular order.
This difference in bias is not accidental. Georg Brandl,
the author of Sphinx, wrote1:

One of Sphinx’ goals is to coax people into writing good docs,
and that unfortunately involves writing in many instances :)
This is not to say that API docs don’t have their value; but
when I look at a new library’s documentation and only see
autogenerated API docs, I’m not feeling encouraged.

However, Sphinx does provide special directives to ex-
tract and insert docstrings into documentation, collec-
tively called the autodoc extension. For example, one
can do the following:

.. automodule:: matplotlib.pyplot

:members:

:show-inheritance:

This creates an entry for each class, function, etc. in
the matplotlib.pyplot module.

There are a number of useful features in epydoc that
aren’t currently supported by Sphinx including:

1In a message on the sphinx-dev mailing list on August 4, 2008: http://groups.google.com/group/sphinx-dev/msg/

9d173107f7050e63
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• Linking directly to the source code.

• Hierarchical tables of modules, classes, methods etc.
(Though documented objects are inserted into an al-
phabetized master index.) This shortcoming is par-
tially addressed by the inheritance diagram exten-
sion.

• A summary table with only the first line of each
docstring, that links to the complete versions.

In the matplotlib documentation, this last shortcoming
is painfully felt by the pyplot module, where over one
hundred methods are documented at length. There is
currently no way to easily browse what methods are
available.

Note that Sphinx development progresses rather
quickly, and some or all of these shortcomings may
be resolved very soon.

Extended features

As Sphinx is written in Python, it is quite easy to write
extensions. Extensions can:

• add new builders that, for example, support new
output formats or perform actions on the parsed
document trees.

• add code triggered by certain events during the build
process.

• add new reStructuredText roles and directives, ex-
tending the markup. (This is primarily a feature of
docutils, but Sphinx makes it easy to include these
extensions in your configuration).

Most of the extensions built for matplotlib are of this
latter type.

The matplotlib developers have created a number of
Sphinx extensions that may be generally useful to the
Scientific Python community. Where applicable, these
features have been submitted upstream for inclusion
in future versions of Sphinx.

Automatically generated plots

Any matplotlib plot can be automatically rendered and
included in the documentation. The HTML version of
the documentation includes a PNG bitmap and links to
a number of other formats, including the source code
of the plot. The PDF version of the documentation
includes a fully-scalable version of the plot that prints
in high quality.

This functionality is very useful for the matplotlib
docs, as we can now easily include figures that demon-
strate various methods. For example, the following re-
StructuredText directive inserts a plot generated from
an external Python script directly into the document:

.. plot:: ../mpl_examples/xcorr_demo.py

See Figures for a screenshot of the result.

Inheritance diagrams

Given a list of classes or modules, inheritance diagrams
can be drawn using the graph layout tool graphviz
[Gan06]. The nodes in the graph are hyperlinked to
the rest of the documentation, so clicking on a class
name brings the user to the documentation for that
class.

The reStructuredText directive to produce an inheri-
tance diagram looks like:

.. inheritance-diagram:: matplotlib.patches

matplotlib.lines

matplotlib.text

:parts: 2

which produces:

Mathematical expressions

Matplotlib has built-in rendering for mathematical ex-
pressions that does not rely on external tools such as
LATEX, and this feature is used to embed math directly
in the Sphinx HTML output.

This rendering engine was recently rewritten by port-
ing a large subset of the TEXmath layout algorithm
[Knu86] to Python2. As a result, it supports a number
of new features:

• radicals, eg., 3
√

x

• nested expressions, eg.,

√
x+ 1

3

x+1

• wide accents, eg., x̂yz

• large delimiters, eg.,
(

δx
δy

)
⌊z⌋

• support for the STIX math fonts [STI08], giving ac-
cess to many more symbols than even TEX itself,
and a more modern-looking sans-serif math mode.
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The following figure shows a complex fictional mathe-
matical expression rendered using the three supported
font sets, Computer Modern, STIX and STIX sans
serif.

The use of this extension in the matplotlib documen-
tation is primarily a way to test for regressions in our
own math rendering engine. However, it is also use-
ful for generating math expressions on platforms that
lack a LATEX installation, particularly on Microsoft
Windows and Apple OS-X machines, where LATEX is
harder to install and configure.

There are also other options for rendering math ex-
pressions in Sphinx, such as mathpng.py3, which uses
LATEX to perform the rendering. There are plans to
add two new math extensions to Sphinx itself in a fu-
ture version: one will use jsmath [Cer07] to render
math using JavaScript in the browser, and the other
will use LATEX and dvipng for rendering.

Syntax-highlighting of IPython sessions

Sphinx on its own only knows how to syntax-highlight
the output of the standard python console. For mat-
plotlib’s documentation, we created a custom docutils
formatting directive and pygments [Bra08b] lexer to
color some of the extra features of the ipython con-
sole.

Framework

These new extensions are part of a complete turnkey
framework for building Sphinx documentation geared
specifically to Scientific Python applications. The
framework is available as a subproject in matplotlib’s
source code repository4 and can be used as a starting
point for other projects using Sphinx.

This template is still in its early stages, but we hope it
can grow into a project of its own. It could become a
repository for the best ideas from other Sphinx-using
projects and act as a sort of incubator for future fea-
tures in Sphinx proper. This may include the web-
based documentation editor currently being used by
the Numpy project.

Future directions

intersphinx

Sphinx recently added “intersphinx” functionality,
which allows one set of documentation to reference
methods and classes etc. in another set. This opens
up some very nice possibilities once a critical mass of
Scientific Python tools standardize on Sphinx. For in-
stance, the histogram plotting functionality in mat-
plotlib could reference the underlying methods in
Numpy, or related methods in Scipy, allowing the user
to easily learn about all the options available without
risk of duplicating information in multiple places.

Acknowledgments

John Hunter, Darren Dale, Eric Firing and all the
other matplotlib developers for their hard work on this
documentation project.

2The license for TEX allows this, as long as we don’t call it “TEX ”.
3https://trac.fysik.dtu.dk/projects/ase/browser/trunk/doc/mathpng.py
4http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/py4science/examples/sphinx_template/
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Figures

The HTML output of the acorr docstring.

References

[Bra08] G. Brandl. 2008. Sphinx: Python Documenta-
tion Generator. http://sphinx.pocoo.org/

[Bra08b] G. Brandl. 2008. Pygments: Python syntax
highlighter. http://pygments.org

[Cer07] D. P. Cervone. 2007. jsMath: A Method of
Including Mathematics in Web Pages. http:

//jsmath.sourceforge.net/

[Gan06] E. Gansner, E. Koustsofios, and S. North.
2006. Drawing graphs with dot. http://www.

graphviz.org/Documentation/dotguide.pdf

[Goo06] D. Goodger. 2006. reStructuredText: Markup
Syntax and Parser Component of Docutils.
http://docutils.sourceforge.net/rst.html

[Hun08] J. Hunter, et al. 2008. matplotlib: Python
2D plotting library. http://matplotlib.

sourceforge.net/

[Knu86] D. E. Knuth. 1986. Computers and Typesetting,
Volume B: TeX: The Program. Reading, MA:
Addison-Wesley.

[Lop08] E. Loper. 2008. Epydoc: Automatic API Doc-
umentation Generation for Python. http://

epydoc.sourceforge.net/

[Mar01] A. Martelli. 2001. Recipe 52305:
Yet Another Python Templating Util-
ity (YAPTU). From Python Cookbook.
<http://code.activestate.com/recipes/52305/>

[STI08] STI Pub Companies. 2008. STIX Font Set
Project. http://www.stixfonts.org

[Yee01] K.-P. Yee. 2001. pydoc: Python documenta-
tion generator and online help system. http:

//lfw.org/python/pydoc.html & http://www.

python.org/doc/lib/module-pydoc.html.

http://conference.scipy.org/proceedings/SciPy2008/paper_6 32

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://pygments.org
http://pygments.org
http://pygments.org
http://jsmath.sourceforge.net/
http://jsmath.sourceforge.net/
http://jsmath.sourceforge.net/
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.stixfonts.org
http://www.stixfonts.org
http://www.stixfonts.org
http://lfw.org/python/pydoc.html
http://lfw.org/python/pydoc.html
http://lfw.org/python/pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://conference.scipy.org/proceedings/SciPy2008/paper_6


Proceedings of the 7th Python in Science Conference (SciPy 2008)

The SciPy Documentation Project

Joseph Harrington (jh@physics.ucf.edu) – University of Central Florida, USA

The SciPy Documentation Project seeks to provide
NumPy and SciPy with professional documentation
and documentation access tools in a variety of for-
mats. As our first effort, we have sponsored the
SciPy Documentation Marathon 2008, whose goal
is to produce reference documentation for the most-
used portions of NumPy. I present an overview of
current efforts and future plans.

Introduction and Motivation

A serious shortcoming of NumPy/SciPy is the state of
its documentation. Not only does this hurt productiv-
ity and make working in NumPy very frustrating at
times, it prevents adoption of the packages by many
who might profitably use them. This means our pool
of volunteers is much smaller than it might be, and
that solving the documentation problem might thus
enable projects of which today we can only dream.

Following a particularly difficult semester teaching a
data analysis class in Python for the first time, I be-
came motivated to begin the problem’s resolution in
the Spring 2008 semester. Below I discuss my moti-
vating case, the requirements and design for a project
to document NumPy and SciPy, our current (Summer
2008) timeline and plans, the people involved, results
to date, our challenge to future development, and some
issues to think about for the future.

I teach a course called Astronomical Data Analysis to
upperclass physics and astronomy majors. The course
initially used the Interactive Data Language, an expen-
sive and somewhat clunky proprietary language that
is popular in the astronomy community. The class is
very challenging, and the focus is data analysis and
how the physics of astronomical detectors affects data.
Although most of the exercises are programming tasks,
it is not a course in computer programming. Our use
of programming is kept simple and even though about
half the students typically have little programming ex-
perience, they manage to learn enough to write good
and clear code (an emphasis of the course). It is per-
haps a benefit that at this level the programs are kept
simple and the focus is kept on analysis. The IDL
course was highly effective. For example, students of-
ten reported having taught their advisors important
aspects of data analysis of which the faculty advisors
apparently had not been aware, and of becoming re-
sources for their fellow students in external summer
programs, graduate school, etc.

In Fall 2007, having moved institutions, I took the op-
portunity to switch the class to NumPy. I was pleased
that most of the students in my class were compara-
bly capable to those at my former institution. As re-
sources for learning NumPy, they received the Guide
to NumPy, the scipy.org web site, the mailing lists,

me, source code, and the astronomy tutorial. They
were also encouraged to work together. It was not
enough, and the class suffered badly. Students of-
ten spent 2 hours to find and learn a simple routine.
This prevented their rapid acquisition of the language,
which the class depended upon. Despite their (and
my) heroic efforts, none completed the final project,
something that even the worst students had always
been able to do. This included several students expe-
rienced in languages like C++. The problem was sim-
ple: the reference documentation was in many cases
not even poor, it was nonexistent, and the other re-
sources were insufficient to make the language acces-
sible in the time currently expected of students and
many other programmers. The conclusion was sim-
ple: I must either have documentation the next time I
taught it or go back to IDL.

Requirements and Design

If I can’t find a reindeer, I’ll make one instead. -T. Grinch,
1957

I was unwilling to return to IDL, but at the same time
as a pre-tenure professor with a very active research
program, my time was far too constrained to take on
the job myself. So, I would be leading a project, not
doing one. My resources were the SciPy community,
some surplus research funding, and about 8 months.

The needs were similarly clear: reference pages and
a reference manual for each function, class, and mod-
ule; tutorial user guide; quick “Getting Started” guide;
topic-specific user guides; working examples; “live”
collection of worked examples (the scipy.org cook-
book); tools to view and search docs interactively; vari-
ety of access methods (help(), web, PDF, etc.); mecha-
nisms for community input and management; coverage
first of NumPy, then SciPy, then other packages.

Completing the reference documentation for the rou-
tines used in the course would be sufficient to teach the
class in NumPy. The requirements for the reference
documentation were: a reference page per function,
class, and module (“docstrings”); thorough, complete,
professional text; each page accessible one level be-
low the lowest-level expected user of the documented
item; examples, cross references, mathematics, and im-
ages in the docstrings; pages for general topics (slicing,
broadcasting, indexing, etc.); a glossary; a reference
manual compiled from the collected pages; organized
by topic areas, not alphabetically; indexed.
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Timeline and Plans

I hired Stéfan van der Walt, a NumPy developer and
active community member, to spearhead the writ-
ing effort and to coordinate community participation.
Since it was clear that the labor needed would exceed
that of a few people, we agreed that some infrastruc-
ture was needed to ensure quality documentation and
even to make it possible for many non-developers to
participate. This included: wiki for editing and re-
viewing docs, with a link to SVN, ability to generate
progress statistics, etc.; templates and standards for
documentation; addition of indexing, math, and im-
age mechanisms to NumPy doc standard; production
of ASCII, PDF, and HTML automatically; and work-
flow for editing, review, and proofing. Work on the
infrastructure took about 5 weeks and was complete
by June 2008.

We decided first to address NumPy, the core package
needed by everyone, and to provide reference pages,
a “Getting Started Guide”, and a tutorial user guide.
We would also need doc viewing tools beyond Python’s
help() function. These would initially be web browsers
and PDF readers, but perhaps eventually more special-
ized tools would appear. We realized that we would
not write the latter tool set, but that if we provided an
easily parseable documentation standard, other users
likely would provide them. Finally, SciPy would need
the same set of documents.

Starting all projects in parallel would dilute our vol-
unteer effort to such a degree that the UCF course
would not have the documents it would need. Many
efforts would likely not reach critical mass, and would
fail. Also, the count of NumPy pages surprised us, as
it exceeded 2300 pages. A general triage and prioriti-
zation of the needs of the course were necessary. The
surviving pages of the triage are called NumPyI below:

Date Goal

June 2008 NumPy page triage and prioritization,
infrastructure

by Septem-
ber 2008

NumPyI 50%+ to “Needs review” sta-
tus, included in release

by January
2009

NumPyI 100% to “Needs review” sta-
tus, included in release

by June
2009

NumPyI Proofed, included in release

by Septem-
ber 2009

SciPy 25%+ to “Needs review”, in-
cluded in release

Results of the first stage of the project appear be-
low. That effort raised the question of when/if/how/by
whom would the “unimportant” part of NumPy be
documented? It was also not clear that an effort of
tens of volunteers could write a monolithic tutorial
user manual. A user manual requires continuity and
coherence throughout, to a much greater degree than
a collection of docstrings. One possibility would be
to divide the manual into around ten chapters and

to allow teams to propose to write the chapters and
communicate with one another to attempt to keep the
document as a whole uniform and coherent.

People

The core documentation team included: Joe Harring-
ton - organization, plans, standards and processes,
funding, whip; Stéfan van der Walt (on UCF con-
tract) - Reliable and available expert, interface with
SVN, PDF and HTML document generation, stan-
dards and processes, wiki, chief writer; Emmanuelle
Gouillart - wiki, wiki hosting; Pauli Virtanen - wiki,
writing; Perry Greenfield - numpy.doc pages

We began the community effort with the Summer
Documentation Marathon 2008, in reference to the
“sprints” sponsored periodically to address particu-
lar needs of NumPy development. Volunteers immedi-
ately signed up on the documentation wiki and began
writing docstrings, and Stéfan finished the UCF prior-
ity list early in the summer. As of this writing (August
2008), the following have signed up on the wiki:

Shirt Name Shirt Name
y Bjørn Åd-

landsvik
y David Huard

René Bastian y Alan Jackson
Nathan Bell y Teresa Jeffcott
Joshua Bloom Samuel John
Patrick Bouf-
fard

y Robert Kern

Matthew Brett Roban Kramer
Christopher
Burns

Vincent Noel

y Tim Cera y Travis Oliphant
Johann Cohen-
Tanugi

Scott Sinclair

Neil Crighton y Bruce Southey
Arnar Flatberg Andrew Straw
Pierre Gerard-
Marquardt

y Janet Swisher

y Ralf Gommers Theodore Test
y Keith Goodman James Turner
y Perry Greenfield y Gael Varoquaux
y Emmanuelle

Gouillart
y Pauli Virtanen

y Joe Harrington Nicky van Foreest
Robert Hetland y Stéfan van der

Walt
y= earned a T-shirt! Hooray and thanks!

During the middle of the summer, we decided to offer
an incentive to attract more writers. Teresa Jeffcott at
UCF produced a humorous graphic, and writers con-
tributing over 1000 words or equivalent work in wiki
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maintenance, reviewing, etc. would receive one at the
SciPy 2008 conference or by mail. A number of writers
signed up in response, and the offer remains good until
we withdraw it. We encourage even those who simply
want the shirt to sign up and write 1000 (good) words,
an amount that many volunteers have contributed in
a single week.

Results - Summer 2008

As of this writing, the status of the NumPy reference
documentation is:

Status % Count

Needs editing 42 352
Being written / Changed 33 279
Needs review 20 164
Needs review (revised) 2 19
Needs work (reviewed) 0 2
Reviewed (needs proof) 0 0
Proofed 3 24
Unimportant 1531

The quality of the finished documents is easily com-
parable to commercial package documentation. There
are many examples, they work, and the doctest mecha-
nism ensures that they will always work. These should
not be the only tests for a given function, as our educa-
tional tests do not necessarily exercise corner cases or
even all function options. The PDF document has 309
pages. NumPyI should double that number, and it will
triple from there when all documentation is complete.
As of this writing, the doc wiki is the best source for
NumPy documentation. It is linked from the scipy.org
website under the Documentation page.

A Challenge

We would like to kill the doc problem going forward.
“Normal” professional software projects, free or not,
write docs and code together. Good software projects
write docs first and use them as specifications. NumPy

had to start fast to unite Numeric and numarray, but
that era is now over (thank goodness). We thus chal-
lenge the developers to include no new functions or
classes in NumPy or SciPy without documentation.
We further urge those patching bugs to consider the
lack of a docstring to be a major bug and to fix that
problem when they fix other bugs. Those fixing bugs
are particularly knowledgeable about a function, and
should easily be able to write a docstring with a lim-
ited time commitment. This is particularly vital for
the “unimportant” items, where there is likely to be
less interest from the wider community in completing
the documentation. Of course, we never wish to pro-
vide a barrier to fixing bugs. We simply state the case
and ask developers to use their judgement. Likewise,
if reasonable docs come with a new contribution, the
details of doc standards compliance can be waived for
a while, or the contribution can be accepted on a SVN
branch and held until the docs pass review.

Going Forward

Since NumPy is fundamental, its reference pages come
first. Then we will put SciPy on the doc wiki.

We need more writers. NumPy developers should con-
sider addressing the “unimportant” pages, as others
may lack the knowledge or motivation for doing them.
The authors of specialized sections of SciPy should
contribute docs for their work (initially in SVN). In
some cases they are the only ones able to communi-
cate effective use of their packages to users.

We may implement separate technical and writing re-
views. It may be best to limit the reviewers to a small
group, to maintain consistency and a high standard.
Certainly in no case should a reviewer contribute text
to a docstring, as all parts of each docstring must be
seen by at least two brains.

We may need a different approach for the user guides,
and we would like to start work on tools, SciPy, and
user guides. For this, we need still more volunteers. So
we ask you, dear reader, to go to the doc wiki, sign up,
and WRITE! The time you spend will be greatly ex-
ceeded by the time you save by having docs available.
Many thanks to all contributors!
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Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy

Victoria G. Laidler (laidler@stsci.edu) – Computer Sciences Corporation, Space Telescope Science Institute, 3700
San Martin Drive, Baltimore, MD 21218 USA

Perry Greenfield (perry@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218 USA

Ivo Busko (busko@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218
USA

Robert Jedrzejewski (rij@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218 USA

Pysynphot is a package that allows astronomers to
model, combine, and manipulate the spectra of stars
or galaxies in simulated observations. It is being de-
veloped to replace a widely used legacy application,
SYNPHOT. While retaining the data-driven philos-
ophy of the original application, Pysynphot’s archi-
tecture and improved algorithms were developed to
address some of its known weaknesses. The lan-
guage features available in Python and its libraries,
including numpy, often enabled clean solutions to
what were messy problems in the original appli-
cation, and the interactive graphics capabilities of
matplotlib/pylab, used with a consistent set of ex-
posed object attributes, eliminated the need to write
special-purpose plotting methods. This paper will
discuss these points in some detail, as well as pro-
viding an overview of the problem domain and the
object model.

Introduction

One of the things that astronomers need to do is to
simulate how model stars and galaxies would look if
observed through a particular telescope, camera, and
filter. This is useful both for planning observations
(“How long do I need to observe in order to get good
signal to noise?”), and for comparing actual observa-
tions with theoretical models (“Does the real obser-
vation of this galaxy prove that my theoretical model
of galaxies is correct?”). This general procedure is re-
ferred to as “synthetic photometry”, because it effec-
tively performs photometric, or brightness, measure-
ments on synthetic (simulated) data with synthetic in-
struments.

This is a difficult problem to solve in generality. In ad-
dition to the intrinsic properties of a star or galaxy that
determine its spectrum (the amount of light emitted
as a function of wavelength), effects such as redshift
and dimming by interstellar dust will also affect the
spectrum when it arrives at the telescope. Real spec-
tra are noisy with limited resolution; model spectra
are smooth with potentially unlimited resolution. The
response function of a telescope/instrument combina-
tion is a combination of the response of all the optical
elements. And astronomers are notorious for using id-
iosyncratic units; in addition to the SI and cgs units,
there are a variety of ways to specify flux as a function
of wavelength; then there are a set of magnitude units

which involve a logarithmic transformation of the flux
integrated over wavelength.

A software package, SYNPHOT [Bushouse], was writ-
ten in the 1980s as part of the widely-used Image Re-
duction and Analysis Facility, IRAF [Tody], using its
proprietary language SPP. Additionally, SYNPHOT
essentially has its own mini-language, in which users
specify the particular combination of spectrum, band-
pass, units, and functions that should be applied to
construct the desired spectrum.

Motivation

As with many legacy applications, maintenance issues
were a strong motivation in deciding to port to a mod-
ern language. As an old proprietary language, SPP
both lacks the features of modern languages and is
difficult to use with modern development tools. This
raised the cost of adding new functionality; so did the
rigid task-oriented architecture.

It had also become clear over the years that certain de-
ficiencies existed in SYNPHOT at a fairly basic level:

• float arithmetic was implemented in single precision

• poor combination of wavelength tables at different
resolutions

• applying redshifts sometimes lost data

• no memory caching; files used for all communica-
tions

Re-implementing SYNPHOT in Python gave us the
opportunity to address these and other deficiencies.

Rather than describe Pysynphot in detail, we will pro-
vide a high-level overview of the object model, and
then take a close-up look at four areas that illustrate
how Python, with its object-oriented capabilities and
available helper packages, made it easier for us to solve
some problems, simplify others, and make a great deal
of progress very quickly.

Overview of Pysynphot Objects

A Spectrum is the basic class; a Spectrum always has
a wavelength table and a corresponding fluxtable in a
standard internal set of units. Waveunits and Fluxu-
nits are also associated with spectra for representation
purposes. Subclasses support spectra that are created
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from a file, from arrays, and from analytic functions
such as a black body or a Gaussian.

A Bandpass, or SpectralElement, has a wavelength ta-
ble and a corresponding dimensionless throughput ta-
ble. Subclasses support bandpasses that are created
from a file, from arrays, from analytic functions such
as a box filter, and from a specified observing configu-
ration of a telescope/instrument combination.

Spectrum objects can be combined with each other and
with Bandpasses to produce a CompositeSpectrum.

WaveUnits and FluxUnits are created from string rep-
resentations of the desired unit in the shorthand used
by SYNPHOT. All the unit conversion machinery is
packaged in these objects.

A Spectrum and Bandpass collaborate to produce an
Observation, which is a special-purpose subclass of
Spectrum used to simulate observing the Spectrum
through the Bandpass.

A Spectrum also collaborates with Bandpass and Unit
objects to perform renormalization (“What would this
spectrum have to look like in order to have a flux of
value F in units U when observed through bandpass
B?”).

As is evident from the above definitions, most of the
objects in pysynphot have array attributes, and thus
rely heavily on the array functionality provided by
numpy. When Spectrum or Bandpass objects are read
from or written to files, these are generally FITS files,
so we also rely significantly on PyFITS. Use of these
two packages is sufficiently widespread that they don’t
show up in any of the following closeups, but they are
critical to our development effort.

There are a few other specialty classes and a number
of other subclasses, but this overview is enough to il-
lustrate the rest of the paper.

Closeup #1: Improved wavelength han-
dling

When SYNPHOT is faced with the problem of combin-
ing spectra that are defined over different wavelength
sets, it creates an array using a default grid, defined
as 10000 points covering the wavelength range where
the calculated passband or spectrum is non-zero. The
wavelengths are spaced logarithmically over this range,
such that:

log10(lambda_i) = log10(lambda_min) + (i-1)*delta

where:

• lambda_i is the ith wavelength value

• delta = (log10 (max) -log10 (min)) / (N-1)

• lambda_min = wavelength of first non-zero flux

• lambda_max = wavelength of last non-zero flux

• N = 10000

This is completely insensitive to the wavelength spac-
ing associated with each element; the spacing in the
final wavelength set is determined entirely by the total
range covered. Narrow spectral features can be en-
tirely lost when they fall entirely within one of these
bins.

Pysynphot does not use a pre-determined grid like this
one. Instead, a CompositeSpectrum knows about the
wavelength tables of each of its components. It con-
structs its own wavelength table by taking the union
of the points in the wavelength tables in the individ-
ual components, thus preserving the original spacing
around narrow features.

Closeup #2: Units

As mentioned above, astronomers use a variety of id-
iosyncratic units, and need to be able to convert be-
tween them. Wavelength can be measured in microns
or Angstroms (10^-8 m), or as frequency in Hz. Many
of the supported fluxunits are, strictly speaking, flux
densities, which represent flux per wavelength per time
per area; thus the units of the flux depend on the units
of the wavelength, as shown in the list below. The flux
itself may be represented in photons or ergs. Magni-
tudes, still commonly in use by optical and infrared
astronomers, are typically

−2.5 ∗ log10(F ) + ZP

where F is the flux integrated over wavelength, and the
zeropoint depends on which magnitude system you’re
using. To compare directly to observations, you need
the flux in counts, which integrates out not only the
wavelength distribution but also the effective area of
the telescope’s light-collecting optics.

• fnu = ergs s^-1 cm^-2 Hz^-1

• flam = ergs s^-1 cm^-2 Ang^-1

• photnu = photons s^-1 cm^-2 Hz^-1

• photlam = photons s^-1 cm^-2 Ang^-1

• jy = 10^-23 ergs s^-1 cm^-2 Hz^-1

• mjy = 10^-26 ergs s^-1 cm^-2 Hz^-1

• abmag = -2.5 log10(FNU) - 48.60

• stmag = -2.5 log10(FLAM)- 21.10

• obmag = -2.5 log10(COUNTS)

• vegamag = -2.5 log10(F/ F(VEGA))

• counts = detected counts s^-1

The SYNPHOT code includes several lengthy case
statements (or the equivalent thereof), to convert from
the internal units to the desired units in which a par-
ticular computation needs to be performed, and then
sometimes back to the internal units.

Pysynphot’s OO architecture has several benefits here.
Firstly, the unit conversion code is localized within the
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relevant Unit classes. Secondly, the internal represen-
tation of a spectrum always exists in the internal units
(of Angstroms and Photlam), so there’s never a need to
convert back to it. Finally, Unit classes know whether
they are flux densities, magnitudes, or counts, which
simplifies the tests needed in the various conversions.

Closeup #3: From command language to
OO UI

A significant portion of the SYNPHOT codebase is
devoted to parsing and interpreting the mini-language
in which users specify a command. These specifica-
tions can be quite long, because they can include mul-
tiple filenames of spectra to be arithmetically com-
bined. This command language also presents a sig-
nificant learning curve to new users, to whom it is not
immediately obvious that the command

rn(z(spec(qso_template.fits),2.0),

box(10000.0,1.0),1.00E-13,flam)

means
Read a spectrum from the file qso_template.fits, then apply a
redshift of z=2. Then renormalize it so that, in a 1 Angstrom
box centered at 10000 Angstroms, the resulting spectrum has
a flux of 1e^-13 ergs cm^-2 s^-1 A^-1.

Choosing an object-oriented user interface entirely
eliminated the need for a command parser (except
temporarily, for backwards compatibility). Instead of
learning a command language to specify complex con-
structs, users work directly with the building blocks
and do the construction themselves. Although this is
less concise, it gives users more direct control over the
process, which itself allows for easier extensibility. The
learning curve is also much shallower, as the class and
method names are fairly intuitive.:

qso=S.FileSpectrum(’qso_template.fits’)

qso_z=qso.redshift(2.0)

bp=S.Box(10000,1)

qso_rn=qso_z.renorm(1e-13,’flam’,bp)

Closeup #4: Pylab gave us graphics for free

The SYNPHOT package includes several specialized
tasks to provide graphics capability. These tasks have
lengthy parameter lists to allow the user to specify

characteristics of the plot (limits, line type, and over-
plotting), as well as the usual parameters with which
to specify the spectrum.

The availability of matplotlib, and particularly its py-
lab interface, meant that we have been able to provide
quite a lot of graphics capability to our users without,
as yet, having to write a single line of graphics-related
code. We have tuned the user interface to provide
consistent attributes that are useful for plotting and
annotating plots.

As the user interface develops, we will likely develop
some functions to provide “standard” annotations such
as labels, title, and legend. But this is functional sugar;
almost all the plotting capability provided by the SYN-
PHOT tasks is available out of the box, and pylab pro-
vides much more versatility and control. Most of our
test users are coming to pysynphot and to pylab at
the same time; their reaction to the plotting capabili-
ties has been overwhelmingly positive.

Conclusion

The need to port this legacy application became
an opportunity to improve it, resulting in a re-
implementation with improved architecture rather
than a direct port. Python’s OO features and available
packages made the job much easier, and Python’s abil-
ity to support functional-style programming is impor-
tant in lowering the adoption barrier by astronomers.

Development and testing of pysynphot are actively on-
going, with a major milestone planned for spring 2009,
when it will be used by the Exposure Time Calculators
during the next observing cycle for the Hubble. We are
aiming for a version 1.0 release in summer 2009.
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How the Large Synoptic Survey Telescope (LSST) is using Python
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The Large Synoptic Survey Telescope (LSST) is a
project to build an 8.4m telescope at Cerro Pachon,
Chile and survey the entire sky every three days
starting around 2014.

The scientific goals of the project range from char-
acterizing the population of largish asteroids which
are in orbits that could hit the Earth to understand-
ing the nature of the dark energy that is causing the
Universe’s expansion to accelerate.

The application codes, which handle the images
coming from the telescope and generate catalogs
of astronomical sources, are being implemented in
C++, exported to python using swig. The pipeline
processing framework allows these python modules
to be connected together to process data in a par-
allel environment.

The Large Synoptic Survey Telescope (LSST) is a
project to build an 8.4m telescope at Cerro Pachon,
Chile and survey the entire sky every three days start-
ing around 2014.

The scientific goals of the project range from charac-
terizing the population of largish asteroids which are
in orbits that could hit the Earth to understanding the
nature of the dark energy that is causing the Universe’s
expansion to accelerate.

The application codes, which handle the images com-
ing from the telescope and generate catalogs of astro-
nomical sources, are being implemented in C++, ex-
ported to python using swig. The pipeline process-
ing framework allows these python modules to be con-
nected together to process data in a parallel environ-
ment.

Introduction

Over the last twenty-five years Astronomy has been
revolutionized by the introduction of computers and
CCD detectors; the former have allowed us to employ
telescope designs that permit us to build telescopes
with primary mirrors of diameter 8-10m, as well as
handle the enormous volumes generated by the lat-
ter; for eample, the most ambitious imaging project
to date, the Sloan Digital Sky Survey (SDSS [SDSS]),
has generated about 15Tby of imaging data.

There are a number of projects being planned or built
to carry out surveys of the sky, but the most ambitious
is the Large Synoptic Survey Telescope (LSST). This
is a project to build a large telescope at Cerro Pachon,
Chile and survey the entire sky every three days start-
ing around 2014. The telescope is a novel 3-mirror
design with an 8.4m diameter primary mirror and will

be equipped with a 3.2Gpixel camera at prime focus.
The resulting field of view will have a diameter of 3.5
degrees --- 7 times the full moon’s diameter (and thus
imaging an area 50 times the size of the moon with ev-
ery exposure). In routine operations we expect to take
an image of the sky every 15s, generating a data rate
of over 800 Mby/s. In order to handle these data we
will be building a complex software system running on
a large cluster. The LSST project is committed to an
“Open-Data, Open-Source” policy which means that
all data flowing from the camera will be immediately
publically available, as will all of the processing soft-
ware.

The large area imaged by the LSST telescope will al-
low us to image the entire sky every 3 (clear!) nights.
This survey will be carried out through a set of 6 filters
(ultra-violet, green, red, very-near-infrared, nearish-
infrared, near-infrared; 320nm -- 1050nm) allowing us
to characterize the spectral properties of the several
billion sources that we expect to detect --- approxi-
mately equal numbers of stars and galaxies. This un-
precedented time coverage (at the faint levels reached
by such a large telescope, even in as short an exposure
as 15s) will allow us to detect objects that move as
well as those that vary their brightness. Taking the
set of images at a given point, taken over the 10-year
lifetime of the project, will enable us to study the ex-
tremely faint Universe over half the sky in great detail.
It is perhaps worth pointing out that the Hubble Space
Telescope, while able to reach very faint levels, has a
tiny field of view, so it is entirely impractical to dream
of using it2 to carry out such survey projects.

The LSST’s scientific goals range from studies of
the Earth’s immediate neighbourhood to the furthest
reaches of the visible Universe.

The sensitivity to objects that move will allow us to
measure the orbits of most3 asteroids in orbits that
could hit the Earth.4 If it’s any consolation, only ob-
jects larger than c. 1km are expected to cause global
catastrophes, while the main threat from smaller ob-
jects is Tsunamis (the reindeer-killing object that hit
Tunguska in 1908 is thought to have been c. 100m in
diameter). More distant moving objects are interest-
ing too; LSST should be able to characterise moving
objects in our Galaxy at distances of thousands of light
years.

The LSST’s frequent measurement of the brightness of
enormous numbers of sources opens the possibility of
discovering new classes of astronomical objects; a spec-
tacular example would be detecting the flash predicted
to occur when two super-massive black holes merge in

2Or its planned successor, the James Webb Space Telescope
390% of objects larger than 140m
4There are other projects, such as Pan-STARRS on Haleakala on Maui, that are expected to identify many of these objects

before LSST commences operations
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a distant galaxy. Such mergers are expected to be a
normal part of the evolution of galaxies, and should be
detectable with space-based gravitational wave detec-
tors such as LISA. The detection of an optical counter-
part would dramatically increase how much we learn
from such an event.

Finally, the LSST will provide extremely powerful
ways of studying the acceleration of the Universe’s ex-
pansion, which is generally interpreted as a manifesta-
tion of a “dark energy” that currently comprises 70%
of the energy-density of the Universe. Two techniques
that will be employed are studying distant type Ia su-
pernovae (which can be used to measure the expansion
history of the Universe) and measuring the distortions
imposed on distant galaxies by the curvature of space
caused by intervening matter.

The requirements that this system must meet are
rather daunting. The accuracy specified for measure-
ment of astronomical quantities such as brightnesses
and positions of sources significantly exceeds the cur-
rent state of the art, and must be achieved on a scale
far too large for significant human intervention.

LSST’s Computing Needs

Analyzing the data coming from LSST will require
three classes of software: The applications, the mid-
dleware, and the databases. The applications codes
process the incoming pixels, resulting in catalogues of
detected sources’ properties; this is the part of the pro-
cessing that requires a understanding of both astro-
nomical and computing algorithms. The middleware
is responsible for marshalling the applications layer
over a (large) cluster; it’s responsible for tasks such
as disk i/o, load balancing, fault tolerance, and prove-
nance. Finally the astronomical catalogues, along with
all relevant metadata, must be stored into databases
and made available to the astronomical and general
public (including schools --- outreach to students be-
tween Kindergarten and 12th grade is an important
part of the LSST).

The entire system is of course reliant on a build system,
and here we decided to eschew the gnu toolchain (au-
tomake, autoconf, gnumake, libtool) in favour of scons,
a python-based build system that replaces make, much
of the configure part of the auto* tools, and the joys
of building shared libraries with libtool. We felt that
scons support for multi-platform builds was sufficient,
especially in this modern age of ANSI/ISO C++ and
Posix 1003.1 compatibility. Additionally, we are using
a pure python tool eups to manage our dependencies
--- we strongly felt that we needed to support having
multiple sets of dependent libraries simultaneously de-
ployed on our machines (and indeed for a developer to
be able to use one set in one shell, and a different set
in another).

The Application Layer

The application codes are being implemented in C++,
exported to python using swig. This is a different ap-
proach to that employed by the PyRAF group at the
Space Telescope Science Institute [PyRAF] which de-
fines all of its classes in python, making extensive use of
numpy and scipy. For example, if your primary need is
to be able to read images from disk, manipulate them
(e.g. add them together or warp them) and then ei-
ther pass them to an external program or write them
back to disk, a numpy-based approach is a very good
fit. In a similar way, if you wish to read a catalogue
of objects into a python array, then the objects in the
array --- corresponding to the entries in the catalogue
--- are naturally created in python.

However, for the LSST, we rejected this solution as
we felt that the natural place to create many objects
was in C++. For example, given an image of the
sky the first stage of processing (after correcting for
the instrumental response) is detecting all of the ob-
jects present in the image. This isn’t a particularly
hard problem, but it is not one that’s well matched to
python as it involves searching through all the pixels
in the image to determine connected sets --- and iter-
ation through all the elements of an array is not an
array-based extension such as numpy’s strong point.
On the otherhand, it’s very natural in a language such
as C or C++; as you detect each source you add its
data structure to a list. There are many technolo-
gies available for linking python and C/C++ (ctypes,
boost::python, swig, pyrex, cython, ...) with various
strengths and weaknesses. We chose SWIG because of
its non-invasive nature (when it works it simply works
--- you pass it a .h file and out pops the python inter-
face), it’s level of support, and its high-level semantics
--- a C++ std::list<...> becomes a python list; a C++
std::map<string, ...> becomes a python dictionary.

Where we are using Python

As described, our fundamental operations are imple-
mented in terms of C++ classes, and in C++. Where
does python fit in? The first place is in writing tests;
we have used unittest to write the majority of our (ad-
mittedly still small) test suite. Because swig can be
used to wrap low-level as well as high-level interfaces,
we are able to write tests that would usually be coded
directly in C++6. A downside of this is that the devel-
oper has to be sure that problems revealed are in the
C++ code not the interface layer --- but in the long
run we need to test both7.

The next major application of python is as a high-
level debugger8 For example, an C++ object detector
returns an std::list of detections; but are they correct?
It’s easy to write a little piece of python to plot the
objects in an image display programme to see if they

6Using e.g. boost::test or CppUnit
7The classic problems are due to reference counting. E.g. if operator+= is given its usual C++ meaning of returning its

argument, swig will generally get the reference counts wrong.
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make sense; then to plot the ones that only satisfy
a certain condition, and so on. This is making use
of python’s strengths as a fast-prototyping language,
where we can keep the same list of objects while writ-
ing visualisation code --- if we were doing this in C++,
we’d have to rerun the object detector as well as the
display code at each iteration. A more long-lasting
aspect of the same style of coding is the quality assur-
ance that a project such as LSST is crucially depen-
dent on. We shall have far too much data to dream of
looking at more than a tiny fraction by eye, so exten-
sive suites of analysis programmes will be run looking
for anomolies, and such programmes are also naturally
written in python.

Finally, we have pushed the C++ interfaces down to
quite a low level (e.g. detect objects; measure posi-
tions; merge detections from multiple detection algo-
rithms). The modularity desired by the middleware
is higher --- more at the level of returning all objects
from an image, with properly measured positions. The
solution is to write the modules themselves in python,
making calls to a sequence of C++ primitives.

Conclusions

We have adopted python as the interactive layer in a
large image processing system, and are happy with the
results. The majority of the pixel-level code is written
in C++ for efficiency and type-safetly, while the pieces
are glued together in python. We use python both as
a development language, and as the implementation
language to assemble scientific modules into complete
functioning pipelines capable of processing the torrent
of data expected from the LSST telescope.

Appendix

Integration with numpy

There are of course very good reasons for wanting
our array classes to map seamlessly onto numpy’s
array classes --- having been through the nu-
meric/numarray/numpy wars, we have no wish to start
yet another schism. There are two issues here: How
well our image classes map to (or at least play with)
numpy’s; and the extent to which our C++ function
calls and methods return numpy arrays rather than
pure python lists.

Let us deal with the former first. We have a templated
Image class which looks much like any other; it may
be described in terms of a strided array9. This is simi-
lar to numpy’s 2-D array classes, but not identical. In
the past (prior to swig 1.3.27) it was possible to cre-
ate python classes that inherited from both numpy’s
ndarray and LSST’s Image but this solution was frag-
ile, and we understood the question of exactly who
owned memory and when it could be safely deleted
was only hazily. Another approach would be to make
the LSST image classes inherit from ndarray --- but
there we have problems with the C --- C++ barrier. It
seems likely that a solution can be implemented, but
it may not be clean.

The second question, that of numpy record arrays ver-
sus python lists, seems to be purely a matter of policy,
and writing the proper swig typemaps. However, it
does raise the question of how much one wants numpy’s
arrays to dominate the data structures of what is ba-
sically a python program.
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Realtime Astronomical Time-series Classification and Broadcast Pipeline

Dan Starr (dstarr@astro.berkeley.edu) – UC Berkeley, USA

Josh Bloom (jbloom@astro.berkeley.edu) – UC Berkeley, USA

John Brewer (bizard@propellerheads.com) – UC Berkeley, USA

The Transients Classification Pipeline (TCP) is a
Berkeley-led, Python based project which federates
data streams from multiple surveys and observato-
ries, classifies with machine learning and astronomer
defined science priors, and broadcasts sources of in-
terest to various science clients. This multi-node
pipeline uses Python wrapped classification algo-
rithms, some of which will be generated by training
machine learning software using astronomer classi-
fied time-series data. Dozens of context and time-
series based features are generated in real time for
astronomical sources using a variety of Python pack-
ages and remote services.

Project Overview

Astronomy is entering an era of large aperture, high
throughput surveys with ever increasing observation
cadences and data rates. Because of the increased time
resolution, science with fast variability or of an explo-
sive, “transient” nature is becoming a focus for several
up and coming surveys. The Palomar Transients Fac-
tory (PTF) is one such project [PTF]. The PTF is
a consortium of astronomers interested in high vari-
ability, “transient” science, and which has a dedicated
survey telescope as well as several follow-up telescope
resources.

Berkeley’s Transients Classification Pipeline (TCP)
is a Python based project that will provide real-
time identification of transient science for the Palomar
Transients Factory’s survey telescope, which goes on-
line in November 2008.

The PTF’s survey instrument is a ~100 megapixel, 7.8
square-degree detector attached to Palomar Observa-
tory’s Samuel Oschin 48 inch diameter telescope. Tak-
ing 60 second exposures, this instrument produces up
to 100 Gigabytes of raw data per night. Immediately
following an observation’s exposure and read-out from
the detector, the data is uploaded to Lawrence Berke-
ley Laboratory for calibration and reduction, which
results in tables of positions and flux measurements
for objects found in each image. The TCP takes this
resulting data and after several steps, identifies as-
tronomical “sources” with interesting science classes,
which it broadcasts to follow-up scheduling software.
PTF affiliated telescopes are then scheduled to make
follow-up observations for these sources.

Palomar 48 inch telescope, PTF survey detector on
an older instrument (inset).

The TCP is designed to incorporate not only the Palo-
mar 48 inch instrument’s data stream but other tele-
scope data streams and static surveys as well. The
software development and testing of the TCP makes
use of SLOAN Digital Sky Survey’s “stripe 82” dataset
[SDSS] and the near-infrared PAIRITEL telescope’s
real-time data stream [PAIRITEL]. Prior to the com-
missioning of the Palomar instrument, the TCP will
be tested using a historically derived data stream from
the preceding Palomar Quest survey on the Palomar
48 inch telescope.

A long term goal of the Transients Classification
Pipeline is to produce a scalable solution to much
larger, next generation surveys such as LSST. Being
a Python based project, the TCP has so far been rel-
atively easy to implement and scale to current pro-
cessing needs using the parallel nature of “IPython”.
Although the TCP’s processing tasks are easily paral-
lelized, care and code optimization will be needed when
scaling to several orders of magnitude larger next gen-
eration survey data streams.

Two of PTF’s several follow-up telescopes: Palomar
60 inch, PAIRITEL (inset).
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TCP Data Flow

The TCP incorporates several data models in its de-
sign. Initially, the telescope data streams feeding into
the TCP contain “object” data. Each “object” is a
single flux measurement of an astronomical object at a
particular time and position on the sky. The pipeline
clusters these objects with existing known “sources”
in the TCP’s database. The clustering algorithm uses
Bayesian based methods [Bloom07] and sigma cuts to
make its associations. Each source then contains ob-
jects which belong to a single light source at a spe-
cific sky position, but are sampled over time. Objects
not spatially associated with any sources in the TCP
database are then used to define new sources.

Once a source has been created or updated with addi-
tional object data points, the TCP then generates a set
of real-number “features” or properties for that source.
These features can describe context information, in-
trinsic information such as color, or properties char-
acterizing the source’s time-series “light-curve” data.
The source’s features are then used by classification
algorithms to determine the most probable science
classes a source may belong to.

Data flow for the TCP.

Sources which match with a high probability science
classes that interest PTF collaborators, will be broad-
cast to the PTF’s “Followup Marshal” software. The
Followup Marshal delegates and schedules follow-up
observations on various telescopes.

One important design point of the Transients Classi-
fication Pipeline is that it allows the addition of new

data streams, feature generators, and science classifica-
tion algorithms while retaining its existing populated
database. To meet this constraint, the TCP will use
autonomous source re-evaluation software, which tra-
verses the existing source database and re-generates
features and science classifications for stale sources.

Science Classification and Follow-up

Time-variable astronomical science can be described
as a hierarchy of science classes. At the top level,
there are major branches such as “eruptive variables”
or “eclipsing binary systems”, each of which contain
further refined sub-classes and child branches. Each
science class has an associated set of constraints or
algorithms which characterize that class (“science pri-
ors”). Determining the science classes a source be-
longs to can be thought of as a traverse along the class
hierarchy tree; following the path where a source’s
characteristics (“features”) fall within a science class’s
constraints. These science priors / classification algo-
rithms can be either astronomer defined or generated
by machine learning software which is trained using
existing classified source datasets.

12 of the ~150 science classes in the current TUTOR
light-curve repository.

In the case of science types which are of particular
interest to the PTF group, science priors can be ex-
plicitly defined by experts in each field. This is impor-
tant since PTF’s primary focus is in newly appearing,
sparsely sampled sources which are tricky to identify
using only a couple data points. As the consortium
develops a better understanding of the science coming
from the Palomar 48-inch data stream, these priors
can be refined. The TCP will also allow different as-
tronomers or groups to define slightly different science
priors, in order to match their specific science defini-
tions and constraints.
Besides using astronomer crafted science priors, a pri-
mary function of the TCP is its ability to automatically
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generate algorithms using an archive of classified light-
curves. These algorithms are then able to distinguish
science classes for sources. Also, as follow-up observa-
tions are made, or as more representative light-curves
are added to the internal light-curve archive, the TCP
can further refine its classification algorithms.

In a future component of the TCP, a summary of the
priors / algorithms which identify a source’s science
class may be added to an XML representation for
that source. The XML is then broadcast for follow-
up observations of that source. The source’s priors in
this XML may be useful for follow-up in cases where
the TCP was unable to decide between several science
classes for that source. Here, software could parse the
priors and identify any features which, if better sam-
pled, would be useful in discerning between these un-
resolved science classes for that source.

The PTF’s “Followup Marshal” will receive TCP’s
broadcasted source XMLs and then schedule follow-up
observations on available telescopes. In the case of a
source with unresolved science classes, the Followup
Marshal may be responsible for choosing a follow-
up telescope based upon the priors mentioned in the
source XML.

Source Features

To distinguish between a variety of different science
classes, many different features need to be generated
for a source. Some features represent context informa-
tion, while others represent intrinsic, non-time-series
stellar properties. A third feature set is derived from
a source’s time-series light-curve.

Context features contain source properties such as the
distance of the galaxy nearest to a source, which could
represent whether the source resides within a galaxy.
In the case that the source closely neighbors a galaxy,
the line-of-sight distance to that galaxy would also be
a useful context feature of that source. The galactic
latitude of a source is another context feature which
roughly correlates to whether or not that source is
within our galaxy. Some of these features require re-
trieval of information from external repositories.

Intrinsic features are neither context related or derived
from time varying light-curves. The color of a stellar
source is one property which astronomers tend to con-
sider as static and unvarying over observable time.

As for time-series derived features, the TCP uses
re-sampling software to make better use of locally
archived example light-curves in order to generate clas-
sification algorithms applicable to the data stream in-
struments.

Time-series light-curves (above) and their corre-
sponding science classes (below).

Light-Curve Resampling

Currently the TCP has an internal repository of light-
curves which we’ve named TUTOR. As of August
2008, TUTOR contains 15000 light-curves represent-
ing 150 science classes, and derived from 87 papers and
surveys. Since different instruments and telescopes
were used to build the light-curves in this repository,
one aspect of the TCP is to re-sample this data to bet-
ter represent the observation cadences and instrument
capabilities of TCP’s incoming data streams.

Features generated from these re-sampled light curves
are then used as training sets for machine learning soft-
ware. The machine learning software then produces
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science classification algorithms that are more appli-
cable to the incoming data streams and which can be
incorporated with existing science identification priors.

Python Use in the TCP

The TCP is developed in Python for several reasons.
First, the TCP’s primary task, generating features and
determining the science classification of a source, is
easily parallelized using Python. We’ve found the par-
allel aspect of IPython (formerly in the “IPython1”
branch) performs well in current tests and should be
applicable to the PTF data stream in November. Also,
IPython’s straightforward one-time importing of mod-
ules and calling of methods on client nodes made mi-
gration from TCP’s original single-node pipeline triv-
ial.
The TCP incorporates astronomer written algorithms
in its feature generation software. Python makes for
an easy language which programmers with differing
backgrounds can code. The TCP makes use of classi-
fication code written in other languages, such as “R”,
but which are easily wrapped in Python. In the future,
as we converge on standard science classification algo-
rithms, this code may be re-implemented using more
efficient numpy based algorithms.
An example where Python enabled code re-use, was
the incorporation of PyEphem into TCP’s minor
planet correlation code. PyEphem wraps the C li-
braries of popular XEphem, which is an ephemeris cal-
culating package.

Finally, Python has allowed TCP to make use of sev-
eral storage and data transport methods. We make
use of MySQL for our relational database storage, and
have used the Python “dbxml” package’s interface to
a BerkeleyDB XML database for storage of XML and
structured data. The TCP makes use of XMLRPC and
socket communication, and smtplib may be used to
broadcast interesting follow-up sources to astronomers.
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Analysis and Visualization of Multi-Scale Astrophysical Simulations Using
Python and NumPy

Matthew Turk (mturk@slac.stanford.edu) – KIPAC / SLAC / Stanford, USA

The study the origins of cosmic structure requires
large-scale computer simulations beginning with
well-constrained, observationally-determined, initial
conditions. We use Adaptive Mesh Refinement
to conduct multi-resolution simulations spanning
twelve orders of magnitude in spatial dimensions and
over twenty orders of magnitude in density. These
simulations must be analyzed and visualized in a
manner that is fast, accurate, and reproducible. I
present "yt," a cross-platform analysis toolkit writ-
ten in Python. "yt" consists of a data-management
layer for transporting and tracking simulation out-
puts, a plotting layer, a parallel analysis layer for
handling mesh-based and particle-based data, as
well as several interfaces. I demonstrate how the
origins of cosmic structure – from the scale of clus-
ters of galaxies down to the formation of individ-
ual stars – can be analyzed and visualized using a
NumPy-based toolkit. Additionally, I discuss efforts
to port this analysis code to other adaptive mesh
refinement data formats, enabling direct compari-
son of data between research groups using different
methods to simulate the same objects.

Analysis of Adaptive Mesh Refinement
Data

I am a graduate student in astrophysics, studying the
formation of primordial stars. These stars form from
the collapse of large gas clouds, collapsing to higher
densities in the core of extended star-forming regions.
Astrophysical systems are inherently multi-scale, and
the formation of primordial stars is the best exam-
ple. Beginning with cosmological-scale perturbations
in the background density of the universe, one must
follow the evolution of gas parcels down to the mass
scale of the moon to have any hope of resolving the
inner structure and thus constrain the mass scale of
these stars.

In order to do this, I utilize a code designed to in-
sert higher-resolution elements within a fixed mesh, via
a technique called adaptive mesh refinement (AMR).
Enzo [ENZ] is a freely-available, open source AMR
code originally written by Greg Bryan and now devel-
oped through the Laboratory for Computational As-
trophysics by a multi-institution team of developers.
Enzo is a patch-based multi-physics AMR/N-body hy-
brid code with support for radiative cooling, multi-
species chemistry, radiation transport, and magneto-
hydrodynamics. Enzo has been used to simulate a
wide range of astrophysical phenomena, such as pri-
mordial star formation, galaxy clusters, galaxy forma-
tion, galactic star formation, black hole accretion and

jets from gamma ray bursts. Enzo is able to insert up
to 42 levels of refinement (by factors of two) allowing
for a dynamic range between cells of up to 242. On
the typical length scale of primordial star formation,
this allows us to resolve gas parcels on the order of a
hundred miles, thus ensuring the simulations fully re-
solve at all times the important hydrodynamics of the
collapse.

A fundamental but missing aspect of our analysis
pipeline was an integrated tool that was transparently
parallelizable, easily extensible, freely distributable,
and built on open source components, allowing for full
inspection of the entire pipeline. My research advisor,
Prof. Tom Abel of Stanford University, suggested I
undertake the project of writing such a tool and ap-
proach it from the standpoint of attacking the problem
of extremely deep hierarchies of grid patches.

Initially, yt was written to be a simple interface be-
tween AMR data and the plotting package “Hippo-
Draw,” which was written by Paul Kunz at the Stan-
ford Linear Accelerator Center [HIP]. As time passed,
however, it moved more toward a different mode of in-
teraction, and it grew into a more fully-featured pack-
age, with limited data management, more abstract ob-
jects, and a full GUI and display layer built on wx-
Python [WX] and Matplotlib [MPL], respectively. Uti-
lizing commodity Python-based packages, I present a
fully-featured, adaptable and versatile means of ana-
lyzing large-scale astrophysical data. It is based pri-
marily on the library NumPy [NPY], it is mostly writ-
ten in Python, and it uses Matplotlib, and optionally
PyTables and wxPython for various sub-tasks. Addi-
tionally, several pieces of core functionality have been
moved out to C for fast numerical computation, and a
TVTK-based [TVTK] visualization component is be-
ing developed.

Development Philosophy

From its beginning, yt has been exclusively free and
open source software, and I have made the decision
that it will never require components that are not open
source and freely available. This enables it to be dis-
tributed, not be dependent on licensing servers, and
to make available to the broader community the work
put forth by me, the other developers, and the broader
contributing community toward approachable analysis
of the data. The development has been driven, and
will continue to be driven, by my needs, and the needs
of other developers.

Furthermore, no feature that I, or any other member
of the now-budding development team, implement will
be hidden from the community at large. This philoso-
phy has served the toolkit well already; it has already
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been examined and minor bugs have been found and
corrected.

In addition to these commitments, I also sought the
ability to produce publication-quality plots and to re-
duce the difficulty of multi-step operations. The user
should be presented with a consistent, high-level, inter-
face to the data, which will have the side-effect of en-
abling different entry points to the toolkit as a whole.

The development of yt takes place in a publicly acces-
sible subversion repository with a Trac frontend [YT].
Sphinx-based documentation is available, and auto-
matically updated from the subversion repository as
it is checked in. In order to ease the process of in-
stallation, a script is included to install the entire set
of dependencies along with the toolkit; furthermore,
installations of the toolkit are maintained at several
different supercomputing centers, and a binary version
for Mac OS X is provided.

Organization

To provide maximum flexibility, as well as a concep-
tual separation of the different components and tasks
to which components can be directed, yt is packaged
into several sub-packages.

The analysis layer, lagos, provides several features be-
yond mere data access, including extensive analytical
capabilities. At its simplest level, lagos is used to
access the parameters and data in a given time-based
output from an AMR simulation. However, on top
of that, different means of addressing collections of
data are provided, including from an intuitive object-
oriented perspective, where objects are described by
physical shapes and orientations.

The plotting layer, raven, has capabilities for plotting
one-, two- and three-dimensional histograms of quan-
tities, allowing for weighting and binning of those re-
sults. A set of pixelization routines have been written
in C to provide a means of taking a set of variable-size
pixels and constructing a uniform grid of values, suit-
able for fast plotting in Matplotlib - including cases
where the plane is not axially perpendicular, allow-
ing for oblique slices to be plotted and displayed with
publication-quality rendering. Callbacks are available
for overlaying analytic solutions, grid-patch bound-
aries, vectors, contours and arbitrary annotation.

Additionally, several other sub-packages exist that ex-
tend the functionality in various different ways. The
deliverator package is a Turbogears-based [TG] im-
age gallery that listens for SOAP-encoded information
about images on the web, fido stores and retrieves
data outputs, and reason is the wxPython-based [WX]
GUI.

Object Design and Protocol

One of the difficulties in dealing with rectilinear adap-
tive mesh refinement data is the fundamental discon-
nect between the geometries of the grid structure and

the objects described by the simulation. One does not
expect galaxies to form and be shaped as rectangular
prisms; as such, access to physically-meaningful struc-
tures must be provided. To that end, yt provides the
following:

• Sphere

• Rectangular prism

• Cylinder / disk

• “Extracted” regions based on logical operations

• Topologically-connected sets of cells

Each of these regional descriptors is presented to the
user as a single object, and when accessed the data is
returned at the finest resolution available; all overlap-
ping coarse grid cells are removed transparently. This
was first implemented as physical structures resem-
bling spheres were to be analyzed, followed by disk-like
structures, each of which needed to be characterized
and studied as a whole. By making available these in-
tuitive and geometrically meaningful data selections,
the underlying physical structures that they trace be-
come more accessible to analysis and study.
The objects are designed so that code snippets such as
the following are possible:

>>> sp = amr_hierarchy.sphere(

... center, radius)

>>> print sp["Density"].min()

>>> L_vec = sp.quantities["AngularMomentumVector"]()

>>> my_disk = amr_hierarchy.disk(center,

... L_vec, radius, radius/100.0)

>>> print my_disk["Density"].min()

The abstraction layer is such that there are several
means of interacting with these three-dimensional ob-
jects, each of which is conceptually unified, and which
respects a given set of data protocols. Due to the flex-
ibility of Python, as well as the versatility of NumPy,
this functionality has been easily exposed in the form
of multiple returned arrays of data, which are fast and
easily manipulated. Above can be seen the calcula-
tion of the angular momentum vector of a sphere, and
then the usage of that vector to construct a disk with
a height relative to the radius.
These objects handle cell-based data fields natively,
but are also able to appropriately select and return
particles contained within them. This has facilitated
the inclusion of an off-the-shelf halo finder, which al-
lows users to quantify the clustering of particles within
a region.
In addition to the object model, a flexible interface to
derived data fields has been implemented. All fields,
including derived fields, are allowed to be defined by
either a component of a data file, or a function that
transforms one or more other fields, thus allowing mul-
tiple layers of definition to exist, and allowing the user
to extend the existing field set as needed. Furthermore,
these fields can rely on the cells from neighboring grid
patches - which will be generated automatically by yt

as needed - which enables the creation of fields that
rely on finite-difference stencils.
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A two-dimensional phase diagram of the distribution
of mass in the Density-Temperature plane for a col-
lapsing gas cloud

The combination of derived fields, physically-
meaningful data objects and a unique data-access pro-
tocol enables yt to construct essentially arbitrary rep-
resentations of arbitrary collections of data. For in-
stance, the user is able to take arbitrary profiles of data
objects (radial profiles, probability distribution func-
tions, etc) in one, two and three dimensions. These
can be plotted from within the primary interface, and
then output in a publication-ready format.

Two-Dimensional Data Representations

In order to make images and plots, yt has several
different classes of two-dimensional data representa-
tions, all of which can be turned into images. Each
of these objects generates a list of variable-resolution
points, which are then passed into a C-based pix-
elization routine that transforms them into a fixed-
resolution buffer, defined by a width, a height, and
physical boundaries of the source data.

The simplest means of examining data is through the
usage of axially-parallel slices through the dataset.
This has several benefits - it is easy to calculate which
grids and which cells are required to be read off disk
(and most data formats allow for easy “striding” of
data off disk, which reduces this operation’s IO over-
head) and it is easy to automate the process to step
through a given dataset.

However, at some length scales in star formation prob-
lems, gas is likely to collapse into a disk, which is often
not aligned with the axes of the simulation. By slicing
along the axes, patterns such as spiral density waves
could be missed, and ultimately go unexamined. In
order to better visualize off-axis phenomena, I imple-
mented a means of creating an image that is misaligned
with the axes.

An oblique slice through the center of a star forma-
tion simulation. The image plane is normal to the
angular momentum vector.

This “cutting plane” is an arbitrarily-aligned plane
that transforms the intersected points into a new co-
ordinate system such that they can be pixelized and
made into a publication-quality plot. This technique
required a new pixelization routine, in order to ensure
that the correct voxels were taken and placed on the
plot, which required an additional set of checks to de-
termine if the voxel intersected with the image plane.

The nature of adaptive mesh refinement is such that
one often wishes to examine either the sum of values
along a given sight-line or a weighted-average along a
given sight-line. yt provides an algorithm for gener-
ating line integrals in an adaptive fashion, such that
every returned (x, y, v, dx, dy) point does not contain
data from any points where dx < dxp or dy < dyp.

We do this in a multi-step process, operating on each
level of refinement in turn. Overlap between grids
is calculated, such that, along the axis of projection,
each grid is associated with a list of grids that it over-
laps with on at least one cell. We then iterate over
each level of refinement, starting with the coarsest,
constructing lists of both “further-refinable” cells and
“fully-refined” cells. A combination step is conducted,
to combine overlapping cells from different grids; all
“further-refinable” cells are passed to the next level as
input to the overlap algorithm, and we continue re-
cursing down the level hierarchy. The final projection
object, with its variable-resolution cells, is returned to
the user.

Once this process is completed, the projection object
respects the same data protocol, and can be plotted in
the same way, as an ordinary slice.

Contour Finding

Ofttimes, one needs to identify collapsing objects by
finding topologically-connected sets of cells. The na-
ture of adaptive mesh refinement, where in a given
set cells may be connected across grid and refinement
boundaries, requires sophisticated means for such iden-
tification.
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Unfortunately, while locating topologically-connected
sets inside a single-resolution grid is a straightforward
but non-trivial problem in recursive programming, ex-
tending this in an efficient way to hierarchical datasets
can be problematic. To that end, the algorithm imple-
mented in yt checks on a grid-by-grid basis, retrieving
an additional set of cells at the grid boundary. Any
contour that crosses into these ’ghost zones’ mandates
a reconsideration of all grids that intersect with the
currently considered grid. This process is expensive,
as it operates recursively, but ensures that all contours
are automatically joined.

Once contours are identified, they are split into indi-
vidual derived objects that are returned to the user.
This presents an integrated interface for generating
and analyzing topologically-connected sets of related
cells. In the past, yt has been used to conduct this
form of analysis and to study fragmentation of col-
lapsing gas clouds, specifically to examine the gravi-
tational boundedness of these clouds and the scales at
which fragmentation occurs.

Parallel Analysis

As the capabilities of supercomputers grow, the size of
datasets grows as well. In order to meet these chang-
ing needs, I have been undertaking an effort to par-
allelize yt to run on multiple independent processing
units. Specifically, I have been utilizing the Message
Passing Interface (MPI) via the MPI4Py [MPI] mod-
ule, a lightweight, NumPy-native wrapper that enables
natural access to the C-based routines for interprocess
communication. My goal has been to preserve at all
times the API, such that the user can submit an un-
changed serial script to a batch processing queue, and
the toolkit will recognize it is being run in parallel and
distribute tasks appropriately.

The tasks in yt that require parallel analysis can be di-
vided into two different broad categories: those tasks
that can act on data in an unordered, uncorrelated
fashion, and those tasks that act on a decomposed im-
age plane.

To parallelize the unordered analysis, a set of iterators
have been implemented utilizing an initialize/finalize
structure. Upon initialization of the iterator, it calls
a method that determines which sets of data will be
processed by which processors in the MPI group. The
iteration proceeds as normal, and then, before the Sto-
pIteration exception is raised, it finalizes by broad-
casting the final result to every processor. The un-
ordered nature of the analysis allows the grids to be
ordered such that disk access is minimized; on high-
performance file systems, this results in close-to-ideal
scaling of the analysis step.

Constraints of Scale

In order to manage simulations consisting of multiple
hundreds of thousands of discrete grid patches - as well

as their attendant grid cell values - I have undertaken
optimization using the cProfile module to locate and
eliminate as many bottlenecks as possible. To that
end, I am currently in the process of reworking the ob-
ject instantiation to rely on the Python feature ’slots,’
which should speed the process of generating hundreds
of thousands of objects. Additionally, the practice of
storing data about simulation outputs between instan-
tiation of the Python objects has been extended; this
speeds subsequent startups, and enables a more rapid
response time.

Enzo data is written in one of three ways, the most
efficient -and prevalent- way being via the Hierarchi-
cal Data Format (HDF5) [HDF] with a single file per
processor that the simulation was run on. To limit the
effect that disk access has on the process of loading
data, hand-written wrappers to the HDF5 have been
inserted into the code. These wrappers are lightweight,
and operate on a single file at a time, loading data in
the order it has been written to the disk. The package
PyTables was used for some time, but the instantia-
tion of the object hierarchy was found to be too much
overhead for the brief and well-directed access desired.

Frontends and Interfaces

yt was originally intended to be used from the com-
mand line, and images to be viewed either in a web
browser or via an X11 connection that forwarded the
output of an image viewer. However, a happy side-
effect of this attitude - as well as the extraordinarily
versatile Matplotlib “Canvas” interface - is that the yt

API, designed to have an a single interface to analysis
tasks, is easily accessed and utilized by different inter-
faces. By ensuring that this API is stable and flexible,
GUIs, web-interfaces, and command-line scripts can be
constructed to perform common tasks.

A typical session inside the GUI

For scientific computing as a whole, such flexibility is
invaluable. Not all environments have access to the
same level of interactivity; for large-scale datasets, be-
ing able to interact with the data through a script-
ing interface enables submission to a batch process-
ing queue, which enables appropriate allocation of re-
sources. For smaller datasets, the process of interac-
tively exploring datasets via graphical user interfaces,
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exposing analytical techniques not available to an of-
fline interface, is extremely worthwhile, as it can be
highly immersive.

The canonical graphical user interface is written in wx-
Python, and presents to the user a hierarchical listing
of data objects: static outputs from the simulation, as
well as spatially-oriented objects derived from those
outputs. The tabbed display pane shows visual rep-
resentations of these objects in the form of embedded
Matplotlib figures.

Recently an interface to the Matplotlib ’pylab’ inter-
face has been prepared, which enables the user to in-
teractively generate plots that are thematically linked,
and thus display an uniform spatial extent. Further
enhancements to this IPython interface, via the pro-
file system, have been targeted for the next release.

Knoboo [KBO] has been identified as a potential web-
based interface, in the same style as Sage. It is a
lightweight software package designed to display ex-
ecuted Python code in the browser but to conduct the
execution on the backend. With a disjoint web-server
and execution kernel model, it enables the frontend to
communicate with a remote kernel server where the
data and analysis packages would reside. Because of
its flexibility in execution model, I have already been
able to conduct analysis remotely using Knoboo as my
user interface. I intend to continue working with the
Knoboo developers to enhance compatibility between
yt and Knoboo, as web-based interfaces are a powerful
way to publish analysis as well as to enable collabora-
tion on analysis tasks.

Generalization

As mentioned above, yt was designed to handle and
analyze data output from the AMR code Enzo. Dr.
Jeff Oishi of Berkeley is leading the process of convert-
ing the toolkit to work equally well with data from
other AMR codes; however, different codes make sep-
arate sets of assumptions about outputted data, and
this must be generalized to be non-Enzo specific.

In this process, we are having to balance a desire for
generalization with a desire for both simplicity and
speed. To that extent, we are attempting to make min-
imally invasive changes where possible, and rethinking
aspects of the code that were not created in the most
general fashion.

By providing a unified interface to multiple, often com-
peting, AMR codes, we will be able to utilize similar -
if not identical - analysis scripts and algorithms, which
will enable direct comparison of results between groups
and across methods.

Future Directions

As the capabilities of yt expand, the ability to ex-
tend it to perform new tasks extend as well. Recently,
the beginnings of a TVTK-based frontend were im-
plemented, allowing for interactive, physically-oriented

3D visualization. This relies on the vtkCompositeDat-
aPipeline object, which is currently weakly supported
across the VTK codebase. However, the power of
TVTK as an interface to VTK has significant promise,
and it is a direction we are targeting.

A visualization within yt, using the TVTK toolkit to
create 3D isocontours and cutting planes.

Work has begun on simulated observations from large-
scale simulations. The first step toward this is simu-
lating optically thin emissions, and then utilizing an
analysis layer that operates on 2D image buffers.

By publishing yt, and generalizing it to work on mul-
tiple AMR codebases, I hope it will foster collabora-
tion and community efforts toward understanding as-
trophysical problems and physical processes, while fur-
thermore enabling reproducible research.
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Mayavi is a general-purpose 3D scientific visualiza-
tion package. We believe 3D data visualization is
a difficult task and different users can benefit from
an easy-to-use tool for this purpose. In this arti-
cle, we focus on how Mayavi addresses the needs
of different users with a common code-base, rather
than describing the data visualization functionalities
of Mayavi, or the visualization model exposed to the
user.

Mayavi2 is the next generation of the Mayavi-1.x pack-
age which was first released in 2001. Data visualization
in 3D is a difficult task; as a scientific data visual-
ization package, Mayavi tries to address several chal-
lenges. The Visualization Toolkit [VTK] is by far the
best visualization library available and we believe that
the rendering and visualization algorithms developed
by VTK provide the right tools for data visualization.
Mayavi therefore uses VTK for its graphics. Unfor-
tunately, VTK is not entirely easy to understand and
many people are not interested in learning it since it
has a steep learning curve. Mayavi strives to provide
interfaces to VTK that make it easier to use, both by
relying on standard numerical objects (numpy arrays)
and by using the features of Python, a dynamical lan-
guage, to offer simple APIs.

There are several user requirements that Mayavi
strives to satisfy:

• A standalone application for visualization,

• Interactive 3D plots from IPython like those pro-
vided by pylab,

• A clean scripting layer,

• Graphical interfaces and dialogs with a focus on us-
ability,

• Visualization engine for embedding in user dialogs
box,

• An extensible application via an application frame-
work like Envisage,

• Easy customization of the library and application,

The goal of Mayavi is to provide flexible components
to satisfy all of these needs. We feel that there is value
in reusing the core code, not only for the developers,
from a software engineering point of view, but also for
the users, as they can get to understand better the un-
derlying model and concepts using the different facets
of Mayavi.

Mayavi has developed in very significant ways over the
last year. Specifically, every one of the above require-
ments have been satisfied. We first present a brief
overview of the major new functionality added over
the last year. The second part of the paper illustrates
how we achieved the amount of reuse we have with
Mayavi and what we have learned in the process of
implementing this. We believe that the general ideas
involved in making Mayavi reusable in these different
contexts are applicable to other projects as well.

Mayavi feature overview

Starting with the Mayavi 3.0.0 release1, there have
been several significant enhancements which open up
different ways of using Mayavi. We discuss each of
these with examples in the following.

The mayavi2 application

mayavi2 is a standalone application that provides an
interactive user interface to load data from files (or
other sources) and visualize them interactively. It fea-
tures the following:

• A powerful command line interface that lets a user
build a visualization pipeline right from the com-
mand line,

• An embedded Python shell that can be used to script
the application,

• The ability to drag and drop objects from the
mayavi tree view on to the interpreter and script
the dropped objects,

• Execution of arbitrary Python scripts in order to
rapidly script the application,

• Full customization at a user level and global level.
As a result, the application can be easily tailored for
specific data files or workflows. For instance, the Im-
perial College’s Applied Modeling and Computation
Group has been extending Mayavi2 for triangular-
mesh-specific visualizations.

1The name “Mayavi2” refers to the fact that the current codebase is a complete rewrite of the first implementation of Mayavi.
We use it to oppose the two very different codebases and models. However the revision number of the Mayavi project is not fixed
to two. The current release number is 3.0.1, although the changes between 2 and 3 are evolutionary rather than revolutionary.
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• Integration into the Envisage application frame-
work. Users may load any other plugins of
their choice to extend the application. Envisage
is a plugin-based application framework, similar
to Eclipse, for assembling large applications from
loosely-coupled components. The wing-design group
at Airbus, in Bristol, designs wing meshes for simu-
lations with a large application built with Envisage
using Mayavi for the visualization.

Shown below is a visualization made on the mayavi
user interface.

Screenshot of the Mayavi application.

The mlab interface

Mayavi’s mlab interface provides an easy scripting in-
terface to visualize data. It can be used in scripts, or
interactively from an IPython session in a manner sim-
ilar to matplotlib’s pylab interface. mlab features the
following:

• As easy to use as possible.

• Works in the mayavi2 application also.

• Trivial to visualize numpy arrays.

• Full power of mayavi from scripts and UI.

• Allows easy animation of data without having to
recreate the visualization.

A simple example of a visualization with mlab is shown
below:

from enthought.mayavi import mlab

from numpy import ogrid, sin

x, y, z = ogrid[-10:10:100j,

-10:10:100j,

-10:10:100j]

ctr = mlab.contour3d(sin(x*y*z)/(x*y*z))

mlab.show()

Visualization created by the above code example.

mlab also allows users to change the data easily. In
the above example, if the scalars needs to be changed
it may be easily done as follows:

new_scalars = x*x + y*y*0.5 + z*z*3.0

ctr.mlab_source.scalars = new_scalars

In the above, we use the mlab_source attribute to
change the scalars used in the visualization. After set-
ting the new scalars the visualization is immediately
updated. This allows for powerful and simple anima-
tions.

The core features of mlab are all well-documented in
a full reference chapter of the user-guide [M2], with
examples and images.

mlab also exposes the lower-level mayavi API in con-
venient functions via the mlab.pipeline module. For
example one could open a data file and visualize it
using the following code:

from enthought.mayavi import mlab

src = mlab.pipeline.open(’test.vtk’)

o = mlab.pipeline.outline(src)

cut = mlab.pipeline.scalar_cut_plane(src)

iso = mlab.pipeline.iso_surface(src)

mlab.show()

mlab thus allows users to very rapidly script Mayavi.

Object-oriented interface

Mayavi features a simple-to-use, object-oriented inter-
face for data visualization. The mlab API is built atop
this interface. The central object in Mayavi visualiza-
tions is the Engine, which connects the different ele-
ments of the rendering pipeline. The first mlab exam-
ple can be re-written using the Engine object directly
as follows:
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from numpy import ogrid, sin

from enthought.mayavi.core.engine import Engine

from enthought.mayavi.sources.api import ArraySource

from enthought.mayavi.modules.api import IsoSurface

from enthought.pyface.api import GUI

e = Engine()

e.start()

scene = e.new_scene()

x, y, z = ogrid[-10:10:100j,

-10:10:100j,

-10:10:100j]

data = sin(x*y*z)/(x*y*z)

src = ArraySource(scalar_data=data)

e.add_source(src)

e.add_module(IsoSurface())

GUI().start_event_loop()

Clearly mlab is a lot simpler to use. However, the raw
object-oriented API of mayavi is useful in its own right,
for example when using mayavi in an object-oriented
context where one may desire much more explicit con-
trol of the objects and their states.

Embedding a 3D visualization

One of the most powerful features of Mayavi is the
ability to embed it in a user interface dialog. One may
do this either with native Traits user interfaces or in a
native toolkit interface.

Embedding in TraitsUI

The TraitsUI module, used heavily throughout Mayavi
to build dialogs, provides user-interfaces built on top of
objects, exposing their attributes. The graphical user-
interface is created in a fully descriptive way by asso-
ciating object attributes with graphical editors, corre-
sponding to views in the MVC pattern. The objects
inheriting from the HasTraits class, the workhorse of
Traits, have an embedded observer pattern, and mod-
ifying their attributes can fire callbacks, allowing the
object to be manipulated live, e.g.through a GUI.

TraitsUI is used by many other projects to build graph-
ical, interactive applications. Mayavi can easily be
embedded in a TraitsUI application to be used as a
visualization engine.

Mayavi provides an object, the MlabSceneModel, that
exposes the mlab interface as an attribute. This ob-
ject can be viewed with a SceneEditor in a TraitsUI
dialog. This lets one use Mayavi to create dynamic vi-
sualizations in dialogs. Since we are using Traits, the
core logic of the dialog is implemented in the under-
lying object. The modifying_mlab_source.py exam-
ple can be found in the Mayavi examples and shows
a 3D line plot parametrized by two integers. Let us
go over the key elements of this example, the reader
should refer to the full example for more details. The
resulting UI offers slider bars to change the values of
the integers, and the visualization is refreshed by the
callbacks.

A Mayavi visualization embedded in a custom dialog.

The outline of the code in this example is:

from enthought.tvtk.pyface.scene_editor import \

SceneEditor

from enthought.mayavi.tools.mlab_scene_model \

import MlabSceneModel

from enthought.mayavi.core.pipeline_base \

import PipelineBase

class MyModel(HasTraits):

[...]

scene = Instance(MlabSceneModel, ())

plot = Instance(PipelineBase)

# The view for this object.

view = View(Item(’scene’,

editor=SceneEditor(),

height=500, width=500,

show_label=False),

[...])

def _plot_default(self):

x, y, z, t = curve(self.n_merid, self.n_long)

return self.scene.mlab.plot3d(x, y, z, t)

@on_trait_change(’n_merid,n_long’)

def update_plot(self):

x, y, z, t = curve(self.n_merid, self.n_long)

self.plot.mlab_source.set(x=x, y=y,

z=z, scalars=t)

The method update_plot is called when the n_merid

or n_long attributes are modified, for instance through
the UI. The mlab_source attribute of the plot object is
used to modify the existing 3D plot without rebuilding
it.

It is to be noted that the full power of the Mayavi li-
brary is available to the user in these dialogs. This is
an extremely powerful feature.
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Embedding mayavi in a wxPython application

Since TraitsUI provides a wxPython backend, it is very
easy to embed Mayavi in a wxPython application. The
previous TraitsUI code example may be embedded in
a wxPython application:

import wx

from mlab_model import MyModel

class MainWindow(wx.Frame):

def __init__(self, parent, id):

wx.Frame.__init__(self, parent, id,

’Mayavi in Wx’)

self.mayavi = MyModel()

self.control = self.mayavi.edit_traits(

parent=self,

kind=’subpanel’).control

self.Show(True)

app = wx.PySimpleApp()

frame = MainWindow(None, wx.ID_ANY)

app.MainLoop()

Thus, mayavi is easy to embed in an existing appli-
cation not based on traits. Currently traits supports
both wxPython and Qt as backends. Since two toolk-
its are already supported, it is certainly possible to
support

more, although that will involve a fair amount of work.

Mayavi in envisage applications

Envisage is an application framework that allows de-
velopers to create extensible applications. These ap-
plications are created by putting together a set of plug-
ins. Mayavi2 provides plugins to offer data visualiza-
tion services in Envisage applications. The mayavi2

application is itself an Envisage application demon-
strating the features of such an extensible application
framework by assembling the Mayavi visualization en-
gine with a Python interactive shell, logging and pref-
erence mechanisms, and a docked-window that man-
ages layout each provided as Envisage plugins.

Customization of mayavi

Mayavi provides a convenient mechanism for users to
contribute new sources, filters and modules. This may
be done:

• at a global, system-wide level via a site_mayavi.py

placed anywhere on Python’s sys.path,

• at a local, user level by placing a user_mayavi.py

in the users ~/.mayavi2/ directory.

In either of these, a user may register new sources, fil-
ters, or modules with Mayavi’s central registry. The
user may also define a get_plugins function that re-
turns any plugins that the mayavi2 application should
load. Thus, the Mayavi library and application are
easily customizable.

Headless usage

Mayavi also features a convenient way to create off-
screen animations, so long as the user has a recent
enough version of VTK (5.2 and above). This allows
users to create animations of their data. Consider the
following simple script:

n_step = 36

scene = mlab.gcf()

camera = scene.camera

da = 360.0/n_step

for i in range(n_step):

camera.azimuth(da)

scene.reset_zoom()

scene.render()

mlab.savefig(’anim%02d.png’ % i, size=(600,600))

This script rotates the camera about its azimuth and
saves each such view to a new PNG file. Let this script
be saved as movie.py. If the user has another script
to create the visualization (for example consider the
standard streamline.py example) we may run these
to provide an offscreen rendering like so:

$ mayavi2 -x streamline.py -x movie.py -o

The -o option (or --offscreen) turns on the offscreen
rendering. This renders the images without creating a
user interface for interaction but saves the PNG im-
ages. The PNG images can be combined to create a
movie using other tools.

We have reviewed the various usage patterns that
Mayavi provides. We believe that this variety of use
cases and entry points makes Mayavi a truly reusable
3D visualization tool. Mayavi is not domain specific
and may be used in any suitable context. In the
next section we discuss the secrets behind this level
of reusability and the lessons we learned.

Secrets and Lessons learned

The techniques and pattern used to achieve maximal
reusability in Mayavi are an application of general
software architecture good practices. We will not re-
view software architecture, although it is often under-
exposed to scientific developers, an introduction to the
field can be found in [Gar94]. An important pattern in
Mayavi’s design is the separation between model and
view, an introduction to which can be found in [Fow].

There are several contributing technical reasons which
make Mayavi reusable:

• Layered functionality,

• Large degree of separation of UI from model,

• Object-oriented architecture and API,

• Scriptable from ground up,

• The use of Traits.

We look at these aspects in some detail in the follow-
ing.
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Layered functionality

Mayavi is built atop layers of functionality, and a va-
riety of different modules:

Tool stack employed by Mayavi.

At the lowest level of this hierarchy are VTK, numpy
and Traits. The TVTK package marries VTK, numpy
and Traits into one coherent package. This gives us
the power of VTK with a very Pythonic API. TVTK
is the backbone of Mayavi. Traits optionally depends
on either wxPython or Qt4 to provide a user interface.

The core Mayavi engine uses TVTK and Traits. The
mayavi2 application and the mlab API use the Mayavi
core engine to provide data visualization. The mayavi2

application additionally uses Envisage to provide a
plugin-based extensible application.

Using Traits in the object model

The use of Traits provides us with a very significant
number of advantages:

• A very powerful object model,

• Inversion of control and reactive/event-based pro-
gramming: Mayavi and TVTK objects come with
pre-wired callbacks which allow for easy creation of
interactive applications,

• Forces a separation of UI/view from object model,

• Easy and free UIs:

– Automatic user interfaces for wxPython and Qt4.

– UI and scripting are well connected. This means
that the UI automatically updates if the underly-
ing model changes and this is automatically wired
up with traits,

– No need to write toolkit-specific code.

Traits allows programmers to think in very different
ways and be much more efficient. It makes a signif-
icant difference to the library and allows us to com-
pletely focus on the object model.

On the downsides, we note that automatically gener-
ated UIs are not very pretty. Traits provides methods
to customize the UI to look better but it still isn’t per-
fect. The layout of traits UI is also not perfect but is
being improved.

Object-oriented architecture

The object-oriented API of Mayavi and its architec-
ture helps significantly separate functionality while en-
abling a great deal of code reuse.

• The abstraction layers of Mayavi allows for a signifi-
cant amount of flexibility and reuse. This is because
the abstraction hides various details of the inter-
nals of TVTK or VTK. As an example, the Mayavi
Engine is the object central to a Mayavi visualiza-
tion that manages and encapsulates the entirety of
the Mayavi visualization pipeline.

• Ability to create/extend many Mayavi engines is in-
valuable and is the key to much of its reusability.

• All of Mayavi’s menus (on the application as well
as right-click menus) are automatically generated.
Similarly, the bulk of the mlab.pipeline interface
is auto-generated. Python’s ability to generate code
dynamically is a big win here.

• Abstraction of menu generation based on simple
metadata allows for a large degree of simplification
and reuse.

• The use of Envisage for the mayavi2 application
forces us to concentrate on a reusable object model.
Using envisage makes our application extensible.

The Engine object is not just a core object for the pro-
gramming model, its functionality can also be exposed
via a UI where required. This UI allows one to edit the
properties of any object in the visualization pipeline as
well as remove or add objects. Thus we can provide a
powerful and consistent UI while minimizing duplica-
tion of efforts, both in code and design.

Dialog controlling the Engine: The different visual-
ization objects are represented in the tree view. The
objects can be edited by double-clicking nodes and
can be added using the toolbar or via a right-click.

In summary, we believe that Mayavi is reusable be-
cause we were able to concentrate on producing a
powerful object model that interfaces naturally with
numpy. This is largely due to the use of Traits, TVTK
and Envisage which force us to build a clean, scriptable
object model that is Pythonic. The use of traits allows
us to concentrate on building the object model with-
out worrying about the view (UI). Envisage allows us
to focus again on the object model without worrying
too much about the need to create the application it-
self. We feel that, when used as a visualization engine,
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Mayavi: Making 3D Data Visualization Reusable

Mayavi provides more than a conventional library, as
it provides an extensible set of reusable dialogs that
allow users to configure the visualization.

Mayavi still has room for improvement. Specifically
we are looking to improve the following:

• More separation of view-related code from the ob-
ject model,

• Better and more testing,

• More documentation,

• Improved persistence mechanisms,

• More polished UI.

Conclusions

Mayavi is a general-purpose, highly-reusable, 3D vi-
sualization tool. In this paper we demonstrated its
reusable nature with specific examples. We also elab-
orated the reasons that we think make it so reusable.
We believe that these general principles are capable

of being applied to any project that requires the use
of a user interface. There are only a few key lessons:
focus on the object model, make it clean, scriptable
and reusable; in addition, use test-driven development.
Our technological choices (Traits, Envisage) allow us
to carry out this methodology.
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Finite Element Modeling of Contact and Impact Problems Using Python

Ryan Krauss (rkrauss@siue.edu) – Southern Illinois University Edwardsville, USA

This paper discusses an on going project to improve
the accuracy of automotive crash simulations. Two
likely causes for discrepancy between simulations
and the results of real, physical tests are discussed.
An existing Python package for finite element anal-
ysis, SfePy, is presented along with plans to con-
tribute additional features in support of this work,
including nonlinear material modeling and contact
between two bodies.

Background and Motivation

Introduction

Automobile crashes kill 30,000 Americans in an aver-
age year [Kahane]. Motor vehicle crashes are the lead-
ing cause of death in the U.S. for the age group 4-34
[Subramanian]. Some of these deaths might be pre-
ventable. Engineers can save lives through the design
of safer automobiles.

Crashworthiness design is a complicated process
[Bellora] in which many important safety-related de-
cisions must be made before realistic tests can be run.
As a result, reliable virtual tests or simulations are
essential, so that early design decisions can be data
driven and safety countermeasures can be correctly de-
signed.

Problem

Unfortunately, simulations are often not as accurate as
they need to be. This can lead to failure of physical
tests late in the design of a vehicle. Fixing such fail-
ures can be very expensive and extremely challenging.
If the causes of the differences between simulation and
experiment can be identified and removed, simulations
could provide a true virtual test environment and these
late and expensive failures could be avoided.

Two likely sources of the discrepancies between simu-
lation and experiment include determining high speed
material properties and correctly modeling contact be-
tween two bodies during simulation.

Long Term Goal

The long term goal of this research project is to remove
these two obstacles to more reliable virtual tests. This
will include designing a test device for impact testing
of material samples. This device must be very stiff so
that if its natural frequencies are excited during the
impact test, the ringing can be filtered out of the data
without contaminating the data itself.

The second step in achieving the long term goal of
a reliable virtual test environment is creating Python
based simulation software for this work, based on

the SfePy [SfePy] finite element analysis package. A
method for estimating material properties and gener-
ating deformation models will be developed based on
the combination of simulation and experiment.

Designing a Test Device

Many existing devices for high-speed materials testing
contaminate the data with ringing or vibrations when
used for impact testing. It is difficult to design a device
with sufficiently high natural frequencies so that any
ringing can be filter out without significantly altering
the material response data [Maier].

The next graph shows time domain data from a device
with significant ringing problems.
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Impact tests results from a device with significant
ringing problems

The following graph shows the fast Fourier transform
(FFT) of this same data.
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FFT of the data in the preceding figure

The ringing in the data shown above is not well sep-
arated in frequency from the material response data
and it is difficult to filter out the ringing without al-
tering the slope on the leading edge of the impulse.
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This slope is directly related to estimates of material
properties such as Young’s Modulus.

Small Drop Tester

Several different impact test devices were investigated
as part of this research project in the summer of 2007.
The amplitude of ringing excited in a typical impact
test was compared along with the separation in fre-
quency between the ringing and the rest of the data.
One device stood out: its natural frequencies were sig-
nificantly higher than the rest, because it depends on
a fairly small mass being dropped onto the material
sample.

The device is shown in the next figure. A test con-
sists of a small mass being dropped onto polyurethane
foam samples. The mass is dropped inside a tube that
is used to guide it while it is falling and to keep it ver-
tical. The dropping mass has an accelerometer on the
back of it to measure the force being exerted on the
mass by the foam sample. There is also a metal flag
on the side of the mass used to measure the impact
velocity with a light gate.

Light Gate
Flag

Tube
Light
Gate

Dropping
Mass

Foam
Specimen

Accelerometer

Small mass drop tester

A picture from just before the dropping mass impacts
a foam sample is shown in the next picture.

The small mass drop tester just before impact

The edges of the dropping mass were painted yellow to
increase visibility in the high speed video. The white
cube with the number 7 on it is the foam sample. A
video clip can be seen here: http://www.siue.edu/

~rkrauss/sfepy/output.avi

Example Data

An example of data from the small mass drop tester is
shown below. Note that the ringing in this data is at a
very high frequency and it has been largely filtered out
without significantly altering the slope of the leading
edge of the impulse.
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a high enough frequency to be filtered without con-
taminating the data

Python Based Simulations

Along with designing an impact test device that does
not contaminate the data with ringing, the other goal
of this project is to develop Python software modules
for simulating impact tests.

The initial modeling goal is to be able to accu-
rately simulate the small mass drop tester impacting
polyurethane foam samples. This will be pursued for
two reasons. First, it is necessary in order to extract
the parameters for a model of the impact response of
the foam. Second, it is a good candidate for an initial
stepping stone toward modeling more complicated sce-
narios, eventually moving toward simulating in-vehicle
impacts with a dummy head.

A Simple Model

The first step in Python based simulations of the foam
impact tests was to use a really simple model: a mass
with an initial velocity compressing a nonlinear spring
as shown below:

m

v0

k(x)

A simple model of the foam impact test

The spring was modeled as bi-linear: its
force/deflection curve has a linear elastic region near
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the origin and then a knee representing yielding.
Above the knee, the force deflection curve is still
linear, but with a different slope. The correspond-
ing stress/strain curve can be found by dividing the
force by the cross-sectional area of the foam sample
and the displacement by the initial height. An exam-
ple stress/strain curve is shown below. The data was
curve-fit to find k1, k2, and σy using the Nelder-Mead
simplex algorithm of Scipy’s optimize.fmin.
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The results of the curve-fit are shown in the next
graph.
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Model Predictions

The estimates for k1, k2, and σy were then used in
an ODE model of the simple system. The resulting
force vs. deflection curve is shown in the next graph.
Note that the model is a fairly good fit, in spite of
it being such a simple model. The primary deficiency
of the model is that it does not fit the back of the
force/deflection curve very well (during the rebound
portion of the curve when the mass is bouncing back
up).
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Finite Element Modeling

While the simple model does a decent job, the accuracy
of the simulation needs to be improved, especially in
the rebound portion. A model is needed that accounts
for the fact that the foam does not all displace uni-
formly. The foam is continuous and the displacement
within it can vary with position (i.e. the x, y, and
z coordinates of a point within the foam) as well as
with time. This takes the model into the realm of par-
tial differential equations and finite element analysis
(FEA).

FEA is an approach to modeling a real, physical prob-
lem with a collection of small elements. These small
elements are used to discretize a continuous problem.
Ultimately, a partial differential equation model is con-
verted to a matrix expression such as

[K] {D} − {R} = 0 (1)

where [K] is the stiffness matrix, {R} is the forcing
vector, and {D} is the vector of nodal displacements.

Problems with commercial FEA software

While the FEA portion of this project may be con-
sidered solved by some, the correlation between FEA
simulations and the results of real, physical tests is of-
ten not as good as it should be. Most researchers are
satisfied as long as key measures between simulation
and experiment agree, even if the curves do not over-
lay closely [Rathi]. Closed-source software impedes re-
search into the causes of these discrepancies. As such,
this project seeks to add features to an existing Python
FEA tool called SfePy [SfePy] so that it can fully solve
this problem.

Applying FEA to this Problem

In order to apply FEA to this problem, the foam block
will be discretized into many elements using a mesh.
The dropping mass can be represented by one large,
rigid element. The relationship between the FEA
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model and the physical system is shown in the next
figure.

Dropping Mass

Foam Block
FEA setup for this problem

Introduction to SfePy

SfePy stands for Simple Finite Elements for Python.
It is an FEA solver written primarily by Robert Cim-
rman. Along with the solver it provides a fairly high-
level syntax for problem description that serves as
a sort of pre-processor. SfePy also includes mesh
generation capabilities for simple geometries. Post-
processing must be done by some other software such
as Paraview or Mayavi2.

SfePy can handle nonlinear and time varying prob-
lems and it provides solvers for linear elasticity, acous-
tic band gaps, Poisson’s equation, and simple Navier-
Stokes problems.

This project aims to contribute to SfePy capabilities
for modeling nonlinear materials, multi-body dynam-
ics, and contact between colliding bodies.

Initial FEA Model

The initial FEA model of this problem included only
the foam with the interaction force between the foam
and the dropping mass modeled as a traction load
spread out over the top surface of the foam as shown
in the next figure.

Initial FEA setup with a traction load across the top
surface of the foam

Initial Input Script

Highlights of the input to SfePy are shown below.

First, define the mesh file

filename_mesh = ’3D_mesh.vtk’

Then label important regions of the mesh:
region_1 = {

’name’ : ’Bottom’,

’select’ : ’nodes in (z < 0.001)’

}

region_2 = {

’name’ : ’Top’,

’select’ : ’nodes in (z > 1.999)’,

}

and use those defined regions to specify boundary con-
ditions:

ebc_1 = {

’name’ : ’fixed_u’,

’region’ : ’Bottom’,

’dofs’ : {’u.all’ : 0.0},

}

Material properties can be defined like this:
material_1 = {

’name’ : ’solid’,

’mode’ : ’here’,

’region’ : ’Omega’,

# Lame coefficients:

’lame’ : {’lambda’ : lamb, ’mu’ : mu},

}

Understanding FEA/SfePy

FEA is a mathematical tool for solving partial differen-
tial equations (PDEs). In the context of this problem,
that means that the stress (force per unit area) and
strain (change in height divided by initial height) in
the foam sample are functions of more than one vari-
able: σ(x, y, z, t) and ε(x, y, z, t).

SfePy uses the weak formulation for finite element
problems. This means that the problem is stated in
terms of an integral expression that is valid over a vol-
ume. For the case of solid mechanics, this integral is
the potential energy functional:

Πp =

∫
{σ}T {dε} −

∫
{u}T {Φ} dS (2)

where {σ} is stress, {ε} is strain, {u} is displacement,
and {Φ} is a traction vector representing force dis-
tributed over a surface S.

The derivation in this section is based on [Cook], es-
pecially chapters 3 and 4. Discretizing and replacing
the integral over the entire volume with the sum of
integrals over the finite elements gives:

Πp =

Nels∑

i=1

∫ ∫
{σ}T {dε} dV −

Nels∑

i=1

∫
{u}T {Φ} dS

(3)

Substituting a linear elastic material model

{σ} = [E] {ε} (4)
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(where [E] is a matrix expressing Hooke’s law in three
dimensions) results in

∫
{σ}T {dε} =

1

2
{ε}T

[E] {ε} (5)

and

Πp =

Nels∑

i=1

∫
1

2
{ε}T

[E] {ε} dV −
Nels∑

i=1

∫
{u}T {Φ} dS

(6)

Defining the matrix [∂] for the relationship between
strain ε and displacement

{ε} = [∂] {u} (7)

and the matrix [N] for interpolation from the displace-
ment of the corners of a brick element {d}, to any point
within it

{u} = [N] {d} (8)

allows the strain tensor to be written as

{ε} = [∂] [N] {d} or {ε} = [B] {d} (9)

where [B] = [∂] [N].

Substituting this expression for {ε} into equation 6
and integrating over each element produces

Πp =
1

2

Nels∑

i=1

{d}T
[k]i {d} −

Nels∑

i=1

{d}T {re}i (10)

where

[k]i =

∫
[B]

T
[E] [B] dV and {re}i =

∫
[N]

T {Φ} dS

(11)

Defining a matrix [L]i for each element that selects the
element degrees of freedom from the global displace-
ment vector {D}

{d}i = [L]i {D} (12)

allows equation 10 to be rewritten as

Πp =
1

2
{D}T

[K] {D} − {D}T {R} (13)

where

[K] =

Nels∑

i=1

[L]
T
i [k]i [L]i and {R} =

Nels∑

i=1

[L]
T
i {re}i

(14)

Rendering equation 13 stationary requires that

dΠp = [K] {D} − {R} = 0 (15)

which is the final FEA matrix formulation that will be
solved for the nodal displacement vector {D}.

The interested reader is referred to [Cook] for a more
thorough explanation.
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Circuitscape: A Tool for Landscape Ecology

Viral B. Shah (vshah@interactivesupercomputing.com) – Interactive Supercomputing, Waltham, MA. USA

Brad McRae (bmcrae@tnc.org) – The Nature Conservancy, Seattle, WA. USA

The modeling of ecological connectivity across net-
works and landscapes is an active research area that
spans the disciplines of ecology, conservation, and
population genetics. Recently, concepts and al-
gorithms from electrical circuit theory have been
adapted to address these problems. The approach
is based on linkages between circuit and random
walk theories, and has several advantages over pre-
vious analytic approaches, including incorporation of
multiple dispersal pathways into analyses. Here we
describe Circuitscape, a computational tool devel-
oped for modeling landscape connectivity using cir-
cuit theory. Our Python implementation can quickly
solve networks with millions of nodes, or landscapes
with millions of raster cells.

Introduction

Modeling of ecological connectivity across landscapes
is important for understanding a wide range of ecolog-
ical processes, and for achieving environmental man-
agement goals such as conserving threatened plant
and animal populations, predicting infectious disease
spread, and maintaining biodiversity [Cro06]. Un-
derstanding broad-scale ecological processes that de-
pend on connectivity, and incorporating connectivity
into conservation planning efforts, requires quantify-
ing how connectivity is affected by environmental fea-
tures. Thus, there is a need for efficient and reliable
tools that relate landscape composition and pattern to
connectivity for ecological processes.

Recently, concepts and algorithms from electrical cir-
cuit theory have been adapted for these purposes
([Mcr06], [Mcr08]). The application of circuit theory
to ecological problems is motivated in part by intuitive
connections between ecological and electrical connec-
tivity: as multiple or wider conductors connecting two
electrical nodes allow greater current flow than would
a single, narrow conductor, multiple or wider habi-
tat swaths connecting populations or habitats allow
greater movement between them. In addition, rigorous
connections between circuit and random walk theories
[Doy84] mean that current, voltage, and resistance in
electrical circuits all have concrete interpretations in
terms of individual movement probabilities [Mcr08].
Such models can be useful for conservation planning
and for predicting ecological and genetic effects of spa-
tial heterogeneity and landscape change; for example,
effective resistances calculated across landscapes have
been shown to markedly improve predictions of gene
flow for plant and animal species [Mcr07].

Here we describe Circuitscape, a computational tool
which applies circuit-theoretic connectivity analyses to

landscape data using large-scale combinatorial and nu-
merical algorithms [Sha07].1

Applying circuit theory to predict landscape
connectivity

In spatial ecology and conservation applications, land-
scapes are typically mapped as grids of raster cells in
a geographical information system (GIS). For connec-
tivity analyses, grid cells represent varying qualities of
habitat, dispersal routes, or movement barriers. These
raster grids can be represented as graphs, with each
grid cell replaced by a node and connected to its neigh-
bors by edges, with edge weights proportional to move-
ment probabilities or numbers of migrants exchanged.
Edges are assumed to be undirected, which implies
that dispersal is balanced. Heterogeneity in landscape
characteristics will typically cause movement proba-
bilities to vary, resulting in graphs with heterogeneous
edge weights.

These graphs can be analyzed using circuit theory to
predict different aspects of connectivity and movement
probabilities. Overviews of the theory and applications
of circuit theory in ecology, conservation, and genetics
are presented in [Mcr06] and [Mcr08], and will only be
summarized here. Briefly, effective resistance across
networks can be used as both a distance measure and
a measure of redundancy in connections across graphs,
and can be related to random walk times between
nodes [Cha97]. Current flowing across a graph also
has interpretations in terms of random walks, with cur-
rent densities along circuit branches reflecting net pas-
sage probabilities for random walkers passing through
nodes or across edges [Doy84]. Similarly, voltages mea-
sured in circuits can be used to predict probabilities
that a random walker will reach one destination (e.g.,
a habitat patch) or state (e.g., death) before another
[Doy84].

Computing resistance, current, and voltage
with Circuitscape

Circuitscape was developed to apply circuit theory to
problems in landscape ecology, which can require op-
erations on large graphs. The computation typically
starts with the raster cell map of a landscape exported
from a GIS. The landscape is coded with resistance
or conductance values assigned to each cell based on
landscape features, such that conductance values are
proportional to the relative probability of movement
through each habitat type. Circuitscape converts the
landscape into a graph, with every cell in the landscape
represented by a node in the graph. Thus, an mn cell
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map results in a graph with k = mn nodes. Connec-
tions between neighboring cells in the landscape are
represented as edges in the graph. Typically, a cell
is connected to either its 4 first-order neighbors or its
8 first and second-order neighbors, although long dis-
tance connections are possible. Edge weights in the
graph are functions of the per-cell conductance values,
usually either the average resistance or average con-
ductance of the two cells being connected. More so-
phisticated ways of computing edge weights may also
be used.

In the simplest case, we are interested in computing ef-
fective resistances, voltages, and current densities be-
tween pairs of nodes on a graph. This is done with
Kirchoff’s laws in matrix form. Let gij denote the
conductance of the resistor connecting nodes i and j.
Let G be an n × n weighted Laplacian matrix, such
that Gij = −gij and Gii =

∑n
j=1 gij . Resistance be-

tween nodes x and y (with x < y for convenience)
may be computed using a reduced conductance ma-
trix Gy, which is the same as G but with the yth row
and column removed. The right hand side I is a vec-
tor with all zeros except in the xth position where it is
set to one. Now, solving Gyv = I yields the vector v,
which can then be used to derive effective resistances
between nodes x and y, as well as current densities
across the graph. Multiple current or voltage sources,
multiple grounds, and connections to ground via resis-
tors can be accomodated with minor modifications to
this method.

The size of the graph depends on both the extent of
the landscape and the resolution of the landscape data.
The area modeled can vary widely across different eco-
logical studies or conservation efforts; extents of eco-
logical studies may be as small as a few square me-
ters, or as large as a continent. Conservation efforts
may focus on a single property, or be as large as the
Yellowstone-to-Yukon project, which extends for more
than 2000 miles from Yellowstone National Park to the
Yukon’s Mackenzie Mountains. The appropriate res-
olution, or cell size, for analyses will depend on kind
of animal being modeled. The amount of land an an-
imal perceives around itself typically depends on its
size and tendency to move within its environment: a
mountain lion may perceive about 10,000 square me-
ters of land around it, whereas a mouse may only per-
ceive a few square meters. Applying circuit theory
to model connectivity requires working with a resolu-
tion fine enough to match the species being modeled,
and an extent that may fall anywhere in the range de-
scribed above. As a result, graph sizes get large very
quickly. For example, a 100 km2 area modeled for
mountain lions with 100m cell sizes would yield a graph
with 10,000 nodes. A landscape that includes the en-
tire state of California would result in a graph with
40 million nodes. Landscapes that span several states
can easily result in graphs with hundreds of millions
of nodes; the Yellowstone-to-Yukon region includes 1.2
million km2 of wildlife habitat, requiring 120 million
nodes at 100m resolution.

Computational Methods

Circuitscape performs a series of combinatorial and
numerical operations to compute a resistance-based
connectivity metric. The combinatorial phase prepro-
cesses the landscape for the subsequent numerical op-
erations that compute resistance, current, and voltage
across large graphs.

Combinatorial Methods

Combinatorial preprocessing of a landscape.

Circuitscape first reads the raster cell map from a file
and constructs a graph. The raster cell map is repre-
sented by an m × n conductance matrix, where each
nonzero element represents a cell of interest in the
landscape. Each cell is represented by a node in the
graph. Given a node in the graph, the graph construc-
tion process inserts an undirected edge connecting the
node with its 4 or 8 neighbors. As a result, the graph
has up to 5 or 9 nonzeros per row/column, including
the diagonal. The choice of neighbor connectivity can
affect connectivity of the resulting graph. A graph
that is connected with 8 neighbors per cell may not be
connected with 4 neighbors per cell.

The landscape graph is stored as a sparse matrix of
size mn × mn. This graph is extremely sparse due to
the fact that every cell has at most 4 or 8 neighbors,
even though the landscape may be extremely large.
Edges in the graph are discovered with stencil opera-
tions. Once all the edges are discovered, the graph is
converted from the triple (or co-ordinate) representa-
tion to an efficient representation such as compressed
sparse rows.

A habitat patch in a landscape is represented as a
collection of several neighboring nodes in the graph.
Since we are typically interested in analyzing connec-
tivity between two or more habitat patches (e.g., the
patches shown in green in the figure above), all nodes
in a focal habitat patch are considered collectively, and
contracted into one node. Neighbors of the nodes of
a habitat patch are now neighbors of the contracted
node; this introduces denser rows and columns in the
sparse matrix, or higher degree nodes in our graph.

Finally, we need to ensure that the graph is fully
connected. Physically, there is no point in com-
puting current flow across disconnected pieces of the
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graph. Numerically, it leads to a singular system. Cir-
cuitscape ensures that the source and destination habi-
tat patches are in the same component, and it can it-
erate over source destination pairs in disjoint pieces of
the landscape. We prune the disconnected parts of the
landscape by running a connected components algo-
rithm on the landscape graph. In the example above,
the nodes shown in red are pruned when computing
current flow between the green habitat patches.

We note that the combinatorial preprocessing is not
performed just once, and may need to be performed
for each source/destination pair. Thus, it has to be
quick even for extremely large graphs. We touch upon
the software and scaling issues in a later section.

Numerical Methods

Once the graph is constructed, we form the graph
Laplacian; this simply consists of making all off-
diagonal entries negative and adjusting the diagonal
to make the row and column sums zero. A row and
column are then deleted from the graph Laplacian
(making the matrix symmetric positive definite) cor-
responding to the destination node, indicating that it
is grounded.

Effective resistance, current flows and voltages can
then be computed by solving a linear system. Rows
and columns corresponding to nodes connected di-
rectly to ground are deleted from the graph Lapla-
cian, and diagonal elements corresponding to nodes
connected to ground by resistors are altered by adding
the conductance of each ground resistor. These mod-
ifications to the Laplacian make the matrix symmet-
ric positive definite. The right hand side of the sys-
tem is a vector of all zeros except in the position of
source nodes, which are given values corresponding to
the amount of current injected into each.

For small to moderate problem sizes, direct methods
work well. In cases with one destination and multiple
sources, the Cholesky factorization can be computed
once, and then solutions can be achieved with trian-
gular solves.

Optimal Cholesky decomposition of the 2D model
problem on a unit square requires O(n log n) space and
O(n3/2) time. Although the space requirements seem
modest asymptotically, they are prohibitive in prac-
tice for large problems, as shown in the table below.
The number of floating point operations for the largest
problems is also prohibitive. The analysis for the 2D
model problem holds for matrices generated from land-
scapes represented as 2D grids.

Cells (106) Fill (106) GigaFlops

0.25 6.3 0.61
1 30 5.5
12 390 200
48 1800 1700

Time and space requirements to use sparse direct solvers.

We chose to explore iterative methods due to the large
amount of memory required for Cholesky factorization,
coupled with the amount of time it would take on large
grids. We use preconditioned conjugate gradient to
solve the linear systems with an algebraic multigrid
preconditioner [Sha07].

A synthetic problem

We provide some preliminary performance of Cir-
cuitscape on a synthetic problem shown below. The
larger problem sizes are tiled versions of the smaller
problem. While this does not represent a real applica-
tion scenario, it does test the scaling of our algorithms
and code on large problem sizes.

The synthetic landscape used for performance testing
[Mcr08].

The largest problem we could solve had 6 million
nodes. On a problem twice as large (12 million), we
notice memory allocation failure (even though we be-
lieve we have sufficient memory). In the table below,
we report times for the different phases of the problem.

Size
Build

Graph
Compo-

nents
AMG

setup
Linear

solve

1M 3 sec 5 sec 4 sec 9 sec
6M 14 sec 27 sec 31 sec 82 sec

Performance results for the synthetic landscape.
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Map of current flowing between two focal habitat
patches. Current densities through cells indicate the
probability of a random walker passing each cell as it
moves from one patch to the other. The map high-
lights portions of the landscape critical for movement
between the focal patches [Mcr08].

Implementation in Python

Circuitscape was first implemented in Matlab. We de-
cided to move to Python primarily for flexible script-
ing, platform independence, and potential for integra-
tion with ArcGIS (ESRI, Redlands, California, USA).
The Python implementation of Circuitscape has its
own GUI (designed with PythonCard), through which
the user specifies the inputs and chooses from the sev-
eral different problem types available.
We use numpy to manage our dense arrays, but use
the sparse matrix functionality from scipy to store
and manipulate the landscape graph. We use the co-
ordinate and compressed sparse row (CSR) storage for-
mats from scipy . We also use the conjugate gradient
solver from scipy along with the algebraic multigrid
preconditioner from pyamg.
One of the shortcomings of various array-based com-
puting tools is the lack of support for operations that
work with other data structures. We searched for li-
braries that would let us perform graph operations at
scale, and were unable to find one that suited our
needs. We instead wrote our own graph processing
module, implementing many graph algorithms with ar-
ray primitives [Sha07].

Looking forward

We are constantly trying to push the envelope on the
largest problem we can solve. We are experimenting

with Circuitscape on computers ranging from desktops
to multiprocessor shared memory systems with 64G of
RAM. We can solve problems with 6 million nodes,
but larger problems appear to be restricted by mem-
ory. We are currently investigating tools that can help
us identify and reduce the memory footprint of our
application.

We are also working on parallelizing Circuitscape. The
Matlab version of Circuitscape parallelized effortlessly
with Star-P (Interactive Supercomputing, Waltham,
Massachussetts, USA). For the Python implementa-
tion of Circuitscape, we are taking a different approach
to parallelization. We will initially start with task-
parallelism to solve several moderate sized problems
simultaneously. We also plan to parallelize the linear
solver, allowing users to perform connectivity compu-
tations across extremely large landscapes. Finally, we
hope to integrate Circuitscape with ArcGIS to make
it easy for users of ArcGIS to perform circuit-based
connectivity analyses.

Circuitscape will be released under an open source li-
cense.
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Summarizing Complexity in High Dimensional Spaces

Karl Young (karl.young@ucsf.edu) – University of California, San Francisco, USA

As the need to analyze high dimensional, multi-
spectral data on complex physical systems becomes
more common, the value of methods that glean use-
ful summary information from the data increases.
This paper describes a method that uses information
theoretic based complexity estimation measures to
provide diagnostic summary information from med-
ical images. Implementation of the method would
have been difficult if not impossible for a non expert
programmer without access to the powerful array
processing capabilities provided by SciPy.

Introduction

There is currently an explosion of data provided by
high precision measurements in areas such as cos-
mology, astrophysics, high energy physics and medi-
cal imaging. When faced with analyzing such large
amounts of high dimensional, multi-spectral data the
challenge is to deduce summary information that pro-
vides physical insight into the behavior of the underly-
ing system in a way that allows for generation and/or
refinement of dynamical models.

A major issue facing those trying to analyze this type
of data is the problem of dealing with a “large” number
of dimensions both in the underlying index space (i.e.
space or space-time) as well as the feature or spectral
space of the data. Versions of the curse of dimensional-
ity arise both from trying to generalize the methods of
time series analysis to analysis in space and space-time
as well as for data having a large number of attributes
or features per observation.

It is here argued that information theoretic complex-
ity measures such as those described in [Young1] can
be used to generate summary information that char-
acterizes fundamental properties of the dynamics of
complex physical and biological systems. The inter-
pretability and utility of this approach is demonstrated
by the analysis of imaging studies of neurodegenera-
tive disease in human brain. One important reason
for considering such an approach is that data is often
generated by a system that is non-stationary in space
and/or time. This may be why statistical techniques
of spatial image or pattern classification, that rely on
assumptions of stationarity, have given inconsistent
results when applied to magnetic resonance imaging
(MRI) data. While various heuristic methods used for
texture analysis have proven fruitful in particular cases
of - for example - image classification, they typically
do not generalize well or provide much physical in-
sight into the dynamics of the system being analyzed.
The methods described in this paper should be par-
ticularly effective in cases like classification of multi-
spectral data from a particular class of physical object,
i.e. for which the data to be analyzed and compared

comes from a restricted class such as brain images from
a set of subjects exhibiting the symptoms of one of a
small class of neurodegenerative disease. The methods
described allow for direct estimation of summary vari-
ables for use in classification of the behavior of physical
systems, without requiring the explicit constructions
described in [Crutch].

Methods

The complexity estimation methods used in this study
were introduced in [Crutch] for time series analysis.
The fundamental question addressed there was how
much model complexity is required to optimally pre-
dict future values of a time series from past values.
In addition a framework was provided for building the
optimal model in the sense of being the minimally com-
plex model required for reliable predictions.

Heuristic arguments and examples provided in
[Young1] showed that only slight modifications were
required to generalize the formalism for analysis of spa-
tial data and in particular medical image data. Critical
to the definition of complexity is the notion of “state”
which provides the ability to predict observed values
in a time series or image. Simply put, the complexity
of the set of states required to describe a particular
time series or image, is an indication of the complexity
of the system that generated the time series or image.
This in effect provides a linguistic description of the
system dynamics by directly describing the structure
required to infer which measurement sequences can be
observed and which cannot. As described in [Crutch]
to accurately and rigorously characterize the underly-
ing complexity of a system, the set of states must in
fact constitute a minimal set of optimally predictive
states. How those criteria are defined and satisfied by
the constructions outlined in this paper is described in
[Young1], [Young2]. The simplest notion of complex-
ity that arises from the above considerations involves
a count of the number of states required for making
optimal predictions. Since enumerated states can oc-
cur with varying frequencies during the course of ob-
servations, introducing the notion of state probability
is natural. Shannon’s original criteria for information
[Shan], provides the simplest definition of an additive
quantity associated with the probability distribution
defined over a set of states. Complexity can then be
described as an extensive quantity (i.e. a quantity that
scales with measurement size) defined as the Shannon
information of the probability distribution of the set of
states describing the underlying system. For equally
probable states this definition simply yields the log of
the number of states as a measure of complexity. This
notion of complexity, based on considerations of opti-
mal prediction, is very different from the traditional
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notion of Kolmogorov complexity [Cov], which quan-
tifies series of random values as the most complex,
based on considerations of incompressibility of a se-
quence. Here sequence is interpreted as a “program”
in the context of computation, and data in the context
of data analysis. Both notions of complexity provide
important and complementary measures for character-
izing structure in images. In the following, the optimal
prediction based definition of complexity is the statis-
tical complexity (SC) and the incompressibility based
definition of complexity is entropy (H), since the Kol-
mogorov complexity corresponds, in the case of data
analysis, to what physicists typically refer to as en-
tropy [Cov]. A third quantity is excess entropy (EE),
defined in [Feld]. EE is complementary to SC and H,
and can be shown to provide important additional in-
formation. EE essentially describes the convergence
rate of the entropy H to its asymptotic value as it is
estimated over larger and larger volumes of the index
space. The combination of EE, H and SC gives a ro-
bust characterization of the dynamics of a system.

The estimation and use of H, SC, and EE for classifi-
cation of images, proceeds in 4 stages:

1. choice of an appropriate feature space (e.g. in a medical
image analysis some combination of co-registered structural
MRI, diffusion images,spectroscopic images, PET images, or
other modalities).
2. segmentation (clustering) of feature space, i.e. clustering in
the space of features without regard to coordinates (analogous
to standard image segmentation for a single feature).
3. mapping of the clustered values back to the original coordi-
nate grid and generation of estimates of H, SC, and EE from
the image of clustered values.
4. classification of the data sets (e.g. images) based on the
complexity estimates (e.g. via supervised or unsupervised
learning algorithms)

The software implementation of the above methods is
an open source package written in Python using SciPy
and the Rpy [More] package to provide access to the
statistical and graphical capabilities of the R statisti-
cal language [RDev] and supplemental libraries. The
cluster and e1071 [Dimi] R packages were used for clus-
tering and the AnalyzeFMRI [March] package for MR
image processing. Image analysis was performed us-
ing this package on a 46 processor Beowulf cluster us-
ing the PyPAR [Niel] Python wrapper for the message
passing interface (MPI). Complete (fully automated)
processing of a single subject takes on the order of 40
minutes on a single 3 GHz processor.

Some important questions for future developments of
the package include whether enough statistical capa-
bility will or should be provided directly in SciPy to
obviate the need for inclusion of Rpy and R and how
easy it will be to incorporate Ipython as a base plat-
form for distributed processing.

In the next section I describe an illustrative analysis
of structural MRI images from 23 cognitively normal
(CN) subjects, 24 patients diagnosed with Alzheimer’s
disease (AD) and 19 patients diagnosed with frontal
temporal dementia (FTD). The analysis and data are
described in [Young3]. In brief: our feature space was

the segmentation of each MRI image into gray matter,
white matter and cerebrospinal fluid; we then applied
a template of neighbouring voxels (2 neighboring vox-
els, compared to the next two voxels in the same line)
to generate a local co-occurrence matrix of the three
tissue classes, centered at each voxel; we applied the
complexity metrics to this matrix, giving us an H, EE
and SC measure at each voxel of each scan. We can
then use regional or global summary statistics from
these voxel-wise measures to classify scans according
to diagnostic group.

Results

The variability of the three complexity measures in
different brain regions is illustrated in Figure (1), sep-
arately for single representative CN, AD, and FTD
subjects.

Control

AD

FTD

(1)            (2)           (3)            (4)           (5)  (6)   

Figure 1

Simultaneous variability of entropy (H), excess en-
tropy (EE) and statistical complexity (SC) of differ-
ent brain regions in a single control subject, a single
subject diagnosed with AD, and a single subject di-
agnosed with FTD, represented in an additive red-
green-blue (RGB) color space.

An additive red-green-blue (RGB) color space is used
to represent simultaneous values of H, EE, and SC. In
this color space the value of H is represented on the
red axis, EE on the green axis and SC on the blue
axis. In this representation, a higher saturation of red
represents a higher value of H, implying lack of corre-
lation of structural patterns in an image region. Sim-
ilarly, a higher saturation of green represents a higher
value of EE, implying increased long range correlations
of structural patterns and a higher saturation of blue
represents a higher value of SC, implying an increase
of locally correlated patterns. Accordingly, a simulta-
neous increase/decrease of all three complexity mea-
sures results in brighter/darker levels of gray. The
most prominent effects in the AD subject compared
to the CN and FTD subjects as seen in this represen-
tation are decreased correlation in the hippocampus
(faint red regions, yellow arrows in columns 1 and 2)
and diminished long range correlations of structural
patterns in superior parietal lobe regions (faint green
regions, arrows in column 6). In contrast, the most
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prominent effect in the FTD subject compared with
the CN and AD subjects is greater long range cor-
relation in medial frontal lobe and anterior cingulum
(intense green regions, arrows in columns 5 and 6).

An important practical question is whether the H, EE,
and SC measures are able to distinguish between di-
agnostic groups as well as the current standard, which
is to use local measures of cortical gray matter vol-
ume and thickness. In the following, we use logistical
regression to classify scans, comparing performance us-
ing different measures.

Table (1) compares results using the structural com-
plexity estimation against results on use of gray
matter (GM) cortical thickness estimation using the
FreeSurfer software on the same set of subjects.

Metric /
groups

AD/CN
(%)

FTD/CN
(%)

AD/FTD
(%)

Parietal

GM volume

95 ± 4 81 ± 7 85 ± 6

Parietal
GM thick-
ness

96 ± 3 82 ± 6 86 ± 6

3 region
complexity

92 ± 1 87 ± 1 91 ± 1

Table 1: logistical regression classification using Freesurfer and
complexity metrics

In the table, comparisons are between classification ac-
curacy based on structural complexity estimation and
classification accuracy based on tissue volume and cor-
tical thickness estimation (the parietal lobes provided
the best separation between AD and CN subjects and
the only significant separation between AD and FTD
subjects for the volume and thickness estimates). For
each, complexity or FreeSurfer, the regions providing
the best separation between the groups are listed: for
complexity the hippocampus, parietal lobe, precuneus,
and Heschl’s gyrus are taken together; for FreeSurfer
we took measures of the thickness of parietal lobe gray
matter (GM). This shows that structural complexity
measures slightly outperformed volume and cortical
thickness measures for the differential classification be-
tween AD and FTD as well as between FTD and CN.
For the classification between AD and CN, volume and
cortical thickness estimation achieved slightly higher
classifications than structural complexity estimation.

Note that the classification results above may be close
to the practical limit; clinician diagnosis of both AD
and FTD does not have perfect agreement with post-
mortem diagnosis from pathology, with errors in the
same order as those reported here.

The results above compared pairwise between groups
(CN vs AD, CN vs FTD, AD vs FTD). We can also
assess prediction accuracy when trying to separate all
three 3 groups at once, using linear discriminant anal-
ysis (LDA). This is illustrated graphically in Figures

(2a), (2b), and (2c) which depict the projections onto
the first two linear discriminants (labeled LD1 and
LD2 in the Figures) from the LDA corresponding to
the region selections for complexity estimation. This
shows the expected result that group separation promi-
nently increased with the use of focal measures, such
as each of the 13 regions, as compared to global mea-
sures, such as whole brain.

Whole Brain
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Figure 2 (a)

Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for the whole
brain
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Figure 2 (b)

Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for the hip-
pocampus, subiculum, and precuneus.
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Figure 2 (c)

Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for all 13 regions.

Conclusion

This paper provides two main results. First, despite
their simplicity and automated nature, use of struc-
tural complexity estimates is effective at capturing sys-
tematic differences on brain MRIs. They appear to
be able to capture a variety of effects such as cor-
tical volume loss and thinning. A second result is
that complexity estimates can achieve similar classifi-
cation separation between controls, AD and FTD pa-
tients, to that obtainable by highly specialized mea-
sures of cortical thinning. The classification accuracy
provided by all of these methods is at or near the limit
of the ability to reliably diagnose subjects during life,
so further comparisons between methods will require
improved clinical diagnosis, post-mortem diagnosis, or
larger samples.
Though the complexity estimation results were promis-
ing, a number of issues remain before the methods can
provide a concrete, interpretable tool suitable for clini-
cal use. Future work will extend structural complexity
estimation to multimodal imaging ([Young1]) in order
to study neurodegenerative disease. This approach
may be particularly effective as it does not depend
on spatially confined effects in the different modalities
for its classification power, as is the case for standard
multivariate linear model image analysis. It also pro-
vides a more general and interpretable approach to un-
derstanding structural image properties than methods
such as fractal and texture analysis.

Information theory based structural complexity esti-
mation shows promise for use in the study and clas-
sification of large multivariate, multidimensional data
sets including those encountered in imaging studies of
neurodegenerative disease.
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Converting Python Functions to Dynamically Compiled C

Ilan Schnell (ilanschnell@gmail.com) – Enthought, USA

Applications written in Python often suffer from the
lack of speed, compared to C and other languages
which can be compiled to native machine code. In
this paper we discuss ways to write functions in pure
Python and still benefit from the speed provided by
C code compiled to machine code. The focus is to
make it as easy as possible for the programmer to
write these functions.

Motivation

There are various tools (SWIG, Pyrex, Cython, boost,
ctypes, an others) for creating and/or wrapping C
functions into Python code. The function is either
written in C or some special domain-specific language,
other than Python. What these tools have in common
are several inconvenience for the scientific programmer
who quickly wants to accomplish a certain task:

• Learning the tool, although there are excellent ref-
erences and tutorials online, the overhead (in partic-
ular for the casual programmer) is still significant.

• Dealing with additional files.

• The source code becomes harder to read, because
the function which needs some speedup is no longer
in the same Python source.

• If the application need to be deployed, there is usu-
ally an extra build step.

Overview of CPython

Firstly, when referring to Python, we refer to the
language not the implementation. The most-widely
used implementation of the Python programming lan-
guage is CPython (Classic Python, although some-
times also referred to as C Python, since implemented
in C). CPython consists of several components, most
importantly a bytecode compiler and a bytecode in-
terpreter. The bytecode compiler translates Python
source code into Python bytecode. Python bytecode
consists of a set of instructions for the bytecode inter-
preter. The bytecode interpreter (also called Python
virtual machine) is executing bytecode instructions.
Python bytecode is really an implementation detail of
CPython, and the instruction set is not stable, i.e. the
bytecode changes with every major Python version.
One could perfectly write a Python interpreter which
does not use bytecode at all. However, there are at
least two good reasons for having bytecode as an in-
termediate step.

• Speed: A Python program only needs to be trans-
lated to bytecode when it is first loaded into the
interpreter.

• Design: Having bytecode as an internal intermediate
step simplifies the design of the (entire) interpreter,
since each component (bytecode compiler and byte-
code interpreter) can be individually maintained, de-
bugged and tested.

The PyPy project

In this section, we give a brief overview of the PyPy
project. The project started by writing a Python byte-
code interpreter in Python itself, and grew to imple-
ment an entire Python interpreter in Python. Com-
pared to the CPython implementation, Python takes
the role of the C Code. The clear advantage of this
approach is that the description of the interpreter is
shorter and simpler to read, as many implementation
details vanish. The obvious drawback of this approach
is that this interpreter will be unbearably slow as long
as it is run on top of CPython. To get to a more use-
ful interpreter again, the PyPy project translates the
high-level description of Python to a lower level one.
This is done by translating the Python implementa-
tion on the Python interpreter to C source. In order
to translate Python to C, the PyPy virtual machine
is written in RPython. RPython is a restricted subset
of Python, and the PyPy project includes a RPython
translator, which can produce output in C, LLVM, and
other languages.

Using the PyPy translator

The following piece of Python code shows how the
translator in PyPy can be used to create a compile
decorator, i.e. a decorator functions which lets the
programmer easily compile a Python function:
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from pypy.translator.interactive import Translation

class compdec:

def __init__(self, func):

self.func = func

self.argtypes = None

def __call__(self, *args):

argtypes = tuple(type(arg) for arg in args)

if argtypes != self.argtypes:

self.argtypes = argtypes

t = Translation(self.func)

t.annotate(argtypes)

self.cfunc = t.compile_c()

return self.cfunc(*args)

@compdec

def is_prime(n):

if n < 2:

return False

for i in xrange(2, n):

if n%i == 0:

return False

return True

print sum(is_prime(n) for n in xrange(100000))

There are several things to note about this code:

• A decorator is only syntactic sugar.

• The decorator function is in fact a class which upon
initialization receives the function to be compiled.

• When the compiled function is called, the special
__call__ method of the instance is invoked.

• A decorated function is only compiled when invoked
with a new set of arguments types.

• The function which is compiled, (is_prime in the ex-
ample) must restrict it’s features to RPython, e.g. it
can not contain dynamic features like Python’s eval

function.

In the above decorator example all the hard work is
done by PyPy. Which includes:

• The translation of the RPython function to C.

• Invoking the C compiler to create a C extension
module.

• Importing the compiled function back into the
Python interpreter.

The advantage of the above approach is that the em-
bedded function uses Python syntax and is therefore
an internal part of the application. Moreover, a func-
tion can be written without even having PyPy in mind,
and the compile decorator can be applied later when
necessary.

A faster numpy.vectorize

Using the PyPy translator, we have implemented a
function called fast_vectorize. It is designed to be-
have as NumPy’s vectorize function, i.e. create a
generic function object (ufunc) from a Python func-
tion. The argument types (signature) of the function
need to be provided, and it is possible to provides sev-
eral signatures for the same function. For each sig-
nature, the PyPy translator is invoked, to generate
a C version of the function for the given signature.
The UFunc object is created using the function PyU-

Func_FromFuncAndData available through NumPy’s
C-API, the support code necessary to put all the pieces
together is generated, and at the end scipy.weave is
used to create the UFunc object. The figure gives a
high level overview of fast_vectorize internals.

Here are some benchmarks in which the simple func-
tion is evaluated for a numpy array of size 10 Million
using different methods:

def f(x):

return 4.2 * x*x - x + 6.3

These benchmarks were obtained on a 2.4GHz Linux
system:

Method Runtime
(sec)

Speed
vs.

1 numpy.vectorize8.674 69.9
2 x as

numpy.array
0.467 3.8

3 fast_vectorize 0.124 1.0
4 inlined 0.076 0.61

Remarks:

1. numpy.vectorize is slow, everything is imple-
mented in Python, and no UFunc object is created.

2. When x is used as the array itself, the calculation
is more memory-intensive, since for every step in
the calculation a copy of the array is being made.
For example, first 4.2 is multiplied to the array
x, which results in a new array (tmp = 4.2 * x)
which is then multiplied with the array x, which
again results in a new array, and so on.

3. Here, the function f is translated to a Ufunc ob-
ject which performs all steps of the calculation in
compiled C code. Also worth noting is that the
(inner) loop over 10 Million elements is a C loop.

4. In this example, the C function has been inlined
into the inner C loop. For simplicity and clarity,
this has been available in fast_vectorize. Also, if
the function is more complicated than the one in
the benchmark, the performance increase will be
less significant.
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When caluculation the simple quadratic function as
a numpy array (2), it is also possible to rewrite the
function in such a way that fewer arrays are created
by doing some operations in-place, however this only
created a modest speedup to 10%. A more signifi-
cant speedup is achieved by rewriting the function as
f(x) = (a*x + b) * x + c. It should be mentioned
that whenever one is trying to optimize some numer-
ical code one should always try to first optimize the
mathematical expression or the algorithms being used
before trying to optimize the execution of some partic-
ular piece of code.
There are many interesting applications for the PyPy
translator, apart from the generation of UFunc objects.
I encourage everyone interested in this subject to take
a closer look at the PyPy project.

Note I am working on putting the fast_vectorize function in
SciPy.
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unPython: Converting Python Numerical Programs into C

Rahul Garg (garg1@cs.ualberta.ca) – University of Alberta, Canada

Jose Nelson Amaral (amaral@cs.ualberta.ca) – University of Alberta, Canada

unPython is a Python-to-C compiler intended for
numerical Python programs. The compiler takes as
input type-annotated Python source and produces
C source code for an equivalent extension module.
The compiler is NumPy-aware and can convert most
NumPy indexing or slicing operations into C array
accesses. Furthermore the compiler also allows an-
notating certain for-loops as parallel and can gen-
erate OpenMP code thus providing an easy way to
take advantage of multicore architectures.

Introduction

Python and NumPy form an excellent environment for
numerical applications. However often performance of
pure Python code is not enough and the user is forced
to rewrite some critical portions of the application in
C. Rewriting in C requires writing glue code, manual
reference count management and knowledge of Python
and NumPy C APIs. This reduces the programmer
productivity substantially. Moreover rewriting a mod-
ule in C obscures the logic of the original Python mod-
ule within a large amount of boilerplate. Thus exten-
sion modules written in C can often become very hard
to maintain.

To relieve the programmer from writing C code, we
present unPython. unPython is a Python to C com-
piler that takes as input annotated Python code and
produces as output C code for an equivalent extension
module. To compile a module with unPython, a pro-
grammer adds annotations, such as type declarations,
to a module. The programmer then invokes unPython
compiler and unPython converts the Python source
into C. Annotations are added in a non-interfering
way such that the annotated Python code still remains
valid Python and thus can still run on CPython inter-
preter giving the same results as the original unanno-
tated Python code.

The distinguishing feature of unPython is that un-
Python is focused on compiling numerical applications
and knows about NumPy arrays. unPython therefore
has knowledge of indexing and slicing operations on
NumPy arrays and converts them into efficient C ar-
ray accesses. The other distinguishing feature of un-
Python is its support for parallel loops. We have in-
troduced a new parallel loop notation thus allowing
Python programmers to take advantage of multicores
and SMPs easily from within Python code. While the
code runs as serial loop on the interpreter, unPython
converts specially marked loops into parallel C loops.
This feature is especially important since CPython has
no built-in support for true concurrency and therefore
all existing solutions for parallelism in Python are pro-
cess based. Moreover since parallel loops are inspired

from models such as OpenMP [openmp], the parallel
loop will be familiar to many programmers and is eas-
ier to deal with than a general thread-and-lock-based
model.

Features

1. unPython is focused on numerical applications and
hence can deal with int, float, double and NumPy
array datatypes. Arbitrary precision arithmetic is
not supported and the basic numeric types are con-
verted into their C counterparts. NumPy array
accesses are converted into C array accesses. Cur-
rently “long” integers are not supported but will
be added after transition to Python 3.

2. To compile a function, a user specifies the type
signature of the function. The type signature is
provided through a decorator. When running on
the interpreter, the decorator simply returns the
decorated function as-is. However when compiled
with the unPython compiler, the decorator takes
on special meaning and is seen as a type decla-
ration. The types of all local variables are auto-
matically inferred. To facilitate type inference, un-
Python requires that the type of a variable should
remain constant. In Python 3, we aim to replace
decorators with function annotations. An example
of the current decorator-based syntax is as follows:

# 2 types for 2 parameters

# last type specified for return type

@unpython.type(’int’,’int’,’int’)

def f(x,y):

#compiler infers type of temp to be int

temp = x + y

return temp

3. User-defined classes are supported. However mul-
tiple inheritance is not currently supported. The
programmer declares the types of the member vari-
ables as well as member functions. Currently
types of member variables are specified as a string
just before a class declaration. Subclassing builtin
types such as int, float, NumPy arrays, etc. is also
not supported. Dynamic features of Python such
as descriptors, properties, staticmethods, class-
methods, and metaclasses are currently not sup-
ported.

4. unPython does not currently support dynamic fa-
cilities such as exceptions, iterators, generators,
runtime code generation, etc.

5. Arbitrary for-loops are not supported. However
simple for-loops over range or xrange are sup-
ported and are converted into efficient C counter-
parts.
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6. Parallel loops are supported. Parallel loops are
loops where each iteration of the loop can be exe-
cuted independently and in any order. Thus such
a loop can be speeded up if multiple cores are
present. To support parallel loops, we introduce
a function called prange. prange is just a normal
Python function which behaves exactly like xrange
on the interpreter. However, when compiling with
unpython, the compiler treats it as a parallel range
declaration and treats each iteration of the cor-
responding loop as independent. A parallel loop
is converted into corresponding OpenMP declara-
tions. OpenMP is a parallel computing industry
standard supported by most modern C compilers
on multicore and SMP architectures. An example
of a parallel loop:

#assume that x is a NumPy array

#the following loop will execute in parallel

for i in unpython.prange(100):

x[i] = x[i] + 2

Under some conditions, prange loops cannot be
converted to parallel C code because CPython is
not thread safe. For example, if a method call is
present inside a parallel loop body, then the loop is
currently not parallelized and is instead compiled
to a serial loop. However prange loops contain-
ing only operations on scalar numeric datatypes
or NumPy arrays can usually be parallelized by
the compiler.

7. Preliminary support for homogeneous lists, tuples,
and dictionaries is present.

Implementation

unPython is a modular compiler implemented as mul-
tiple separate components. The compiler operates as
follows:

1. A Python script uses CPython’s compiler mod-
ule to read a Python source file and converts the
source file into an Abstract Syntax Tree (AST).
AST, as the name implies, is a tree-based rep-
resentation of source code. unPython uses AST
throughout the compiler as the primary method
of representing code.

2. The AST formed is preprocessed and dumped into
a temporary file.

3. The temporary file is then read back by the core
of the compiler. The core of the compiler is im-
plemented in Java and Scala. To read the tempo-
rary file, the compiler uses a parser generated by
ANTLR. The parser reads the temporary file and
returns the AST read from the file.

4. Now the compiler walks over the AST to check
the user-supplied type information and adds type
information to each node.

5. The typed AST undergoes several transformations.
The objective of each transformation is to either
optimize the code represented by the AST or to
convert the AST to a representation closer to C
source code. Each phase is called a “lowering” of
the AST because with each transformation, the
AST generally becomes closer to low-level C code
than high-level Python code. The term “lower-
ing” is inspired from the Open64 [open64] com-
piler which also uses a tree like structure as the
intermediate representation.

6. A final code generation pass takes the simplified
AST and generates C code. We are looking to fur-
ther split this phase so that the compiler will first
generate a very low level representation before gen-
erating C code. Splitting the final code generation
into two phases will allow us to easily add new
backends.

Most of the compiler is implemented in Java and Scala
[scala]. Scala is a statically-typed hybrid functional
and object-oriented language that provides facilities
such as type inference, pattern matching and higher
order functions not present in Java. Scala compiles
to JVM bytecodes and provides easy interoperability
with Java. The choice of implementation language
was affected by several factors. First, by using lan-
guages running on the JVM, we were able to utilize
the standard JVM libraries like various data struc-
tures as well as third party libraries such as ANTLR
and FreeMarker. Second, distribution of compiler bi-
naries is simplified since binaries run on the JVM and
are platform independent. Further, both Java and
Scala usually perform much faster than Python. Fi-
nally, Scala provides language features such as pattern
matching which were found to considerably simplify
the code.

Experimental Results

The platform for our evaluations was AMD Phenom
x4 9550 with 2 GB RAM running 32-bit Linux. GCC
4.3 was used as the backend C compiler and “-O2 -
fopenmp” flags were passed to the compiler unless oth-
erwise noted. The test codes are available at http:

//www.cs.ualberta.ca/~garg1/scipy08/

Recursive benchmark : Compiled vs Interpreted

The programming language shootout [shootout] is a
popular benchmark suite often used to get a quick
overview of speed of simple tasks in a programming
language. We chose integer and floating point ver-
sions of Fibonacci and Tak functions from “recursive”
benchmark as a test case. The inputs to the func-
tions were the same as the inputs in the shootout.
We chose a simple Python implementation and mea-
sured the time required by the Python interpreter to
complete the benchmark. Then type annotations were
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then added and the code was compiled to C using un-
Python.

The interpreted version finished the benchmark in
113.9 seconds while the compiled version finished in
0.77 seconds thus giving a speedup of 147x.

Matrix multiplication : Serial vs Parallel

We present experimental evaluation of the parallel loop
construct “prange”. We wrote a simple matrix multi-
plication function in Python to multiply two numpy
arrays of doubles. The function was written as a 3-
level loop nest with the outer loop parallelized using
prange while the inner two loops were xrange.

We measured the performance of C + OpenMP code
generated by unPython. For each matrix size, the
number of threads was varied from 1 to 4 to obtain
the execution time. The execution times for each ma-
trix size were then divided by the execution time of 1
thread for that particular matrix size. The resulting
speedups are shown in the following plot.

We also measured the execution time of a purely serial
version of matrix multiplication with no parallel loops
to measure the overhead of OpenMP on single thread
performance. We found that the difference in execu-
tion time of the serial version and 1-thread OpenMP
version was nearly zero in each case. Thus in this case
we found no parallelization overhead over a serial ver-
sion.

Related Work

Several other Python compilers are under develop-
ment. Cython [cython] is a fork of Pyrex [pyrex] com-
piler. Cython takes as input a language similar to
Python but with optional type declarations in a C
like syntax. Pyrex/Cython produces C code for exten-
sion modules. Cython is a widely used tool and sup-
ports more Python features than unPython. Cython
recently added support for efficient access to NumPy
arrays using the Python buffer interface. Cython does
not support parallel loops currently.

Shedskin [shedskin] is a Python to C++ compiler
which aims to produce C++ code from Python code
without any linking to Python interpreter. Shedskin
relies on global type inference. Shedskin does not di-
rectly support numpy arrays but instead provides more
efficient support for list datatype.

PyPy [pypy] is a project to implement Python in
Python. PyPy project also includes a RPython to C
compiler. RPython is a restricted statically typable
subset of Python. PyPy has experimental support for
NumPy.

Future Work

unPython is a young compiler and a work in progress.
Several important changes are expected over the next
year.

1. Broader support for NumPy is under development.
We intend to support most methods and functions
provided by the NumPy library. Support for user
defined ufuncs is also planned.

2. Lack of support for exceptions is currently the
weakest point of unPython. However exception
support for Python is quite expensive to imple-
ment in terms of performance.

NumPy array accesses can throw out-of-bounds
exceptions. Similarly core datatypes, such as lists,
can also throw many exceptions. Due to the dy-
namic nature of Python, even an object field access
can throw an exception. Thus we are searching for
a solution to deal with exceptions in a more se-
lective manner where the user should be able to
trade-off safety and performance. We are looking
at prior work done in languages such as Java.

3. We intend to continue our work on parallel com-
puting in three major directions. First we intend
to investigate generation of more efficient OpenMP
code. Second, we will investigate compilation to
GPU architectures. Finally research is also being
done on more general parallel loop support.

4. Support for the Python standard library module
ctypes is also planned. ctypes allows constructing
interfaces to C libraries in pure Python.

5. Research is also being conducted on more sophis-
ticated compiler analysis such as dependence anal-
ysis.

Conclusion

The paper describes unPython, a modern compiler
infrastructure for Python. unPython is a relatively
young compiler infrastructure and has not yet reached
its full potential. unPython has twin goals of great
performance and easily accessible parallel comput-
ing. The compiler has a long way to go but we be-
lieve with community participation, the compiler will
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achieve its goals over the next few years and will be-
come a very important tool for the Python commu-
nity. unPython is made available under GPLv3 at
http://code.google.com/p/unpython.
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